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Abstract

Background: Calcium imaging in insects reveals the neural response to odours, both at the receptor level on the
antenna and in the antennal lobe, the first stage of olfactory information processing in the brain. Changes of
intracellular calcium concentration in response to odour presentations can be observed by employing calcium-
sensitive, fluorescent dyes. The response pattern across all recorded units is characteristic for the odour.

Method: Previously, extraction of odour response patterns from calcium imaging movies was performed offline,
after the experiment. We developed software to extract and to visualise odour response patterns in real time. An
adaptive algorithm in combination with an implementation for the graphics processing unit enables fast
processing of movie streams. Relying on correlations between pixels in the temporal domain, the calcium imaging
movie can be segmented into regions that correspond to the neural units.

Results: We applied our software to calcium imaging data recorded from the antennal lobe of the honeybee Apis
mellifera and from the antenna of the fruit fly Drosophila melanogaster. Evaluation on reference data showed results
comparable to those obtained by previous offline methods while computation time was significantly lower.
Demonstrating practical applicability, we employed the software in a real-time experiment, performing
segmentation of glomeruli - the functional units of the honeybee antennal lobe - and visualisation of glomerular
activity patterns.

Conclusions: Real-time visualisation of odour response patterns expands the experimental repertoire targeted at
understanding information processing in the honeybee antennal lobe. In interactive experiments, glomeruli can be
selected for manipulation based on their present or past activity, or based on their anatomical position. Apart from
supporting neurobiology, the software allows for utilising the insect antenna as a chemosensor, e.g. to detect or to
classify odours.

Introduction
Motivation
Odours take many shapes, and equipped with an insect
brain and a neuroimaging device one can reveal these
shapes, turning chemicals into patterns and images.
In the conference version of this paper [1], we have

introduced an imaging system that can read out and
process brain activity in real time, making the neural

representations of odours accessible. The biological moti-
vation is that access to ongoing brain activity is the basis
for analysing storage and processing of information in
the brain, observing, for example, the activity patterns in
response to odour stimulation. In particular, transform-
ing odours into patterns and images does not only benefit
basic neuroscientific research: It also allows us to utilise a
living organism with highly sensitive olfactory organs as a
chemosensor, where the patterns and the distances
between them contain information about odour identity
and dissimilarity.
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We consider two application scenarios for real-time
visualisation of odours using insect brains. In insects, the
first stage of odour perception is formed by the odour
receptor neurons on the antenna. Here, we utilise cal-
cium imaging to record from the antenna of the fruit fly
Drosophila melanogaster. While such data provides only
little information about signal processing in the brain,
receptor neurons on the antenna are easy to access
experimentally and they are excellent chemosensing
devices. As such they are a promising alternative to artifi-
cial chemosensors, also referred to as electronic noses
(see e.g. [2-5]), that find application in environmental
monitoring, chemical industry or security.
The second stage of odour processing in the insect

brain is the antennal lobe (AL), a dedicated olfactory cen-
ter where odours are represented by activity patterns of
neural units, the so-called glomeruli [6]. A network of
interneurons connects the glomeruli, and unravelling the
function of this network in processing odour information
is the topic of ongoing research. The honeybee AL is an
established model for studying odour learning and mem-
ory [7], and neuropharmacological tools [8,9] have been
developed to manipulate the network of interneurons.
Here, the real-time aspect of odour visualisation is espe-
cially relevant as decisions can be based on prior activity,
targeting e.g. glomeruli that have previously been part of
a response pattern.
From an image processing perspective, both application

cases are similar. Activity patterns in the honeybee AL
[10], and on the Drosophila antenna [11] are accessible
through calcium imaging with fluorescent calcium repor-
ters. Calcium imaging movies report fluorescence changes
over time. Figure 1 gives an example for an imaging movie
recorded from the honeybee AL, showing both the noisy
raw images and processed, denoised versions of these
images displayed in a false-colour scale.

The algorithm presented in this work computes a low-
rank approximation based on few, selected (pixel) time
series from the movie matrix. Exploiting the fact that there
is noise and redundancy (time series from the same glo-
merulus are correlated) in the data, the movie matrix can
be represented by another matrix of much lower rank. The
rank-reduced version contains less noise, revealing the
positions of the glomeruli and their signals [12]. As the
glomerulus shapes become visible in Figure 1, such a repre-
sentation may also be referred to as a segmentation, where
the movie is segmented into regions with correlated activity
over time, regions that correspond to the glomeruli.
Prior approaches to processing such imaging data involve

manual feature selection [13,14], or, if automated, they can
only be performed offline [12,15]. The real-time imaging
system presented in this work allows for a wider range of
applications, including closed-loop experiments, and it
is what makes the readout from the antenna practical
for chemosensing applications. Computation is performed
in an adaptive manner, processing the movie stream
incrementally as the images arrive from the camera. Fast
processing is ensured by a GPGPU (General Purpose Com-
putation on Graphics Processing Unit) implementation.
The following sections provide further biological back-
ground and report on prior work. We then present algo-
rithms and implementation details (Methods), followed by
evaluation and demonstration of biological application
cases (Results and discussion): Using the real-time imaging
system, we visualise spontaneous activity and odour
responses in the honeybee AL, and we provide a proof of
concept for practical chemosensing with a biological sensor.

