
RESEARCH Open Access

Multi-scale Gaussian representation and outline-
learning based cell image segmentation
Muhammad Farhan1*, Pekka Ruusuvuori1, Mario Emmenlauer2, Pauli Rämö2, Christoph Dehio2, Olli Yli-Harja1

From 10th International Workshop on Computational Systems Biology
Tampere, Finland. 10-12 June 2013

Abstract

Background: High-throughput genome-wide screening to study gene-specific functions, e.g. for drug discovery,
demands fast automated image analysis methods to assist in unraveling the full potential of such studies. Image
segmentation is typically at the forefront of such analysis as the performance of the subsequent steps, for example,
cell classification, cell tracking etc., often relies on the results of segmentation.

Methods: We present a cell cytoplasm segmentation framework which first separates cell cytoplasm from image
background using novel approach of image enhancement and coefficient of variation of multi-scale Gaussian scale-
space representation. A novel outline-learning based classification method is developed using regularized logistic
regression with embedded feature selection which classifies image pixels as outline/non-outline to give cytoplasm
outlines. Refinement of the detected outlines to separate cells from each other is performed in a post-processing
step where the nuclei segmentation is used as contextual information.

Results and conclusions: We evaluate the proposed segmentation methodology using two challenging test
cases, presenting images with completely different characteristics, with cells of varying size, shape, texture and
degrees of overlap. The feature selection and classification framework for outline detection produces very simple
sparse models which use only a small subset of the large, generic feature set, that is, only 7 and 5 features for the
two cases. Quantitative comparison of the results for the two test cases against state-of-the-art methods show that
our methodology outperforms them with an increase of 4-9% in segmentation accuracy with maximum accuracy
of 93%. Finally, the results obtained for diverse datasets demonstrate that our framework not only produces
accurate segmentation but also generalizes well to different segmentation tasks.

Introduction
High-throughput screening used in drug design involves
identification of genes which modulate a particular biomo-
lecular pathway. RNA interference (RNAi), by decreasing
the expression of particular genes in a cell culture, helps in
identifying and analyzing the target gene functions in the
cells by observing the cell behavior after gene knockdown
[1-3]. Image analysis is at the center stage of such studies
where cell cultures are imaged with automated fluorescent
microscopy to study the cell behavior in knockdown as
well as in normal condition. Genome-wide high-content

siRNA screening involves studying the dynamics of gene
expression in cellular functions for the whole genome and
therefore yields hundreds of thousands of images making
their manual analysis impractical [3]. Quantitative image
analysis is needed for the identification, classification and
quantification of the phenotypes which is also not possible
through manual analysis [3,4]. Consequently, fast enough
automated image analysis methods are needed to fulfill
the potential of high-throughput system.
Segmentation of cells is typically at the core of the

image analysis pipelines dealing with high-content gen-
ome-wide screening experiments [4,5]. This is generally
the step which performs cell detection and further analy-
sis, such as cell tracking and lineage reconstruction and
cell classification, is based on the results of cell detection.
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However, in such experiments, segmentation is challen-
ging due to presence of large number of phenotypes.
Different cell phenotypes have different characteristics
and appearances and, for some complex and heteroge-
neous cell cultures, it is difficult to build analysis capable
of detecting all the phenotypes, potentially leading to the
loss of some phenotypes. Accurate cell segmentation and
detection is therefore essential for quantification of
phenotypes.
One of the main challenges in cell segmentation is the

cells touching and clustering together, forming a clump.
Not only the cytoplasms form clumps but clustering of
nuclei is also quite common. The latter problem has
been tackled in our recent article [6]. The problem with
cytoplasm region in general, and specifically with their
clumps, is that they do not often have visible boundaries.
Due to this reason, and also due to their irregular shapes,
the methods typically in use for clump splitting often fail
[7]. The other challenge often faced in cytoplasm seg-
mentation is uneven and varying actin signal. Imaging
aberrations cause actin signal to be saturated at some
locations and to be too low on other locations for being
regarded as part of the cell. This causes methods based
on global image segmentation methods to fail. Another
similar challenge that lies in cytoplasm segmentation is
that the inside of the cells is inhomogeneous, conse-
quently the intensity variations are large. Sometimes, part
of the cell cytoplasm resembles the background and the
methods solely based on image intensity are often found
struggling in such situations [4]. However, if along with
image intensity, other features locale to those regions are
examined, the difference between background and cyto-
plasm could be highlighted. In addition to all this, uneven
illumination and out of focus regions of the image also
cause problems in getting accurate segmentation results.
Methods for cell cytoplasm segmentation available in lit-

erature can be mainly divided into two approaches: classic
segmentation methods and deformable model-based
methods. The former includes watershed transform,
region growing, and mathematical morphology methods
etc., see for example [8,9], whereas the latter comprises
active contour [10], level set [11,12] and graph cut based
methods [5]. Authors in [7] developed a method in which
watershed algorithm with double thresholds is followed by
splitting and merging of cellular regions based on quality
metric obtained by correctly classified cells. Classification
of cells is performed using a set of features with a priori
information about the cells. In [13], enhancement of high
intensity variations in the actin channel is performed by
variance filtering. The enhanced image is then smoothed
and thresholded using Otsu thresholding method. Subse-
quently, seeded watershed transform is applied which is
restricted to the binary image of the cytoplasm. In another
method [5], region growing algorithm and modified Otsu

thresholding are used to extract the cytoplasm. Long and
thin protrusions on spiky cells are extracted by scale-adap-
tive steerable filter. Finally, constraint factor graph cut-
based active contour method and morphological algo-
rithms are combined to separate tightly clustered cells.
In a method described in [4], the interaction between

cells is modeled using a combination of both gradient
and region information. Energy function is formulated
based on an interaction model for segmenting tightly
clustered cells. The energy function is then minimized
using a multiphase level set method. Markov Random
Fields (MRF) based graphical segmentation model yield-
ing energy minimization problem is also applied to cell
cytoplasm segmentation where graph cut method is
used to obtain an exact MAP solution [14]. Similarly Pn

