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Abstract

Gene expression profiles can show significant changes when genetically diseased cells are compared with non-
diseased cells. Biological networks are often used to identify active subnetworks (ASNs) of the diseases from the
expression profiles to understand the reason behind the observed changes. Current methodologies for discovering
ASNs mostly use undirected PPI networks and node centric approaches. This can limit their ability to find the
meaningful ASNs when using integrated networks having comprehensive information than the traditional protein-
protein interaction networks. Using appropriate scoring functions to assess both genes and their interactions may
allow the discovery of better ASNs.
In this paper, we present CASNet, which aims to identify better ASNs using (i) integrated interaction networks
(mixed graphs), (ii) directions of regulations of genes, and (iii) combined node and edge scores. We simplify and
extend previous methodologies to incorporate edge evaluations and lessen their sensitivity to significance
thresholds. We formulate our objective functions using mixed integer programming (MIP) and show that optimal
solutions may be obtained.
We compare the ASNs obtained by CASNet and similar other approaches to show that CASNet can often discover
more meaningful and stable regulatory ASNs. Our analysis of a breast cancer dataset finds that the positive
feedback loops across 7 genes, AR, ESR1, MYC, E2F2, PGR, BCL2 and CCND1 are conserved across the basal/triple
negative subtypes in multiple datasets that could potentially explain the aggressive nature of this cancer subtype.
Furthermore, comparison of the basal subtype of breast cancer and the mesenchymal subtype of glioblastoma
ASNs shows that an ASN in the vicinity of IL6 is conserved across the two subtypes. This result suggests that
subtypes of different cancers can show molecular similarities indicating that the therapeutic approaches in different
types of cancers may be shared.

Background
The full genome sequencing of cancer cases demonstrates
how remarkably heterogeneous cancer cases are [1]. This
heterogeneity is consistent with the hypothesis that most
mutations are innocent bystander consequences of the
failure of cancer cells’ intrinsic mechanism to repair and
guard the integrity of the genome [2]. However, the
observed heterogeneity of the cancer mutations combined
with the knowledge of multiple lesions that all could lead
to the same phenotypic consequence [3], leads to a new

emerging hypothesis. According to this competing hypoth-
esis, intrinsic subtype specific cancer causing mutations
are rare, but their biological output is common [4].
The recognition that cancer stem cells within a tumour

mass uniquely carry the potential for overt malignancy
[5,6] and the discovery that these cells can be transformed
into and change forms between epithelial or mesenchymal
cells, a phenomena known as epithelial-mesenchymal
transformation (EMT) [7], has increased our insight into
the link between EMT and fatal cancer phenotypes, such
as metastasis and resistance to treatments. In addition, the
discovery of intrinsic subtypes of breast cancer that
express unique groups of genes [8] has advanced its prog-
nosis. Some intrinsic subtypes of breast cancer are
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associated with elevated susceptibility to specific drugs,
such as Herceptin (for amplified HER2 cases) and Tamoxi-
fen (for ER+ cases), while other subtypes, such as the
mesenchymal basal/triple negative cases remain without a
matching therapeutic strategy. Being able to compare sub-
types of different cancers may help identify genes causing
the specific subtypes of cancers, leading to identify better
therapeutic targets. More importantly, this could provide a
scientific basis to sharing therapeutic strategies in subtypes
of different cancers.
The task of interpreting gene expression profiles in a

disease is not only to differentiate the non-random
changes from the random and irrelevant changes, but
also to identify the disease causing changes, their down-
stream effects and the cellular responses related to the
disease. If such a procedure worked, one would expect to
see the intrinsic signature of luminal breast cancer sub-
type emerging as downstream to gene ER. Furthermore,
one could identify driver mutations of the mesenchymal/
basal subtype for which therapeutic strategies fail to
work. Biological interaction networks contain immense
amount of knowledge suitable for such analysis [9]. Find-
ing active subnetworks in diseases is a typical analysis
which uses such networks to generate meaningful biolo-
gical contexts from the differentially expressed genes.
An active subnetwork (ASN) is a subnetwork of a bio-