Biological background
The olfactory system
The structure of olfactory systems is similar between
insect species. As an example, we provide numbers for the

Figure 1 Odour response patterns in the honeybee antennal lobe. a) Anatomical model of the honeybee AL (modified from [55]).
Landmark glomeruli (17, 33, 42) are labelled according to the numbering from [50]. b) Frontal view on the AL by calcium imaging. Above: Raw
images (ratio: 340/380) from the movie. Below: Images processed with the real-time software. Glomeruli exhibit spontaneous background activity,
or they respond to the odour during stimulus presentation (black bar).
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honeybee Apis mellifera. On the antenna, approximately
60,000 odour receptor neurons interact physically with the
odour molecules. These 60,000 neurons converge onto 160
glomeruli in the AL, where each glomerulus collects input
from receptor neurons of one type. The glomeruli are bun-
dles of synapses and appear as spherical structures with a
diameter between 30 and 50 µm. At the AL stage, each
odour is represented by an activity pattern across the 160
glomeruli. Further upstream, this compact representation
is widened again, as the projection neurons project from
the glomeruli to approximately 160,000 Kenyon cells, a
stage where odours are represented by sparser, high-
dimensional patterns. [16,17] While implementation details
differ between species, the combinatorial coding of odours
by activity patterns across glomeruli, in the insect AL or in
the vertebrate olfactory bulb, is a common feature of olfac-
tory systems and can also be found in humans [18].
Odour responses in the AL
Calcium imaging using calcium-sensitive fluorescent dyes
grants us access to the odour response patterns in the AL
of the honeybee Apis mellifera [10]. These odour response
patterns reflect the response properties of the odour
receptor neurons, as well as additional processing that
takes place in the AL. Interneurons connecting the glo-
meruli perform further computations such as contrast
enhancement [10].
For an example of odour response patterns in the hon-

eybee AL, see Figure 1. The activity pattern of glomeruli
(between ca. 20 and 40 of the glomeruli are visible in an
imaging movie) fluctuates at a low amplitude when no
odour is present. After stimulation with an odour (indi-
cated by the black bar), glomeruli exhibit individual
responses to the odour. As a result, the activity pattern
across glomeruli changes in way that is characteristic for
the odour. The same odour elicits a similar pattern in dif-
ferent bees [6].
There is evidence that not only the identity of a parti-

cular odour is encoded by the corresponding glomerular
response pattern, but that also chemical [19] and per-
ceptual [20] (dis)similarity are reflected by the (dis)simi-
larity of response patterns, suggesting that response
pattern space is a rather faithful representation of che-
mical space.
Odour responses on the antenna
Glomerular response patterns, as measured in the honeybee
recordings from this work, are the output signal of the AL,
i.e. they are the result of integrating all receptor neurons of
one type and of further processing that occurs in the AL
network of interneurons. While odour coding is improved
after this processing [21], the results of this paper suggest
that chemical identity and (dis)similarity can already
be inferred from receptor neuron signals recorded on the
antenna, the earliest stage in the olfactory processing

pipeline where response patterns are easily accessible with-
out dissecting the brain.
In this work, antenna data was recorded in the fruit fly

Drosophila melanogaster. The genetic tools that are avail-
able for Drosophila make it possible to express a calcium
reporter directly in the receptor neurons on the antenna.
Instead of expressing the reporter in cells of one type, as
has been done before [11], the approach pursued here is
to measure signals from a large set of different receptor
cells that all express the general olfactory co-receptor
Orco that these cells bear in addition to a specific odour
receptor. This allows us to measure broad odour
response patterns across many receptors. The segmenta-
tion approach presented in this paper is then used to to
extract individual response units from the imaging movie
based on their differential responses to a series of 32 dif-
ferent odours.

Related work
Computational approaches to analysing imaging data can
be classified as being either synthetic or analytic. In a
synthetic approach, similar to common procedures for
analysing fMRI data, Stetter et al. [22] have set up non-
linear functions that they fitted to the individual (pixel)
time series of the imaging movie. These functions can
account e.g. for dye bleaching over time and for different
neural signal components. Rather than performing bot-
tom-up synthetic reconstruction of the imaging movie,
analytic approaches decompose (bottom-down) the
movie into factors. These are matrix factorisation or
decomposition methods that exist in many different fla-
vours, e.g. the well-known Principal Component Analysis
(PCA). In particular Independent Component Analysis
(ICA) has found widespread application on imaging data
[15,23-26]. While ICA can be seen as a matrix decompo-
sition method, the motivating paradigm for ICA is source
separation. Under the assumption that there are underly-
ing source signals that are statistically independent (and
non-Gaussian), ICA algorithms (e.g. [27]) aim at recover-
ing or separating these source signals on sample data
where the sources appear in mixed form, e.g. neural sig-
nals mixed with measurement artifacts.
A recent convex analysis approach [12] (s.a. Methods),

performs a factorisation of the movie matrix based on
extremal column vectors from the boundary of the convex/
conical hull of the data. Under the assumption that pure
signal sources are present in the data, finding the extremal
column vectors identifies these pure signal sources.
Traditionally, calcium imaging data from the insect AL

has been processed by semi-automatic methods that per-
form e.g. image smoothing, but that still require human
interaction to select regions of interest [13,14]. From the
methods listed above, those that require human interaction
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appear less suited for real-time processing on a movie
stream. So far, no real-time implementations of the com-
putational approaches exist, the software implementations
from [12,15] being only suited for offline data analysis.

Methods
Biological methods
Imaging the honeybee AL
For honeybees, it has been shown that projection neu-
ron firing rate correlates with changes in intracellular
calcium [28]. Staining with calcium-sensitive fluorescent
dyes and excitation of the dyes with UV-light thus leads
to a good proxy signal for brain activity [29].
Calcium imaging with forager honeyebees (Apis melli-

fera) was performed as described in [30]. Projection
neurons in the l-APT and m-APT (lateral/medial antenno-
protocerebral tract) were stained with Fura2-dextran
(Invitrogen, Molecular Probes, Eugene, OR, USA), a cal-
cium-sensitive, fluorescent dye. Activity of the projection
neurons, that depart from the glomeruli in the AL, could
be recorded using the experimental setup displayed in
Figure 2. A fluorescence microscope (Axio Imager D.1,
Zeiss, Göttingen, Germany) was equipped with a water
immersion objective (20 ×, NA 0.95, Olympus, Tokyo,
Japan). A light source (Polychrome V, TILL Photonics,
Gräfelfing, Germany) provided excitation light at 340 and
380 nm, and fluorescence was recorded with a CCD