Potts model, where functions of higher-order cliques of
pixels are included into the traditional Potts model,
combined with learning methods for defining the poten-
tial functions accounting for local texture information
are used to segment live cell images in [15].
The problem with these methods is that they tend to

produce over- and/or under-segmentation, for example,
classic segmentation methods. Also, they are sometimes
computationally-intensive and slow or they depend on
schemes which require parameter initialization, and find-
ing a good set of initial parameters for large heteroge-
neous dataset often requires user intervention which
hinders development of automated analysis pipelines
[16]. Moreover, when the cells are non-convex, as in our
case, the methods available for segmentation of convex
objects do not work, nor do the methods which are based
on shape priors.
When cells clump together the cytoplasm outlines

become invisible, however the intensity and other fea-
tures along that part of the image are quite similar to the
features of other cell outlines that are visible. Therefore,
a segmentation methodology can be developed in which
the outlines of the cell cytoplasm are learned by a super-
vised machine learning algorithm. There are methods in
literature [17-20] which use the technique of learning
edges for segmentation and object detection. However,
all of them detect and model outlines which are distinct,
where the outlines are basically used to detect objects or
regions in the image utilizing shape information wher-
ever available. In contrast, we need an outline detection
technique which not only detects distinct outlines but is
also capable of revealing outlines to separate objects of
unknown shapes from each other.
In this paper we propose a supervised learning and clas-

sification-based cell cytoplasm segmentation methodology
in which the outlines of the cell cytoplasm are learnt and
detected. A multi-scale approach is used to get the cyto-
plasm/background segmentation and the detected outlines
are overlaid to get the complete segmentation. The results
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from the classification framework are fed to post-proces-
sing phase, where the methodology uses the nuclei seg-
mentation [6] as contextual information to refine the
segmentation results.
The rest of the paper is organized as follows: In the

Methods section, we describe the proposed cell cyto-
plasm segmentation methodology. The obtained results
are presented and discussed in Results and discussion
section. The last section concludes the paper.

Methods
The proposed cell segmentation methodology involves
three steps which are delineated by the block diagram in
Figure 1. Firstly, images are passed through a pre-
processing stage where most of the imaging aberrations
are dealt with before applying multi-scale approach to
separate cytoplasmic regions from the image background.
Secondly, features are extracted from image pixels and a
classifier is trained for classification of image pixels as
either outline or non-outline to detect the cell outlines.
Finally, a post-processing step is performed to refine
the outlines so that they form a closed contour around
each cytoplasm to get the individual cells segregated

from each other. Implementation of the methods and
additional information are available online https://sites.
google.com/site/cellsegmentationhcs/.

Cell cytoplasm segmentation
The first step in our segmentation methodology is robust
cytoplasm/background segmentation. As we mentioned
earlier, there are many aberrations linked with high-
throughput fluorescent microscopy imaging systems.
Briefly described, the images typically have low contrast,
with blurred regions around the image corners, varying
signal strengths, inhomogeneous cell interiors and they
also sometimes have uneven illumination. Generally,
cytoplasm images appear to be most affected by these
problems as far as their accurate segmentation is
concerned.
Apart from these imaging related challenges, the other

challenge that we face is posed by our dataset which
includes cells with high phenotypic variability. Examples
of challenging phenotypes are ruffles and spikes in cell
boundary and other kinds of outline variations. A segmen-
tation method robust enough to detect such fine details
from the noisy and low contrast images is needed for

Figure 1 Block diagram of cytoplasm segmentation methodology. A block diagram showing the steps performed by the proposed
cytoplasm segmentation methodology.
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distinguishing different phenotypes. Our approach is to
first apply enhancement and correction to the images
before applying any segmentation method. Here, we use a
cascade of three image and contrast enhancement filters
for image pre-processing and a multi-scale approach for
getting the desired initial cytoplasm/background segmen-
tation. Block (A) in Figure 1 shows the steps performed in
getting initial cytoplasm segmentation.
Image pre-processing
A cascade of image and contrast enhancement filters is
used to preprocess the image to solve most of the above
mentioned problems. First, contrast-limited adaptive his-
togram equalization [21] is applied to enhance the con-
trast of the image. The image is divided into 8×8 tiles
and contrast of each tile is enhanced and the neighboring
output tiles are combined using bilinear interpolation to
avoid artifacts. In homogeneous regions of the image,
over-saturation is avoided by clipping the high histogram
peak occurring due to many pixels with similar intensity
values. Then we applied opening by morphological
reconstruction to the contrast enhanced image (mask)
using a marker image. The marker image is created by
eroding the mask image by a flat disc-shaped structuring
element of radius of 5 pixels. The advantage of perform-
ing opening by reconstruction over conventional mor-
phological opening is that, after opening, the topology of
the cytoplasmic regions remains intact. It mainly smooth-
ens out spurious high and low valued pixels and tackles
the problem of uneven and varying actin signal. Finally,
contrast of the image is adjusted once more by saturating
1% of the high and low intensity valued pixels. We will
see that this is also beneficial for the image processing at
the next stage. Figure 2(a) shows an original actin chan-
nel cytoplasm image and (b) the corresponding pre-
processed image.
Multi-scale coefficient of variation based cytoplasm
segmentation
After pre-processing the cytoplasm image, the initial cyto-
plasm/background segmentation is performed using our
novel approach. Difference of Gaussian is a well-known
technique used to enhance the edges in the image, espe-
cially the ones corrupted with noise [22]. On the other
hand, for a stack of brightfield images, coefficient of varia-
tion has been found to be effective in contrast and details
enhancement [23]. Our approach effectively combines the
characteristics of these two approaches. It is based on
coefficient of variation of the multi-scale Gaussian scale-
space representation of the cytoplasm images to enhance
the low contrast cytoplasmic regions. For an image f (x, y),
its Gaussian scale-space representation is a family of
derived signals [24] given by