logical interaction network in which the significant nodes
obtained from an experiment are connected by edges
defined in the network [10]. A methodology for finding
ASN was initially proposed by Ideker et al. [10]. When
coining the idea of ASNs, they established the goal of
finding ASNs that could answer questions such as “What
are the signalling and regulatory interactions in control of
the observed gene expression changes? How is this control
exerted?” To achieve this, several variations of their work
have been proposed [11-17] to analyse differentially
expressed genes in diseases using protein-protein interac-
tion (PPI) networks.
PPI networks are undirected networks. Therefore, the

ASNs obtained by using these networks can show signal-
ling and regulatory information, but without the direc-
tionality of edges, they cannot explicitly show how the
controls are exerted. Furthermore, PPI networks have
two problems. One, individual interaction networks exhi-
bit little overlap [18], suggesting that a single interaction
network might not contain complete information. To
overcome this problem, different interaction networks
are combined in single integrated interaction network as
a mixed graph, containing different types of biological
interactions, such as activation, inhibition and post-trans-
lational modification. Second, these networks contain
both false positive and false negative edges [19], suggest-
ing that the qualities of edges may not be consistent
across the network. This problem is solved by computing

confidence values of the edges from the sources from
which the edge information is obtained from (e.g. num-
ber of sources). Alternatively, the values are defined by
co-relations of genes in the experimental data [16].
With the integrated networks containing more com-

prehensive information, one would expect to obtain
more informative ASNs by using them with the existing
methods. In fact, Deshpande et al. [17] used the direction
of regulation of genes in multiple species and showed
that the identified ASNs are more stable and consistent
across multiple species. Similarly, other tools such as IPA
(Ingenuity® Systems, http://www.ingenuity.com) show
directed edges in their outputs. However, these methods
do not use node and edge information together which
could produce better ASNs from this type of networks.
We have identified the three issues: node centricity,

sensitivity to p-value thresholds and inability to compare
ASNs, which limit the existing methods from finding
ASNs that could explain how the genetic controls are
exerted in diseases (see supp text for details). In addition,
the existing ASN finding tools require users to have a
copy of the entire network database prior to starting any
analysis, which can further affect their usability.
In this paper, we present CASNet (Consistent Active

Subnetworks), our novel methodology that uses (i) an inte-
grated interaction network, STRING [20], (ii) directions of
gene regulations, and (iii) combined node and edge evalua-
tions, to find better ASNs. We model the objective func-
tion using a mixed integer programming (MIP) model and
then solve the model using CPLEX to efficiently discover
optimal ASNs. Furthermore, CASNet uses web based
APIs to access only relevant parts of the interaction net-
works and does not require a local copy of the entire data-
base obtained prior to using this tool. We use simulated
datasets to show that CASNet can address the above iden-
tified limitations. Additionally, we use publicly available
datasets to identify and compare ASNs of cancers that
provides interesting biological insights. CASNet and supp
text of this paper are available at http://www.csse.unimelb.
edu.au/~rgaire/CASNet/.

Results and discussion
In this section, firstly we will show that by adding edge
information, our method not only selects interaction
edges which are consistent with the experimental results,
but also helps reduce the sensitivity to p-value signifi-
cance threshold. Secondly, we will present our analysis of
breast cancer and comparison of ASNs in mesenchymal
subtypes of breast and glioblastoma cancers.