camera (Andor Clara, Andor Technology PLC, Belfast,
Northern Ireland). The input signal for data processing
was computed as the ratio between consecutive images
recorded at 340 and 380 nm, a standard procedure for
Fura2-dextran [31].
Imaging the Drosophila antenna
Animals Animals used for the experiments were female
Drosophila melanogaster that were reared at 25 °C in a 12/
12 light/dark cycle. Flies were of genotype w; P[Orco:Gal4];
P[UAS:GCaMP3]attP40, expressing the calcium reporter
G-CaMP3 [32,33] in all Orco (olfactory co-receptor) bear-
ing cells (UAS-GCaMP3 flies were provided by Loren
L. Looger, Howard Hughes Medical Institute, Janelia Farm
Research Campus, Ashburn, Virginia, USA).
Odorant preparation Odorants were purchased from
Sigma-Aldrich in the highest purity available. Pure sub-
stances were diluted in 5 mL mineral oil (Sigma-Aldrich,
Steinheim, Germany) to a concentration of 10-2 vol/vol.
Odours were prepared in 20 mL headspace vials, covered
with nitrogen and sealed with a Teflon septum (Axel
Semrau, Germany). Odorants used were: 2-propylphenol
(644-35-9), alpha-ionone (127-41-3), alpha-bisabolol
(23089-26-1), trans-caryophyllene (87-44-5), (R)-carvone
(6485-40-1), (S)-carvone (2244-16-8), beta-citronellol
(106-22-9), 4-allyl-1,2-dimethoxybenzene (93-15-2), ethyl
3-hydroxyhexanoate (2305-25-1), ethyl (R)-3-hydroxybu-
tanoate (24915-95-5), eugenol (97-53-0), E, E-farnesol

Figure 2 Experimental setup for honeybee brain imaging. Setup for the honeybee imaging experiments. After excitation with light at
wavelengths 340 nm and 380 nm (light source not shown), fluorescence is recorded by a CCD camera mounted on top of a confocal
microscope. Temperature is controlled by a heat lamp. The photograph shows the setup before the experiment, which is carried out in the dark.
During the experiment, camera signals are processed in real time and results are displayed on the visualisation screen. Odour stimuli can be
applied with a syringe (not shown), before being sucked out through the air exhaust.
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(106-28-5), geraniol (106-24-1), heptyl acetate (112-06-1),
hexyl acetate (142-92-7), hexyl butyrate (2639-63-6),
isoamyl tiglate (41519-18-0), iso-eugenol (97-54-1),
4-isopropylbenzaldehyde (122-03-2), linalool (78-70-6),
methyl 3-hydroxy hexanoate (21188-58-9), 4-methoxy-
benzaldehyde (123-11-5), methyl jasmonate (39924-52-2),
(1R)-myrtenal (564-94-3), nonanal (124-19-6), nonanone
(821-55-6), octyl acetate (112-14-1), phenylacetaldehyde
(122-78-1), 4-hydroxy-3-methoxybenzaldehyde (121-33-5),
gamma-propyl-gamma-butyrolactone (105-21-5), alpha-
terpineol (10482-56-1) and alpha-thujone (546-80-5).
Stimulus application A computer-controlled autosam-
pler (PAL, CTC Switzerland) was used for automatic
odour application. 2 mL of headspace was injected in two
1 mL portions at timepoints 6 s and 9 s with an injection
speed of 1 mL/s into a continuous flow of purified air
flowing at 60 mL/min. The stimulus was directed to the
antenna of the animal via a Teflon tube (inner diameter
1 mm, length 38 cm).
The interstimulus interval was approximately 2 min.

Solvent control and reference odorants (heptyl acetate
and nonanone) were measured after every five stimuli
(one block). The autosampler syringe was flushed with
purified air for 30 s after each injection and washed with
pentane (Merck, Darmstadt, Germany) automatically
after each block of stimuli.
Calcium imaging Calcium imaging was performed with a
fluorescence microscope (BX51WI, Olympus, Tokyo,
Japan) equipped with a 50x air lens (Olympus LM Plan FI
50x/0.5). A CCD camera (TILL Imago, TILL Photonics,
Gräfelfing, Germany) was mounted on the microscope,
recording with 4x4 pixel on-chip binning, resulting in
160x120 pixel sized images. For each stimulus, recordings
of 20 s at a rate of 4 Hz were performed using TILL Vision
(TILL Photonics, Gräfelfing, Germany).
A monochromator (Polychrome II, TILL Photonics,

Gräfelfing, Germany) produced excitation light of 470 nm
wavelength which was directed onto the antenna via a
500 nm low-pass filter and a 495 nm dichroic mirror.
Emission light was filtered through a 505 nm high-pass
emission filter.
Flies were mounted in custom-made holders, placed

with their neck into a slit. The head was fixed to the
holder with a drop of low-melting wax. A half electron
microscopy grid was placed on top of the head, stabilising
the antenna by touching the 2nd, but not the 3rd antennal
segment.