L(., .; t2) = g(., .; t2) ∗ f (., .); t ≥ 0, (1)

where

g(x, y; t2) =
1

(2π t2)
e−(x2+y2)/2t2 ,

is a Gaussian kernel of increasing width t and * stands
for the convolution operation. The parameter t is a para-
meter indicating the scale and at t = 0 the scale-space
representation is the image f(x, y) itself. For increasing
value of t, L is an increasingly smoothed version of f(x, y)
with lesser details in the image. In our study, the scale-
space representation is composed of seven images
obtained at scales t = [0, 1, 2, 3, 4, 5, 6] corresponding to
the original image and their coefficient of variation image
fCOV is given by

fCOV(x, y) =

√
E[(L(., .; t2) − E[L(., .; t2)])2]

E[L(., .; t2) + ε]
, (2)

where E[·] is the expectation operator and ε = 1 is used
to avoid probable outliers due to division by zero at pixel
locations with zero intensity value. This leads to an image
with higher values at image background and the cytoplasm
outline pixels and relatively lower values for cytoplasmic
regions of the image. Moreover, due to the standard devia-
tion of stack of blurred images at different scales, it also
enhances the edges and highlights the less bright spikes
and ruffles of the cytoplasm. This also helps in differentiat-
ing the image background pixels from the less bright
regions of the cytoplasm caused by intensity inhomogene-
ities. Adding the inverse of this image, after normalization,
to the image f(x, y) leads to an enhanced image fenh(x, y)
with cytoplasm pixels clamped at a more higher value
while background pixels at a relatively small value, that is,

fenh(x, y) = f (x, y) + (2b − 1 − fCOV(x, y)), (3)

where b is the number of bits used to represent the
image. This enhancement in image increases the differ-
ence between the darkest cytoplasm pixel and the bright-
est background pixel and a simple intensity threshold-
based method such as Otsu segmentation [25] is able to
give the desired cytoplasm/background segmentation.
Figure 2(b) shows a gray-scale pre-processed cytoplasm
image, 2(c) the coefficient of variation image and 2(d) the
resulting image with cytoplasm/background segmentation.
From the figure, it is quite evident that our method is able
to detect the cytoplasmic regions correctly despite the pre-
sence of intensity inhomogeneities.

Classification-based cell cytoplasm outline detection
The cytoplasm segmentation obtained in the previous
step still has cytoplasms of different cells touching each
other. This is the step in which we detect the cytoplasm
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outlines and apply them to the result of the previous step
for getting the whole cell segmentation. As we mentioned
earlier, even if the cytoplasm outlines are invisible, espe-
cially in the regions where cytoplasms clump, the inten-
sity and other features of the pixels with underlying
outlines still closely match the features of outline pixels
that are clearly visible. This leads us to an approach in
which a classifier is trained to classify a pixel as either
outline or non-outline based on the set of local features
extracted from the image pixels.
A large set of generic pixel-level features is extracted

from the training image using a set of filter banks, see
Table 1. Using these features and training labels obtained
from manually outlined image(s), a classifier is designed
utilizing sparse logistic regression classification framework
which has feature selection property inherent to it. For
any test image, only the features selected by the classifier
are extracted and using the designed classifier the image
pixels are classified as outline/non-outline pixels, see block
(B) in Figure 1.
Extraction of features
The complexity and accuracy of a classifier depends upon
the number and distinguishing nature of the features used
for classifier design. Selection of the most informative fea-
tures from a list of candidate features reduces the model
complexity yet it needs to be performed such that the
model yields high classification accuracy. Sparse model
using only a subset of the available features allows us to

keep the initial feature set large with as many general and
redundant features as desired. Moreover, the benefit of
using large and general rather than small and problem-
specific feature set is that the framework generalizes to
other similar classification problems. Hence, we employ an
exhaustive set of generic linear and non-linear features
knowing our feature selection technique has been

Figure 2 Image pre-processing and cytoplasm/background segmentation. Image pre-processing and cytoplasm/background segmentation.
(a) An actin-channel cell microscopy image showing the cell cytoplasm and (b) the result of pre-processing. (c) The coefficient of variation
image of scale-space representation and (d) the resulting cytoplasm/background segmentation. The size of the image is 1040×1392 pixels.

Table 1 Filtering operations and the filter parameters for
computing pixel-level features from training images.