Comparing with node centric approaches
In order to evaluate CASNet, we used simulated net-
works of varying nodes and compared our results directly
with the result obtained from three different methods
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(i) jActiveModule [10], (ii) heinz [15] and (iii) CEZANNE
[16]. jActiveModule is a Cytoscape [21] implementation
of Ideker et al. ASN finding problems being NP hard, it
uses the simulated annealing heuristic approach to obtain
optimal solutions. In contrast, heinz is an implementa-
tion of Dittrich et al. which models this problem as a
Prize Collecting Steiner Tree problem and uses Integer
Programming techniques to obtain the exact solution.
Heinz is also available as a Bioconductor package, which
was used for this comparison. Finally, CEZANNE is
MATISSE [22] module and uses not only the significance
of nodes but also the similarity of nodes as well as an
assessment of edges based on the correlations of nodes.
These three methods cover a broad range of techniques
that are currently available for finding ASNs. By compar-
ing our results with the results obtained from these
methods, we can understand the performance of our
method against other similar methods. In addition to
this, we also compared the results obtained by using our
method disregarding the directionality of edges to under-
stand the performance differences attributed to the direc-
tionality. These experiments were performed for different
network sizes to assess the robustness of our method. At
this point, we note that some approaches have been
developed that use co-expression [23], co-variance [14]
and correlation [16] of genes for creating or assessing
edges in the networks. Although useful, these methods

may not be applicable when only a list of genes is
available.
We used the following parameters of the individual

methods: jActiveModule was used with the default para-
meters to obtain only 1 module. For heinz, a false discov-
ery rate (FDR) of 0.05 was used (more stringent FDR
thresholds had poor performance). For two nodes a and
b, CEZANNE required node similarity scores matrix, sim
[a][b]. This was calculated from p-values of the nodes,
pa and pa, as sim[a][b] = sim[b][a] = min(pa, pb)/max(pa,
pb) such that the nodes having similar p-values obtain
high similarity scores (≈1) while the nodes having differ-
ent p-values obtain low similarity scores (≈0). A p-value
threshold of 0.05 was used for both CEZANNE and CAS-
Net. Precisions (true positive/all classified as positive)
and recalls (true positive/all positives) for both nodes and
edges were added for each methods for comparisons.
Figure 1 illustrates the performance of different meth-

ods. It shows that jActiveModule finds modules with low
precision and high recall. Therefore, the modules obtained
by this method are often bigger and may contain large
number of false positives. In contrast, heinz produces
modules with high precision but low recall, hence discards
many true positive nodes and edges. CEZANNE produced
ASNs with better recall, but worse precision than heinz.
Note that CEZANNE and jActiveModule failed to
find modules in small and large networks respectively.

Figure 1 Comparison of ASN finding methods in simulated datasets.
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Additionally, jActiveModule produced inconsistent preci-
sion and recall whereas CEZANNE produced consistent
precision but inconsistent recall for different network
sizes. In contrast, heinz performed consistently, though
with lower recall rates.
Since CASNet relaxes the significance threshold, it

starts by selecting a large number of nodes. The edges
connecting these nodes are then assessed based on their
directionality and confidence scores. This is also apparent
in Figure 1. Here, CASNet without considering direction-
ality of edges (CASNetNCA) performs with high precision
but low recalls. The recall in CASNet is highly improved
by using edge information. This demonstrates that by
using additional information of edges, the quality of
ASNs can be dramatically improved (see Supp text for
further comparisons).

Analysis of cancer datasets
In a recent study, Iliopoulos et al. [24] noted that the
genes related to inflammatory pathways form stable PFLs
regulated by IL6 causing continuous progression of can-
cer. Their study involved extensive laboratory based
works. By using computational methods instead, we can
potentially not only reduce costs and efforts of identifying
PFLs, but also identify novel PFLs.
ASNs and PFLs in breast cancer
We used a publicly available breast cancer dataset to
explore ASNs and PFLs in the basal subtype of breast
cancer. SAM analysis [25] was performed to obtain a list
of significant genes. This list was used with STRING net-
work [20] to find ASNs and PFLs.
Figure 2 is the ASN obtained from the gene list of