Matrix factorisation framework
We first describe the general matrix factorisation frame-
work for imaging movies. The framework is illustrated in
Figure 3. An imaging movie can be cast into matrix form
by flatting the two-dimensional images with n pixels into
row vectors of length n. The movie matrix Am × n has

m time points and n pixels. The rows of the movie matrix,
A(i), contain images or time points. The columns, A(j),
contain pixels or time series.
We consider a factorisation of A into a matrix Tm × k of

k time series and a matrix Sk × n of k images, where
k � n,m. This provides a low-rank approximation Ak to
the original matrix A:

Am×n : Ak = Tm×kSk×n =
k∑

r=1

TIrSrJ (1)

In imaging movies, all pixels that report the signal of the
same glomerulus are correlated with each other (apart
from the noise), which causes redundancy in A. It is thus
possible to construct a good approximation with small k,
such that‖ A − TS ‖ is small.
The optimal rank-k approximation with respect to the

aforementioned norm difference can be computed with
Principal Component Analysis (PCA) [34]. However, the
images in S computed by PCA are not sparse, with
almost all pixels being different from zero [12]. The
images in S, and the corresponding time series in T, can
thus hardly be interpreted as the boundaries or the signal,
respectively, of a particular neural unit. By definition,
principal components need to be orthogonal to each
other, which often prevents them from closely fitting the
underlying source signals.
Ideally, as in the example from Figure 3, the images in

S should be sparse, with only few pixels being different
from zero. The k time series in T should be selected from
k different glomeruli with the corresponding rows in the
sparse S marking positions and boundaries of the glomer-
uli. We have shown in [12] that there is a method, the
convex cone algorithm, that can achieve a factorisation
with such favourable properties on imaging data.

Convex cone algorithm
In this section, we review the convex cone algorithm from
[12]. It is based on a non-negative mixture model for ima-
ging data:

A = TS0+ +N (2)

The movie matrix A can be described by basis time ser-
ies in T that are combined by coefficients in the non-
negative matrix S0+. Residual noise is accounted for by N.
We assume that the columns A(j) of the movie matrix

contain either pure glomerulus signals or mixed signals, i.
e. linear combinations (with non-negative coefficients) of
the pure signals. At the fringes of a glomerulus, close to
the neighbour glomeruli, such mixed signals can occur
when a glomerulus signal is contaminated with additive
light scatter from one or more neighbour glomeruli. Even
if a glomerulus does not respond to an odour, light scatter
can give the impression of a signal. In the middle of the
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glomeruli, that are rather large, circular objects, light scat-
ter from the (distant) pixels of the neighbour glomeruli is
less likely, and we assume that here the pixels contain
pure signals.
For the matrix factorisation framework from Figure 3,

we would like to select one pure signal from each glomer-
ulus into T. Mixtures can then be modelled by S0+. While
S0+ can be computed easily given A and T, the challenging
part is the selection of time series from the glomeruli
into T.
Geometrically, the columns in T span a convex cone

[35,36] that contains a part of the data points in A. Data
points that lie within the cone can be reconstructed
exactly by linear combination (with non-negative coeffi-
cients) of the columns in T . Data points that lie outside of
the cone can be approximated by projecting them to the
boundary of the cone, where the approximation error
depends on the distance to the boundary.
From convex analysis we know that the set of extreme

vectors of A is the minimal generator of the convex cone
that contains the entire A [35,36]. With the extreme vec-
tors we can span a volume that contains all data points of
A and that thereby reduces the approximation error to
zero. For imaging movies, the extreme columns vectors
are also the columns with the pure signals from the mid-
dle of the glomeruli, whereas the mixed signal columns,
that can be combined from the extreme, pure signal col-
umns, lie within the cone.
Following this motivation, the convex cone algorithm

[12] makes locally optimal choices for the next extreme
column vector. With each new vector selected by the
algorithm, the columns in T span a larger (≥) volume.
The convex cone algorithm starts with matrix A{1} := A,

selecting the column with index p that has the largest

Euclidean norm: argmaxp||A(p)
{1}|| This column becomes

the first column of T,T(1) := A(p)
{1}. Then, a matching

S(1) := AT
{1}T

(1) is computed (for simplicity we omit the

non-negativity constraint on S). The movie matrix is
downdated as A{2} := A{1} − T(1)S(1). In the new matrix A

{2} at iteration 2, the influence of the first column T(1) is
removed. We then select the column that is farthest away
from the boundary of the cone, i.e. the column with the
largest norm in A{2}. This is an estimate for the next
extreme column vector, and we fill this column into T(2).
We repeat the process until c columns are selected. In

the following, we reserve c for the (user-specified) num-
ber of columns selected by the convex cone algorithm,
and k for the number of principal components in the
PCA step that is performed before the convex cone
algorithm.

Working on a movie stream
There are two motivations for performing PCA as a pre-
processing prior to the convex cone algorithm. First, keep-
ing only the top-k principal components reduces noise,
which can make selection of extreme columns more
robust. Second, we can utilise PCA to reduce computation
time. For the real-time application, the movie matrix A
grows by one row at each time point. The complexity of
the convex cone algorithm is in the order O(mnc) if run
once on the complete matrix A. For a growing movie
matrix this would quickly accumulate a large overhead,
the cost of performing the convex cone algorithm at each
time point beingO(1nc + 2nc + . . . +mnc).
If we utilise PCA to keep, at all times, a compact sum-

mary matrix of constant size, we can remove the depen-
dency on the growing time dimension. We propose to
use an incremental PCA (IPCA) approach that computes
the matrix Vk of the top-k principal components at each
time point, where Vk is updated at low cost given the old
version of Vk and the current image received from the
movie stream. The convex cone algorithm is then no
longer performed directly on A, but on Vk. As Vk is the
minimiser of ||A − Vk||, moderate values for k are suffi-
cient in practice.

Figure 3 Illustration of the matrix factorisation framework. Matrix factorisation framework for imaging movies: The movie in matrix A is
approximated by the product of the k time series in T and the k images in S, forming the rank-k matrix Ak.
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Several publications have treated IPCA algorithms
[37-42]. Here, we rely on the CCIPCA algorithm by Weng
et al. [39]. Several successful applications of CCIPCA can
be demonstrated [43-45]. In these cases, CCIPCA was also
used to incrementalise another algorithm by providing an
updated version of matrix Vk at each time point. CCIPCA
costs a constant O(nk) operations per update, which
amounts toO(mnk) for processing the entire movie once.
Here, we outline the basic principle behind CCIPCA.