Operation (Feature) Parameter Values Total

Gaussian low pass kernel width s 3:2:49 24

Integrated pixel intensity kernel size 3:2:9 04

Laplacian of Gaussian kernel width s 3:2:49 24

Difference of Gaussian kernel width s 05

Morphological top-hat kernel size 3:2:49 24

Morphological bottom-hat kernel size 3:2:49 24

Local binary pattern (quantization,

and contrast radius) (8,1) 02

Variance kernel size 3:2:49 24

Order statistics

(Min., Med., Max.) kernel size 3:2:7 09

Haralick (13-features) kernel size 5:2:15 78

Gabor filter kernel size, 5:2:15,

freq. f, 1/4:1/4:3/4,

orientation θ 0:π/4:3π/4 72

Total number of features. 290
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successfully used for building sparse classification models
in similar use cases [26].
In our study, pixel-level features are extracted from 2D

cytoplasm images by applying a large set of filters on
them, both in spatial and transform domain, with varying
parameters. In [26], the authors use a large generic set of
intensity-based features along with textural feature such
as local binary pattern (LBP) [27] for image segmenta-
tion. Our cytoplasm images possess interesting texture
characteristics which might be useful in classification of
image pixels. Therefore, in addition to the local binary
patterns and other intensity features used in [26], we also
incorporate texture features such as the ones obtained
from Gabor filters [28] and Haralick [29] features in our
classifier design. The feature set comprises general inten-
sity, edge, texture (scale and orientation) based local fea-
tures which are computed in the pixel neighborhoods
using filters with varying kernel sizes. Table 1 lists all the
features that are computed for the training images.
Design of classifier incorporating feature selection
High-dimensionality of the observations leads to the risk
of over-fitting at the cost of generalization of the solution
and reduction of feature space is desired. However, selec-
tion of the most informative features from a feature set for
modeling data characteristics has always been problematic.
In case of multiple linear regression modeling, regulariza-
tion is a process which adds a penalty term to the least
square prediction error to shrink the magnitude of model
coefficients towards zero. Thus a sparse solution with only
few non-zero coefficients is obtained and feature selection
is performed automatically. Least absolute shrinkage and
selection operator (LASSO) [30] is a technique which
penalizes the error function using l1-norm of coefficient
vector along with a regularization parameter l >0 which
controls the sparsity of the solutions. This is another char-
acteristic of this framework, that is, its provision of a set of
solutions which usually has increasing sparsity for an
increasing value of l. The advantage in it is that it helps in
choosing a solution with as many features desired with lit-
tle or no major change in the classification result, that is, a
solution with a small trade-off between accuracy and
model sparsity/complexity.
Using such framework, a classifier with sparse model

is designed by taking the advantage of logistic function
to describe the class probability p(oi|xi) of pixel i
belonging to outline by

p(oi|xi) = 1

1 + e(β0+x
T
i β)

, (4)

where oi represent the class “outline” and probability for
class “non-outline” ni is given by p(ni|xi) = 1 - p(oi|xi),
xi ∈ R

p denotes the feature vector of the ith pixel and (b0, b)

is the coefficient vector which is estimated by maximizing
the penalized log-likelihood given by

N∑
i=1

{log p(oi|xi) + log(1 − p(oi|xi))} − λ||β||1, (5)

whose quadratic approximation gives rise to an
equivalent penalized iteratively re-weighted least squares
problem that can be solved by coordinate descent algo-
rithm [31].
Training and classification
In order to perform training and classification, manually
created benchmark images with cytoplasm outlines are
used. We have a set of training samples, around 550
cells (5 images) and 1250 cells (16 images) for Test Case
I and Test Case II, respectively, segmented manually by
expert biologists, see details regarding image acquisition
in later section. It is worth-mentioning that, while
choosing the images for benchmarking, the criteria was
to pick those images which contain most of the image
area covered with cells and also the chosen images pre-
sent one of those cases which are the most challenging
as far as getting accurate segmentation is concerned.
Since all the images are 1040×1392 (Test Case I ) and
400×400 (Test Case II ) in size, even the pixels of a sin-
gle image are sufficient enough to train the classifier,
especially the classifier of our type which is capable of
dealing with even P ≫ N cases. Therefore, one of the
images is used solely for training of the classifier while
the rest of the images are used for evaluating the classi-
fier. This way we made sure not to use the same data
for both training and testing.
For training, 500 positive (outline) and 500 negative

(non-outline) samples are picked at random from
1447680 or 160000 samples in the benchmarked image
of cytoplasm outlines. For these 1000 samples, all the 290
features listed in Table 1 are extracted from the corre-
sponding cytoplasm image. This training data of
1000×290 feature vector along with 1000×1 target labels
is input to the regularized logistic regression classifier.
For testing, only the selected features are calculated for
every pixel in the test images to be used with the selected
model for outline classification.
In order to estimate the optimal classifier model coeffi-

cients, 10-fold cross-validation is performed on the train-
ing data to estimate the prediction error of all the
solutions obtained for different values of regularization
parameter l. The solution which gives the minimum pre-
diction error is generally chosen, however, it can be left to
the discretion of the designer to pick an even more sparse
solution with little or no major impact on the final classifi-
cation results. In our case, we observed that models within
one standard error of the mean cross-validation error do
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not change the classifier output significantly. Finally, the
selected model for the classifier gives the posterior prob-
ability values for the pixels in the test image which is used
directly to find the class label (outline/non-outline) for
every pixel.