basal breast cancer. This ASN contains PFLs as shown
in Figure 3. Besides other genes, we found that the PFLs
across MYC, E2F1, AR, ESR1, CCND1, PGR and BCL2
were conserved across independent breast cancer dataset
as shown in Figure 4. However, we did not find any PFL
when the differentially expressed genes from the entire
dataset without discriminating the cancer subtypes were
used. ESR (i.e. ER) is one of the genes which differenti-
ates luminal and basal subtypes [8]. The breast cancer
patients with low ER expression levels have poorly survi-
val rates. Our identification of these PFL in ER- samples
with oncogene like MYC and tumour suppressor gene
like CCND1 with the breast cancer discriminating gene
ESR1 is a novel finding. Existence of such PFLs probably
explains the reasons behind the resistance to the thera-
peutic in this cancer subtype.
In order to obtain independent evidence for the CASNet

choice of expression-based nodes and edges, we used the
TCGA query portal [26] to find genes included in the ASN
which had consistent expression and copy number
changes. Here, we assumed that a gene could be causal if it
is not affected by other genes and have mRNA expression

level changes consistent with the copy numbers of the
genes. FOXA1, NCOA7 and DOCK7 were the top three
genes in this result. Since DOCK7 is a downstream signal-
ling intermediate of ERBB2, identification of DOCK7 aber-
rations in the absence of HER2 over-expression may
implicate DOCK7 in Transtuzumab drug resistance. More-
over, when FOXA1 and NOCA7 were considered with the
PFL forming genes, all the samples had at least one gene
that had consistently changed expression levels. This
further suggests that PFLs and their neighbouring genes
could be important in understanding the nature of com-
plex cancer cases.
ASNs in glioblastoma vs breast cancer
Here, we used Glioblastoma (GBM) dataset from Ver-
haak et al. [27] to obtain an ASN for mesenchymal sub-
type cases and compare it with the ER- breast cancer
ASN, since both of these subtypes of cancers show
mesenchymal signatures, have poor patient survival and
are likely to be related to the EMT event.
Figure 5 shows the similar components of ASN in these

subtypes of cancers. Here, PPARG, SREBF2, E2F1, MYBL2
and MYCN are the genes which are differently regulated
while several other genes are similarly regulated in the two
cancer subtypes. PPARG is up-regulated in mesenchymal
GBM, but down-regulated in ER- breast cancer. This gene
can both enhance and suppress the expression of PTGS2
and ICAM1, which are up-regulated in both subtypes.
PTGS2 (COX2, an aspirin target) is a key mediator of
inflammation [28]. This behaviour of PPARG is likely
expressed by stromal adipocytes (fat cells), which are
known to accentuate inflammatory processes in a number
of human pathologies, including cancer.
IL6 is the most connected node in this similarity net-

work. It is associated with acute inflammation, suggest-
ing that higher expression of IL6 could be a cellular
response to inflammation. MYC, which is found to be
forming PFLs in basal/triple negative breast cancer
cases, is seen to be regulated by IL6, IL1B, IFNG and
HIF1A, and is conserved in both mesenchymal GBM
and ER- breast cancer. This independently confirming
the role of IL6 in cancers and suggests that maintaining
high level of inflammation may be a conserved feature
of mesenchymal subtypes of cancers. More generally,
our finding of the common pathways in the different
subtypes of cancers suggests that even though the
genetic signatures among different cancers may not be
similar, the cancer subtypes might not only have simila-
rities in their genetic signatures but also have similarly
affected pathways and could potentially be treated in the
same manners.

Materials and methods
In this section, we describe the datasets and our metho-
dology for finding ASNs.
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Simulated networks
Here, we created simulated experimental datasets and
consistent gold standard ASNs. These ASNs were com-
bined to obtain simulated network. The experimental
datasets and the simulated networks were then used to
obtain ASNs from different methods and compared
against the gold standard ASNs. More specifically, we fist
created nodes of sizes N = 100; 1000; 10000. p-values were
then assigned to these nodes such that n = 0:1 x N ran-
domly selected nodes obtained values smaller than 0:001

(considered as the significant nodes), while other nodes
were assigned uniformly distributed values between 0 and
1. 2 x n random pairs of significant nodes were assigned
directed up- and down-regulating edges consistent with
the direction of regulation of nodes. The confidence scores
of all the edges were assigned a constant value, 1. Each of
the above experiment with different node sizes was
repeated for 10; 15 and 20 times by randomly reassigning
p-values but changing the directions of regulations of a
fraction (0:5) of significant nodes to add randomness in

Figure 2 ASN in ER- subtype of breast cancer. Here, the red and green circles represent the genes that are respectively over- and under-
expressed in ER-cases.
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the experimental results. Since the edges are reassigned in
each experimental data, this variation in node regulation
can create different edges among the same two nodes as
found in real biological networks.