The first principal component is approximated as the
mean of the images received so far. The second principal
component is approximated as the mean of the images
from which the projection onto the first PC has been
subtracted, etc. This approach allows for incremental
updates, and it completely avoids the time-consuming
construction of a large n × n covariance matrix, which
would be required by standard PCA approaches that
compute the eigenvectors of the covariance matrix. In
the following, we briefly outline the CCIPCA iteration.
For further details on CCIPCA, see [39]. A convergence
proof is given in [46].
We assume that the movie matrix grows by one image,

A(i), at time point i. The r =1, ..., k rows of the principal
component matrix V = Vk are initialised with k arbitrary,
orthogonal vectors. Then, V is upated at each time point
using the current image A(i), where principal component

V(r) at time point i is denoted V{i}
(r):

V{i}
(r) :=

i − 1
i

V{i−1}
(r) +

1
i
A(i)A

T
(i)

V{i−1}
(r)

‖ V{i−1}
(r) ‖

(3)

Then, image A(i) is downdated by subtracting the projec-

tion onto V{i}
(r):

A(i) := A(i) − AT
(i)

V{i}
(r)

‖ V{i}
(r) ‖

V{i}
(r)

‖ V{i}
(r) ‖

(4)

After updating the rth principal component in this
way, we can return to Equation (3) to update V(r+1)

(Algorithm 1).
Algorithm 1: V{i} = Update_IPCA (V {i−1},A(i), k , i)
for all r Î [0, k − 1] do

V{i}
(r) :=

i − 1
i

V{i−1}
(r) +

1
i
A(i)A

T
(i)

V{i−1}
(r)

‖ V{i−1}
(r) ‖

A(i) := A(i) − AT
(i)

V{i}
(r)∥∥∥V{i}
(r)

∥∥∥

V{i}
(r)∥∥∥V{i}
(r)

∥∥∥

end for

Cone_updating: Visualisation in real time
Combining CCIPCA (Algorithm 1) and the convex cone
algorithm leads to the algorithm at the core of the real-
time imaging system: Cone_updating (Algorithm 2). Each
image A(i) at time point i is first preprocessed by pixel-
wise z-score normalisation: Subtract µ, the mean, and
divide by s, the standard deviation. Both, µ and s of a
pixel, can be updated as the movie stream proceeds.
After normalisation, the matrix V of the top-k principal

components is updated with the current image: V{i} :=
Update_IPCA(V{i−1}, A(i), k, i). Finally, the Convex_cone_
algorithm (V{i}, c) is applied to select c pixels (columns)
from the current version of V.
As the movie matrix A grows, the incremental estimates

for µ, s and V improve. As a consequence, the c columns
selected by the convex cone algorithm are better estimates
of the extreme column vectors of A, the vectors that con-
tain the pure glomerulus signals. In the matrix factorisa-
tion framework, these are are the columns for matrix T,
and the corresponding S indicates glomerulus position
(Figure 3).
Visualisations of brain activity, such as in Figure 1, can

be achieved by low-rank approximation, using matrices
T and S: Ak = TS. At time point i we do not yet know
the final T and S, and therefore we obtain the approxi-
mation Â(i) asÂ(i) := A(i)S

{i}S{i}, where S{i} is the current
version of S.
For offline data visualisation, the colour scale can be

adjusted to the maximum and minimum value of A. For
real-time display, using one colour scale for the entire
movie, maximum and minimum have to be updated
incrementally. To avoid level changes, e.g. by long-term
photobleaching of the calcium dye, data was high-pass
filtered (0:025 Hz) before display in a false-colour scale
(as in Figure 1).
Algorithm 2 : S = Cone_updating (A(m × n), c, k)
Initialise V{1}
for all i Î [0, m - 1] do
A(i) := z_score_normalise (A(i))
if i > 1 then
V{i}:= Update_IPCA(V {i-1},A(i), k, i)
S{i} := Convex_cone_algorithm (V{i}, c)
Â(i) := A(i)S

{i}S{i}// low-rank approximation to
image A(i)

end if
end for

Implementations
We consider three implementations of the convex cone
algorithm. Two implementations were written in Java,
Java_offline, the reference implementation from [12], and
Java_online. Java_offline performs exact offline PCA, fol-
lowed by the convex cone algorithm, whereas Java_online
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(implementation of Algorithm 1) uses incremental PCA
instead. Both Java implementations were performed in
KNIME [47] (http://www.knime.org), a data pipelining
environment.
Finally, we implemented the incremental online variant

(Algorithm 1) using GPGPU: GPGPU_online. Z-score
normalisation and the time-consuming PCA were imple-
mented for the GPU with the NVIDIA CUDA [48] Basic
Linear Algebra Subroutines (cuBLAS) (http://developer.
nvidia.com/cublas) and the CUDA Linear Algebra library
(CULA) (http://www.culatools.com/). The actual convex
cone algorithm was run on the CPU.
TILL Photonics Live Acquisition (LA) Software 2.0 [49]

was employed to control experimental hardware and exci-
tation light intensity. GPGPU_online accessed the movie
stream directly from the camera using a custom-built soft-
ware interface kindly provided by TILL Photonics.

Results and discussion
This sections starts with a technical evaluation of the pro-
posed algorithm and a comparison of different implemen-
tations. We then demonstrate practical applicability in an
experiment with honeybees and show how the techniques
developed in this work can be utilised to turn the insect
antenna into a living chemosensor. We conclude with a
discussion regarding the impact that real-time processing
of neural activity can have.