Post-processing
Post-processing of the classifier outputs is generally a
complementary part of any classification framework. One
of the techniques used for post processing exploits the
contextual information obtained either from the targeted
patterns, which, in our case is cytoplasm images, or from
some other source related to them. The classifier that we
obtained to classify image pixels as outline/non-outline
gives accurate yet coarse results. The coarseness mainly
comes from the fact that sometimes the pixels interior to
the cytoplasm are given the outline labels due to similarity
of their features with outline pixels which was actually
caused by varying and inhomogeneous actin signal. More-
over, due to binary outputs, that is, the threshold probabil-
ity value of 0.5, the classifier tends to give thick outlines
because many pixels close to the actual outline have simi-
lar features with little variations among them. Also, again
due to varying signal strength or due to noise, quite often
the detected outlines are non-connected, whereas, the
desired solution is to have closed contour outlines for
cytoplasms. Therefore, we need to refine the classifier out-
put and transform it in such a way that we get single-pixel
length closed outline contours.
In eukaryotic cells, nucleus is the main indicator of a

cell. We have the DNA-channel nuclei images which pro-
vide a solid basis to find the individual cells, or to detect
individual cell cytoplasm outlines in the actin-channel
cytoplasm images. In cell images, nucleus is generally
located at the central portion of the cell. Most importantly,
we can certainly assume that the pixels occupied by the
nucleus can never be occupied by the cell outlines. There-
fore, nuclei images provide contextual information for
post-processing of the classifier output. Mainly, they are
used to filter out the misclassified outline pixels lying
inside the cell. In the same context, they are also used to
refine the result of initial segmentation to fill underlying
small holes occurring due to intensity inhomogeneities.
This image is then inverted and unified with the filtered
outline image to further strengthen the outlines.
Once the outlines are filtered, their thinning is per-

formed by morphological skeletonization to get single-
pixel length outline contour. Skeletonization is preferred
over morphological thinning since it gives not only accu-
rate contour in terms of its location but it also gives non-
connected branches wherever available. These branches
occur either due to discontinuous outlines or due to
some noisy structures in the original cytoplasm images,

and help in getting closed contour outlines. Decision on
whether to join these non-connected branches or not is
taken on the basis of object correspondence at the nuclei
and cytoplasm level. In order to find the correspondence,
the thinned outlines are applied on the initially segmen-
ted images to get the first-stage cytoplasm segmentation.
Due to false positives and false negatives in the outlines
classification we get over- and under-segmentation. To
deal with this, nuclei images are used to perform an addi-
tional step of splitting and merging.
In the splitting and merging step, firstly, nuclei image is

used to morphologically reconstruct the first-stage cyto-
plasm segmentation image. This separates objects or cyto-
plasmic regions with and without a corresponding nucleus.
The latter ones are saved to be merged in a later part of
this step. In the former case, we have two types of corre-
spondences: one-to-one correspondence between cyto-
plasm and nucleus and one-to-many correspondence
between cytoplasm and nuclei. In the former case, there is
one nucleus for every cytoplasm which is often the case in
our images as there are very few multinuclear cell pheno-
types. Morphological closing is applied to such objects to
smoothen inside of cytoplasm and to remove any non-
connected branches occurring due to noise or intensity
inhomogeneities.
In the case of one-to-many correspondence, the respec-

tive non-connected branches in outline are extracted and
dilated to close in the gaps. Skeletonization and morpholo-
gical reconstruction are applied again to split the regions
into nucleus-bearing regions and non-nucleus-bearing
regions. It is worth-mentioning that no extra splitting
approach is used in order to get one cytoplasmic region
per nucleic region. The reason is that the nuclei used for
finding correspondence are themselves found to be affected
by over-splitting and an attempt to forcefully split a cyto-
plasmic region despite the absence of outline would result
in cytoplasm over-segmentation translated from nuclei
over-segmentation. Moreover, our approach also helps
in retaining the morphology of the multinuclear cell
phenotypes.
Finally, region merging is performed to merge all the

non-nucleus-bearing regions resulting from the previous
step with the separated nucleus-bearing cytoplasmic
regions. Candidates for merging are obtained by dilating
the to-be-merged regions and finding the overlapping
regions in the nucleus-bearing cytoplasmic regions. Since
the cells in our image set are mostly convex, therefore, in
the case of more than one candidates, the one which gives
the largest solidity is chosen. The process is repeated for a
couple of more iterations so that regions that do not have
an overlapping cytoplasm initially, due to being away from
a cytoplasmic region, may have one now due to their adja-
cent regions being merged with a cytoplasmic region in
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the previous iteration. In the end, morphological opera-
tions are performed to remove h-connectivity as well as
8-connectivity of the objects and to fill small holes in
them. Block (C) in Figure 1 outlines the steps performed
in post-processing to get the final segmentation result.
Figure 3 shows the results of outline detection and post-
processing for the segmented image of Figure 2.

Results and discussion
To study and analyze the performance of our segmenta-
tion methodology, we test it against two challenging test
cases. Both of them consist of image sets of different cell
types with cells of varying size, shape, texture and degree
of overlap. The first case is challenging in the sense that
it contains images with high cell density with large varia-
tion in the shape as well as in size of the cells. The sec-
ond test case is more of a validation case because it not
only contains images from publicly available dataset with
ground truth benchmarking, but it also presents an alto-
gether different set of images from the first test case.
This enables testing the generalization of our framework.
The challenging aspect of the second case, similarly as
for the first case, is that the cells are such tightly clus-
tered with virtually no indiscernible boundaries that even
accurate manual segmentation is sometimes impossible.
Moreover, in both the cases, the extensive variation in
signal strength, intensity inhomogeneity and low contrast
make the segmentation task even more challenging.

Image acquisition
The details about the experimental settings to perform
image acquisition for compiling the dataset for Test
Case I and Test Case II are given below.
Test Case I
Experiments were conducted in a 384-well plate format
imaging HeLa CCL-2 ATCC cells using Molecular
Devices ImageXpress microscopes (10× objective; 9 sites
per well, Channels DAPI: DNA, GFP: pathogen, RFP:
actin) with robotic plate handling. The objective was 10X
S Fluor. Image binning was not used. Gain was set to low
(Gain1). Laser-based focusing was enabled and image-
based focusing was disabled. The dynamic range was set
to 12 Bit Range. Z-Offset for Focus was selected manually
and AutoExpose was used to get a good exposure time.
Manual correction of the exposure time was applied to
ensure a good dynamic range with low overexposure,
when necessary. The size of each image is 1040×1392
pixels. Manual benchmark creation was performed by
biologists where cell cytoplasm outlines are drawn. Due
to the presence of multinuclear phenotypes, there are few
cases of multiple nucleus per cytoplasm. Five images con-
taining around 550 cells were taken which were represen-
tative of most of the problematic cases not solved well by
a widely used method from [32].
Test Case II
In this test case we use images of Drosophila melanoga-
ster Kc167 cells which were stained for DNA (nuclei)

Figure 3 Outline detection and post-processing. Outline detection and post-processing. (a) An image after initial segmentation. (b) Resulting
outlines (green) from classification of image pixels into outline/non-outline pixels. (c) Corresponding DNA-channel nuclei image, segmentation
obtained from method in [6]. (d) Final segmented image after post-processing. The size of the image is 1040×1392 pixels.
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and actin (cytoplasm). “Images were acquired using a
motorized Zeiss Axioplan 2 and a Axiocam MRm cam-
era, and are provided courtesy of the laboratory of
David Sabatini at the Whitehead Institute for Biomedical
Research. First, nuclei were outlined by hand. The
nuclear outlines were overlaid on the cell images, and
one cell per nucleus was outlined” [33]. There are 16
images in the dataset with size 400×400, 450×450 and
512×512 pixels, containing cells of around 25 pixels in
diameter with an average of 80 cells per image. The
motivation for using this image set primarily comes
from its public availability and benchmarking. Also,
these images provide challenging segmentation tasks
which have also been worked upon previously, such as
in [16,34,35]. This helps in examining the proposed
method in comparison to the results obtained from
these state-of-the-art methods.

Segmentation quality metrics
To evaluate the accuracy of our segmentation method
and to quantitatively compare it with other methods, we
obtained performance metrics at two different levels:
pixel level (cytoplasm image) and object level (both
nucleus and cytoplasm images). The performance metric
that we used is F-measure (FM), like we did in [6,36],
which is the harmonic mean of Precision (PR) and Recall
(RC) and is given by

FM =
2

1
PR

+
1
RC

,
(6)

where

PR =
TP

(TP + FP)
and RC =

TP

(TP + FN)
, (7)

where TP, FP and FN are true positive, false positive
and false negative, respectively, with respect to the
benchmarked images. The higher the rate of true values,
the lower the rate of false values and the higher would
be the segmentation accuracy.
Pixel-level measures give an insight into how accurate

the obtained segmentation is, in terms of correspondence
between cells in segmented image and benchmarked
image. For each cell in the benchmarked image, based on
maximum overlap, a corresponding cell was found in the
segmented image. TP, FP and FN values were obtained at
pixel-level and FM value was obtained. In order for cor-
respondence to be true, a threshold value of FMth = 0.6
was used as it was used in [16]. Once an object corre-
spondence is found, the object was removed from the
segmented image and was not considered for any other
object in the benchmarked image. In this way, only one-
to-one (TP), one-to-none (FN) or none-to-one (FP)

correspondence was obtained between the benchmarked
image and the segmented image. This also accounted for
the object-level measure for cytoplasms, that is, every
one-to-one correspondence meant an increase in cell
count. Object-level measures for the nuclei were also
obtained in a similar way to get the nuclei count.
It is worth-mentioning that while finding correspon-

dence for cytoplasms, the nuclei image was not used at
all. The reason is that an over-splitting at nuclei level
may not always cause over-splitting at cytoplasm level
due to true absence of outline. Therefore, using nuclei
for finding correspondence may result in wrong quantita-
tive measures.

Nuclei segmentation
In both cases, nuclei segmentation was obtained by using
our framework presented in [6]. However, in that frame-
work we used graph cut segmentation method from [37]
which can be replaced with the initial segmentation
method proposed here for cytoplasm segmentation.
From the results, it has been observed that although the
nuclei segmentation framework with our proposed initial
segmentation gives less smoother result than the frame-
work with graph cut segmentation but when compared
quantitatively it was able to reduce twice as many false
negatives as it increases false positives. The reason is that
our initial segmentation method was found to be better
in detecting objects in low contrast with varying signal
strength than graph cut method, even though the applied
pre-processing was the same. Although, the final F-mea-
sure value was almost similar in either case, the decrease
in false negative meant an increase in cytoplasm detec-
tion, whereas, a false positive might not be as costly since
nuclei image is not affecting the splitting of cytoplasm
regions as long as there is no underlying outline detected.
For Test Case II, we replaced the graph cut-based initial
segmentation of the framework in [6] with the initial seg-
mentation method proposed here. As the magnification
of these images is different from our images, that is, they
have lesser pixels per nucleus, the set of values used for
scale needs to decrease in order to avoid objects from
getting connected due to larger kernel width. Therefore,
Gaussian filtering was performed with smaller kernel
width. Hence, the scale-space representation was com-
posed of 7 images obtained at scales t = [0, 0.5, 1, 1.5, 2,
2.5, 3] corresponding to the original image to get the
initial segmentation as described in cell cytoplasm seg-
mentation subsection.