Performance measures
Computing time
The motivations for adapting the matrix factorisation fra-
mework to the datastream domain were the ability to per-
form incremental updates upon arrival of new data, and of
course the ability to process data with minimal time delay.
For evaluation, we performed computation time measure-
ments on a reference dataset. Measurements were carried
out using an Intel Core i7 950 (3.07 GHz) CPU and a
NVIDIA.
GeForce GTX 285 (648 MHz, 1024 MB) GPU. The

Java_offline and Java_online implementations were run in
KNIME (http://www.knime.org) workflows, and, for com-
parability with the C-implementation GPGPU_online,
time measurements do only include the actual computa-
tion time and not the time for data transfer between
nodes in the KNIME workflow.
The dataset consisted of 11 imaging movies of the hon-

eybee AL (a part of the dataset was shown in [12]) with ≈
170 × 130 pixels and ≈ 3500 time points each. The average
length was about 15 minutes per movie. Table 1 reports
overall computation time (in minutes) for the entire data-
set and computation time per frame, averaged over all 11
movies. Both the incremental approximation to PCA and
the GPGPU implementation contributed to the speedup.
Java_online, that uses incremental PCA, achieved an

approximately 1.5-fold speedup over Java_offline that is
based on exact, conventional PCA. GPGPU_online
achieved an additional 2-fold speedup over Java_online by
using the GPU instead of the CPU. The parallelisation
abilities of the GPU ensure scalability to future increases
in data size, i.e. higher speedups are expected for data with
higher resolution.
With the fastest implementation, GPGPU_online, a sin-

gle image from the movie can be processed in 23 ms
(Table 1), which is sufficient for calcium imaging in hon-
eybees and Drosophila with typical recording frequencies
below 20 Hz.
Approximation quality
The fastest implementation, GPGPU_online, achieves a
significant speedup over the offline reference implementa-
tion. We next evaluated the quality of the results com-
puted with GPGPU_online. There is an algorithmic
approximation involved, and GPU computations are per-
formed with float precision instead of double precision. In
the online setting, incremental z-score normalisation was
imperfect whenever there were mean shifts during the
course of the experiment. How does this affect the quality
of the results? For visualisation, we constructed maps of
the glomeruli in the AL by overlaying all images from the
rows of matrix S, the images that show the positions and
boundaries of the glomeruli (see Figure 3). Such glom-
erular maps reveal the anatomy of the AL and can be
matched between bees [12]. Using the reference results
from [12], we compared glomerulus maps computed
by Java_offline and GPGPU_online on the same movie.
Parameters were k = 50 principal components, c = 50
(convex cone algorithm). Figure 4a shows glomerulus
maps constructed by the two implementations. Clearly,
both implementations reveal the same anatomy, but there
is no perfect correspondence between the maps.
Apart from visual inspection of glomerulus maps,

where cluster size has a strong impact, we also analysed
how robust signal (column) selection was against incre-
mental approximation. The convex cone algorithm
selects extreme column vectors into matrix T that corre-
spond to the pure signal sources. Matrix S is computed
given A and T , and the rows of S reflect the distribution
of similarity with the corresponding signal sources in T.

Table 1 Computation time measurements were
performed on the 11 imaging movies of the reference
dataset.

Implementation (ms/frame) overall time consumption (min)

Java_offline 134 68.15

Java_online 65 39.26

GPGPU_online 23 18.31

We report average computation time per frame and overall computation time
for the entire dataset.
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This gives rise to the clusters of similar pixels in S and on
the glomerulus map. Preprocessing, such as incremental
z-score normalisation and incremental PCA, and a post-
processing step employed in [12] to remove the residual
noise N (Equation 2) all have an impact on signal similar-
ity and thus influence cluster size. This affects especially
clusters that correspond to e.g. areas of similarly strong
background staining, illumination artifacts etc. that do
not have such clearly distinct signals as the glomeruli.
To evaluate signal selection independent of cluster size,

we visualised the positions of the columns selected by the
offline reference implementation Java_offline, along with
the positions of the columns selected by GPGPU_online.
For the reference implementation, we included only glo-
merular signals, i.e. those that could be identified by
matching glomerulus maps to the anatomical honeybee
AL atlas [50]. Figure 4b shows that the positions of sig-
nals selected by GPGPU_online (black circles) are in
good correspondence with the glomerulus “targets” pro-
vided by Java_offline (red triangles). We conclude that
selection of relevant signals, i.e. glomerular signals, is
robust against incremental approximation in the online
setting.

Documentation of a real-time experiment in the
honeybee AL
To demonstrate practical applicability, we performed a
real-time experiment with honeybees. We used the
experimental setup from Figure 2 and GPGPU_online,
the software implementation that proved fastest in the
evaluation. For a screenshot, see Figure 5. During the
experiment, three windows were constantly updated: The
raw fluorescence signal, shown as the ratio between con-
secutive measurements with 340 nm and 380 nm excita-
tion light (see Methods), a map of the glomeruli in the
AL, and the low-rank approximation to the current
image. Movie documentations of the real-time experi-
ment (Additional files 1 and 2) are available online.
The glomerulus map is a segmentation of the image

plane into regions with correlated activity over time. With
the growing movie stream, more and more information
about correlations between pixels becomes available.
Figure 6 shows the gradual development of a glomerulus
map during the course of the experiment. While at early
time points many of the c basis signals were still influ-
enced by the initialisation of the (not yet converged) incre-
mental PCA (row of points in the left upper corner), they

Figure 4 Quality evaluation: Online implementation vs. offline reference implementation. a) Comparing results of Java_offline and
GPGPU_online using glomerulus maps for three bees (data from [12]). Top: Java_offline. Bottom: GPGPU_online. b) Positions of signals (columns)
selected by the different implementations. Black circles: Positions of all c = 50 columns selected by GPGPU_online. Red triangles: Subset of
signals (columns) selected by the reference implementation Java_offline. The subset contains only those signals that correspond to glomeruli.
Glomeruli were identified based on their position in the maps, using the anatomical honeybee AL atlas [50].
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quickly moved to the positions of the glomeruli as more
information arrived from the stream. Already after 400-
600 time points, the map was almost complete. If needed,
such an incremental computation of the glomerulus map
could also be used to adapt to changes: For example, shifts
between images caused by animal movement could be
corrected for by giving higher weights to more recent time
points.
Figure 1 visualised glomerular activity in response to

odour stimulation. During the real-time experiment, we
also observed spontaneous activity of glomeruli in the
absence of odour stimulation, and also this spontaneous
activity could be visualised by low-rank approximation:
Figure 7. The ability to detect low-amplitude signals in
spontaneous activity is relevant for the application scenar-
ios discussed below (Impact of real-time processing).