Implementation details
In this subsection, we describe the procedure and the
implementation details of the methodology for obtaining
the results. In order to get the quantitative measures for
evaluation, we applied our segmentation methodology
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on the two image sets from the two test cases. First, we
obtained nuclei segmentation in the way described in
the previous subsection and the values of 600 and 100
were used for allowed minimum area of a nucleus for
Test Case I and Test Case II respectively. Then, cyto-
plasm/background segmentation was obtained as men-
tioned in cell cytoplasm segmentation subsection.
Finally, the outline/non-outline classifier design gave a
sparse model with only eight non-zero coefficients for
the Test Case I and linear model in denominator of
Equation 4 turned out to be

β0 + xTi β = 0.2415 − 44.998 ∗ f1 + 0.010 ∗ f2 − 0.006 ∗ f3
−0.009 ∗ f4 + 0.068 ∗ f5 − 0.207 ∗ f6 − 0.544 ∗ f7

(8)

where f1 = VAR3×3 stands for variance, f2 = MIN7×7 for
minimum, f3 = f1/4th05×5, f4 = f1/4th3pi/45×5 for Gabor
filtering frequency and orientation, f5 = ASM5×5 for
angularSecondMoment, f6 = IMOC27×7 and f7 =
IMOC29×9 for informationMeasureOfCorrelation2, see
[29] for details. The subscript x × y stands for the
respective kernel sizes. On the other hand, for the Test
Case II, the classifier design gave a sparse model with
only six non-zero coefficients and linear model in
denominator of Equation 4 turned out to be

β0 + xTi β = 1.120 − 0.0165 ∗ f1 − 0.1790 ∗ f2 − 0.360 ∗ f3
−1.54 ∗ f4 + 0.1908 ∗ f5

(9)

where f1 = ENT5×5 stands for entropy, f2 = DOE7×7 for
differenceOfEntropy, f3 = IMOC27×7 and f4 = IMOC29×9
for informationMeasureOfCorrelation2 and f5 = ASM9×9

for angularSecondMoment, see [29] for details. Again,
the subscript x × y stands for the respective kernel sizes.
Then, for each of the test images, feature vector of size
1447680×7 for Test Case I and 160000×5 for Test Case II
were calculated and input to the above models to get the
class probabilities using Equation 4. The probabilities
were thresholded with threshold value of 0.5 to get out-
line/non-outline pixels. Finally, post-processing step was
performed to get the segmentation done. Figure 4 pre-
sents a visual representation of the features used by clas-
sifiers given in (8) and (9).

Results and discussion
Quantitative values from the resulting images were
obtained as described earlier in this section and are
given in Table 2 and Table 3 for Test Case I and Test
Case II respectively.
For the Test Case I, we have nuclei and cytoplasm seg-

mentation results obtained from CellProfiler 1.0 (CP)
implementation [32]. Table 2 also lists the values
obtained from them. As we discussed about nuclei seg-
mentation in [6], CP gives low value for FN , but at the

expense of high value for FP . This high value of FP at
nuclei level got translated into an even higher value at
the cytoplasm level. This is because cytoplasm segmenta-
tion was purely based on nuclei segmentation and, effec-
tively, one cytoplasmic region was found for every
nucleic region. This difference in values for nuclei and
cytoplasm segmentation is more due to FMth value of 0.6
for cytoplasm detection. Since every over-splitting at
nuclei level leads to over-splitting of cytoplasm which,
most of the time, disqualifies all the cytoplasmic regions
corresponding to an over-split nucleus. This is also evi-
dent from Table 2 that FP for cytoplasm became almost
twice of FP for nuclei and those extra FP also affect the
FN directly. Finally, the value of FM for CP cytoplasm
segmentation came out to be 0.84.
As we mentioned earlier, our proposed cytoplasm

segmentation mainly needs a low FN for nuclei
segmentation because, due to cytoplasm-nuclei corre-
spondence-based segmentation, cytoplasms for which
nuclei are not detected are merged with other cyto-
plasms. Although, the FM values for CP implementa-
tion and our nuclei segmentation do not differ much,
the detection error FP + FN for our method was 21,
which is less than half as compared to 49 for CP
implementation.
In the light of the discussion in the previous para-

graph, forced splitting for obtaining one cytoplasm per
every detected nuclei did not seem beneficial. However,
the FP for our cytoplasm segmentation was still found
to be twice as much as for nuclei segmentation. The
reason is that objects that do not get split into constitu-
ent cells were no longer able to correspond to even a
single object in benchmarked image because of the con-
straint of FMth. Moreover, the consequence of avoiding
forced splitting was an increased value for FN as some
clumped cells did not get detected. A worth-mentioning
point is that since the value of FP for our nuclei seg-
mentation was low, forced splitting might still have
resulted in a similar value of FP that we obtained with-
out doing so, but that would have given a much lower
value for FN. However, the main reason behind not
using forced splitting was that we want to retain multi-
nuclear cell phenotypes. The overall segmentation from
the proposed method confirms that it outperforms the
method from CP with a 9% increase in FM value.
Another measure that we obtained is the mean value of
FM for all the correctly detected cytoplasms and it was
0.85 for the proposed method against 0.81 for CP imple-
mentation. This also shows how well the cytoplasms
correspond among the benchmarked images and our
segmented images. Figure 5 presents the segmentation
results from the proposed method for qualitative
evaluation.