The insect antenna as a chemosensor
Functional segmentation of the antenna
While recording glomerular activity in the honeybee AL
can help to answer neurobiological questions, the experi-
mental procedure is technically demanding and time-
consuming as it requires to dissect the brain and to fill in
a calcium-dye into the projection neurons the day before
the experiment. Working with the model organism
Drosophila melanogaster, we could omit the manual
staining step, genetically expressing the calcium-sensitive
dye G-CaMP [32,51] in the receptor neurons that are
accessible without dissecting the brain (see Methods).

This experimental design allows us to employ a Droso-
phila antenna as an easy-to-handle chemosensor. Similar
to the situation in the honeybee AL, stimulating the
antenna with a series of odour presentations elicits differ-
ential responses in the receptors that can then be distin-
guished based on their activity over time. We can thus
utilise the real-time software to construct a map of the
Drosophila antenna and to observe odour responses.
We employed a series of 32 different odour stimulations,

two of which were control odours that were applied multi-
ple times. This stimulation protocol elicited sufficiently
diverse responses to allow for functional segmentation
(with GPGPU_online). For Figure 8, we computed a map
of the antenna consisting of c = 100 response units. The
antenna map is shown in 8a, and Figure 8b contains a sin-
gle image from the calcium imaging movie.
In Drosophila, olfactory receptor neurons are anisotropi-

cally spatially scattered over the surface of the antenna, so
that odour response patterns form spatio-temporal maps.
However, sources could be overlapping, creating a situa-
tion that is more complex than with the image of well seg-
regated olfactory glomeruli in the antennal lobe.
Data analysis
We thus investigated whether the response units had
indeed biologically or chemically meaningful signals. After
processing the entire movie stream, we analysed the
response unit time series in matrix T. For each odour
stimulation, we computed a feature vector, where the
feature was the maximum value of the response unit after

Figure 5 Screenshot from the real-time software. Screenshot. Left: Raw movie (fluorescence 340/380), Middle: Incrementally updated
glomerulus map. Right: Low-rank approximation to the raw movie. We employ a min-max (blue-red) colour scale, where min and max are
updated over the course of the experiment.

Figure 6 Real-time experiment-Incremental map construction. Development of a glomerulus map during a real-time experiment. The
images show incremental updates of the map at different time points. Parameters: k = 50 (number of PCs), c = 50. As preprocessing, images
were spatially filtered (Gaussian kernel, width = 9).
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presentation of the respective odour (and before the start
of the next odour measurement): Figure 9a.
Clustering these feature vectors (Figure 9b) shows that

feature vectors for repeated applications of the same
odour, e.g. nonanone, cluster together. The odourless
control measurements (mineral oil, air, N2) appear
clearly separated from the odourous substances, and
chemically similar odours end up in the same cluster
(ethyl- and methyl-3-hydroxy-methanoate). This serves
as a proof of concept, demonstrating that the real-time
imaging system can, in principle, both recognise known
odours and estimate the identity of unknown odours by
their similarity to reference odours.
While distances between odour molecules are in part

well reflected by response pattern distances, this is not
always the case. For example, iso-eugenol does not fit
into the heptyl acetate cluster, and 2-propylphenol lacks
clear responses and therefore ends up in the (odourless)
oil/air cluster. Further experiments are needed to evalu-
ate whether representation of chemical identity can be
optimised by recording more or different response units,
e.g. in a different focal plane.
It also needs to be tested whether the observed odour

responses are stereotypical across many individuals.
As a first approach, we replicated the experiment from
Figure 9, finding a high correlation (Pearson correlation
0.86, p =0.001, Mantel test for correlation of distance

matrices) between the odour × odour Euclidean distance
matrices (based on the feature vectors) from both
experiments, indicating that the relative dissimilarity of
odours could be conserved between individuals.
How can the system be applied?
Artificial chemosenors, so-called electronic noses [2-5] are
important tools for environmental monitoring, healthcare
or security applications. They do, however, not yet reach
the efficiency and sensitivity of biological olfactory sys-
tems. The real-time software can extract features from cal-
cium imaging recordings, directly accessing the Drosophila
antenna as a biological chemosensor. Such feature vectors
(Figure 9a) can be used to visualise molecular identity, or
they can be subject to further processing, e.g. by classifiers,
aiming to determine the identity of an unknown chemical
substance. There are two points to making the biological
chemosensor practical: 1) Working with non-invasive bio-
logical techniques that allow for easy handling of the flies,
2) Software that can process the continuous stream of
odour plumes encountered in a real-world application.

Impact of real-time processing
Going beyond the specific example of the chemosensor
application, real-time processing has a wider range of
applicability that involves any kind of interactive experi-
mentation. This belongs to future work that is made possi-
ble with the real-time technology.

Figure 7 Real-time experiment-Visualisation of spontaneous background activity. Spontaneous background activity of glomeruli in the
honeybee AL, visualised by low-rank approximation. Top: Fluorescence images recorded at 5 Hz. Each image is the ratio of consecutive images
recorded with 340 nm and with 380 nm excitation light (see Methods). Bottom: The same images after processing with the real-time software.