Farhan et al. BMC Bioinformatics 2013, 14(Suppl 10):S6
http://www.biomedcentral.com/1471-2105/14/S10/S6

Page 10 of 14



The same images of Test Case II were used for perfor-
mance evaluation of the cell nuclei and cytoplasm joint
segmentation presented in [16]. Comparing the given
values of TP, FP, and FN with our obtained values for

cytoplasm segmentation, it can be said that we got similar
or slightly improved results. However, it is difficult to say
whether the difference has any significance. Moreover, the
FM value from our method for nuclei detection is 0.95 as
compared to the FM value of 0.80 reported in [16]. This
suggests that our method outperforms a recently proposedTable 2 Quantitative values obtained from nuclei and

cytoplasm segmentation for Test Case I (See text for
abbreviations).

Level (Method) TP FP FN PR RC FM

Nuclei ([6]) 458 11 10 0.97 0.97 0.97

Nuclei (CP [32]) 466 47 2 0.91 0.99 0.95

Cytoplasm (proposed) 424 23 42 0.95 0.91 0.93

Cytoplasm (CP [32]) 409 103 57 0.80 0.88 0.84

Table 3 Quantitative values obtained from our
segmentation method for Test Case II (See text for
abbreviations).

Level (Method) TP FP FN PR RC FM

Nuclei ([6]) 76 4 3 0.95 0.96 0.96

Cytoplasm (proposed) 70 9 9 0.89 0.89 0.89

Figure 4 Visual representation of features used by classifiers. Visual representation of features used by classifiers. (a) A pre-processed image,
(b) VAR3×3, (c) MIN7×7, (d) f1/4th05×5, (e) f1/4th3pi/45×5, (f) ASM5×5, (g) IMOC27×7, (h) IMOC29×9, (i) ENT5×5, (j) DOE7×7, (k) ASM9×9, and (l) outlines
obtained from thresholding the output of classifier. The size of the images is 700×430 pixels.
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method which was also reported to be computationally
quite expensive. Figure 6 shows the results of the proposed
method for two images from Test Case II.
Finally, it is evident from the obtained qualitative as

well as quantitative results for both the test cases that
the proposed method was able to produce accurate
results, see Table 2, 3 and Figure 5, Figure 6. Moreover,
considering that both the test cases provide completely
different set of images with different challenges, the
obtained results also demonstrate the generic nature of
our framework. In the end, it is worth-mentioning that
even though the method uses manually outlined images
for training the classifier, it does not depend on user-
defined parameters for segmentation.

Conclusions
In this article we present a novel approach for cell seg-
mentation. The proposed method uses a new combination
of pre-processing methods for enhancing the contrast of
cell cytoplasm and especially their boundaries by applying
coefficient of variation for a multi-scale Gaussian repre-
sentation of the input image. The enhanced image is used
as a basis of feature extraction process, where filtering,
texture operations and other generic descriptors are
applied for building a large set of features to be used for
building a classifier model for cell outline detection. By
applying the logistic regression classifier, known to

produce sparse models where only a subset of the initial
features are used, a rather simple model with a small set of
features is obtained, making the classification process
computationally feasible. Finally, in post-processing phase,
cell nuclei segmentation is used to aid the construction of
final cell outlines from the classification output.
In order to validate the segmentation method, we used

two image sets with different characteristics. The quan-
titative results confirm that the method performs consis-
tently for the two datasets and when compared to a
widely used method and values presented in literature, it
can be concluded that our results are very promising;
either improving or matching the results of earlier pre-
sented methods.
In conclusion, we expect that learning based methods

may be useful in challenging segmentation tasks, such
as in high content screening where low contrast cells
should be accurately segmented in order to maintain
high accuracy among challenging phenotypes. The
labeled training samples, in this context: manually out-
lined cells in a set of images, is a fundamental require-
ment for using a supervised segmentation method. In
high content screening the amount of image data is
huge and since also the validation is in most cases done
against manually segmented images, we feel that the
gain in performance should justify the task of creating
the training data.

Figure 5 Cell cytoplasm segmentation for Test Case I. Cell cytoplasm segmentation for Test Case I. (a) A merged cytoplasm (Red)/nuclei
(Blue) channel image, (b) benchmark segmentation from biologists, (c) nuclei segmentation from [6] and (d) the result of proposed
segmentation. The size of the image is 1040×1392 pixels.

Farhan et al. BMC Bioinformatics 2013, 14(Suppl 10):S6
http://www.biomedcentral.com/1471-2105/14/S10/S6

Page 12 of 14



Figure 6 Cell cytoplasm segmentation for Test Case II. Cell cytoplasm segmentation for Test Case II. (a)-(b) Two merged cytoplasm (Red)/
nuclei (Blue) channel images, (c)-(d) benchmark segmentation, (e)-(f) nuclei segmentation from [6] and (g)-(h) the results of proposed
segmentation. The size of the images is 450×450 pixels.
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