Figure 8 Map of a Drosophila antenna. Map of response units on the Drosophila antenna computed with GPGPU_online (k = 50, c = 100). b)
Image from the antenna calcium imaging movie.
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Motivating examples
It is increasingly clear that perception is influenced by
both the stimulus and the prior state of the brain. For
example, brain oscillations during the pre-stimulus
interval influence how a human subject perceives an
auditory stimulus in an experimental setup targeted at
multimodal sensory integration [52]. Sensory experience

without external stimulation, stemming only from the
current state of the brain, is known from medical phe-
nomena such as tinnitus [53].
For honeybees, there is first evidence in the direction

that spontaneous background activity of the glomeruli in
the AL carries information about odours that have been
encountered recently: Glomerular activity patterns similar

Figure 9 Analysis of the Drosophila antenna recording. a) Maximum response (after odour stimulation) for response units (y-axis) and a
series of odour stimulations (x-axis). All odours were dissolved in (odourless) mineral oil, which was also given multiple times as a control. As a
reference, the odours nonanone and heptyl acetate were applied multiple times. Response units are sorted by response to the first nonanone
stimulation. Odours are sorted by name. The log colour scale ranges from blue (global min) to red (global max). b) Hierarchical clustering of the
odour feature vectors from a) using Ward’s method (stats package for R) based on Euclidean distances between the feature vectors. Marked
clusters: Odourless substances (grey), hexanoates (purple), heptyl acetate (green), nonanone (blue).
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to a particular odour response pattern reverberate minutes
after the actual response has been elicited by odour stimu-
lation [54].
Considering the growing interest in ongoing brain activ-

ity, it is increasingly important to develop experimental
strategies that allow stimulus presentations to be condi-
tional on ongoing brain activity states. With the real-time
methods presented in this work, glomeruli can be targeted
because of their responses to odours or because they are
part of reverberating patterns in spontaneous background
activity.
Real-time processing is necessary to answer funda-

mental questions regarding the role of ongoing brain
activity: Is it a side-effect that simply occurs as a conse-
quence of neuron and network properties? Are patterns
in spontaneous activity actually read out for further pro-
cessing in the brain? In conditioning experiments [7],
bees learn to associate an odour with a sugar reward.
Can rewarding a pattern in spontaneous activity have
the same effect as rewarding the actual odour?
Added value by real-time processing
From a biological perspective, the added value provided
by the real-time software is that brain activity can be
interpreted based on processed information. Only milli-
seconds after the activity occurs, we can regard not only
raw pixel values, but anatomically distinct and identifi-
able units, the olfactory glomeruli in our case.
While analysis of neural data is often is performed

pixel-wise (or voxel-wise), the brain encodes odours in
patterns across glomeruli. Being able to work on a glo-
merulus level allows us to match the odour response
patterns we observe with known response patterns from
a database, which can reveal the chemical identity of the
stimulus molecule. For spontaneous background activity,
we can analyse the distribution of glomerular patterns
that informs us about the state the antennal lobe net-
work is in, i.e. the prior state that is relevant for how
the stimulus will be perceived.
How fast is fast enough?
Closed loop experiments, where measured brain activity
controls experimental settings, require that data proces-
sing is faster than recording speed. In calcium imaging
experiments, images are often recorded at frequencies of
20 Hz or slower. Thus, any processing of 50 ms/frame or
faster is appropriate. Recordings with voltage-sensitive
dyes, for example, are generally useful at 50 Hz or faster:
The fastest neuronal processes, the action potentials,
have a duration of 1-3 ms, so recordings at 1000 Hz
would be ideal. The current speed of 23 ms/frame (Table
1) is already getting close to the 50 Hz value, but it is still
far from the ideal 1000 Hz.
For many experiments, fast processing is a requirement,

e.g. if we wish to follow and react to fluctuations in

spontaneous activity. For the chemosensor task, the advan-
tage lies in the fact that we can directly query a biological
chemosensor instead of waiting for results from post-hoc
data analysis. Fast processing reduces the delay of the che-
mical analysis and allows for high-throughput assays.

Conclusions
In the brain, odours are represented as activity patterns
across many neurons. Calcium imaging is a technique that
lends itself to extracting such activity patterns, as it allows
to record many units simultaneously. So far, software for
calcium imaging data has focussed on offline data proces-
sing [12-15]. The algorithms and software presented in
this work process calcium imaging movies online, making
the neural representations of odours accessible directly
when they occur.
Algorithmically, we rely on a matrix factorisation that

is updated with every new image that arrives from the
movie stream. A low-rank approximation to the movie
matrix serves as a compact representation of the calcium
imaging movie, discarding noise and highlighting neural
signals. This serves as the basis for further visualisations,
such as functional maps of the glomeruli in the AL: Glo-
merulus borders are not defined by anatomy, but by
function, i.e. activity (in response to odours) of pixels
over time. This eliminates the need for registration of
imaging data to anatomical stainings.
Such maps and the visualisation obtained by low-rank

approximation reveal the “looks of an odour”, the initial
odour response pattern on the antenna, or, after data inte-
gration and processing has taken place, the glomerular
response pattern in the AL.
Both odour representations have applications that

profit from real-time processing. The role of the AL net-
work in shaping the odour response patterns can now be
investigated using closed-loop experiments, where prior
system states influence current experimental parameters.
Staining an array of receptor neurons with a single
genetic construct, accompanied by online processing,
provides easy access to odour response patterns, making
real-time chemosensing with a biological sensor practical.
Visualising the neural representation of odours serves

also to map perceptional spaces. Distances between
odour response patterns are an estimate for perceptional
(dis)similarity between odours [20] throughout different
stages of odour information processing in the same indi-
vidual, and also between individuals and even species,
leading to species-specific odour perception spaces.
For such and further applications, the algorithmic and

visualisation framework developed here enables fully
automatic processing of odour response data without the
need for human interaction to define e.g. regions of
interest.
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Availability
Source code is available in Additional file 3.

Additional material

Additional file 1: Video documentation, part 1. Experimental setup for
honeybee brain imaging.

Additional file 2: Video documentation, part 2. Screen capture from a
honeybee brain imaging experiment.

Additional file 3: Source code. Archive containing source code for the
software presented in this work. Note that TILL Photonics LA 2.0 [49] is
required for configuring experimental hardware.
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