Biological network data
We used the action networks of STRING [20] as our net-
work data source. The network was access at run time
via the publicly available web based APIs. The benefits of
this approach are that downloading and maintaining the
entire database is not required, making CASNet usable in
a computer with internet connection. The assessed parts
of STRING were saved locally for future use, thereby
avoiding excessive internet usage.

Experiment data
The breast cancer samples GSE2034 [29,30] were obtained
from obtained from GEO [31]. The GEO dataset con-
tained 282 samples, with 206 were ER+ and 75 ER- cases.
The TCGA BRCA dataset contained 465 samples. TCGA
[32] (BRCA) dataset was used as an independent valida-
tion dataset.
The GBM dataset was obtained from a TCGA publica-

tion [27] containing 206 samples. It categorised the sam-
ples into 4 subtypes: Proneural (PN), Neural (NL),
Classical (CL) and Mesenchymal (MES) based on their

genetic signatures. Their SAM analysis [25] results of
MES subtype were taken as a basis for the significance
measurement of the genes (see supp text for details).

Interaction networks
Let Vexp be a set of biological molecules being investi-
gated in an experiment. The differential expression ana-
lysis finds molecules M = (Vexp, P, D) with p-value
significances P, and directions of regulations (up- or
down-regulation) D.
A network (or graph) G = (V, E) consists of vertexes (or

nodes) V which are connected by edges E. Given two
nodes v1, v2 Î V, and edge e Î E; e = (v1, v2, t, c) connects
the nodes v1 and v2 by an edge with a type t and a confi-
dence value c. The confidence value of an edge is in the
range of (0, 1] where 0 is the least confidence and 1 is the
most confidence value. Two nodes may be connected by
multiple edges with different values of t. The following
four types of edges (t) are defined between nodes: (i) phy-
sical binding of two nodes, denoted by v1 - v2, (ii) catalytic
and post-transcription modification of a node by another
node, denoted by v1 ⊸ v2, (iii) activation of a node by
another node, denoted by v1 ® v2, and (iv) inhibition of a
node by another node, denoted by v1 ⊣ v2. For an edge e, a
confidence value c is defined. Now, the problem of finding
an ASN can be stated as follows:

Figure 3 PFLs in ER- subtype of breast cancer.
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Figure 4 Conserved PFLs in basal/triple negative subtype of breast cancer in two independent datasets.
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Problem statement
Given an interaction network, G = (V, E), and a differen-
tially expressed (DE) gene dataset, M = (Vexp, P, D), find
the best (where the notion of best is defined by scoring
functions) subnetwork G’ = (V’, E’) ⊂ G which connects
the highly DE genes v Î V’, Vexp ⊂ V with edges E’ ⊂ E
that are consistent with the data.
Consistent edge
An edge e = (n1, n2, t, c) Î E between two nodes n1, n2
Î V is considered to be consistent if the direction of
regulation of gene n2 can be explained by the direction
of regulation of n1 by using the edge type t with a high
confidence c.
For example, if n1 promotes n2, i.e. n1 ® n2, and both n1

and n2 are up- or down-regulated, then the edge e = (n1,
n2, ®, c) is considered to be consistent with the data with
a confidence c. In contrast, if a node n1 is up-regulated
and the other node n2 is down-regulated and vice-versa,
then the edge is considered to be inconsistent with the
data.
Based on the problem statement, we now define the

node, edge and subnetwork scores that will be used to
evaluate ASNs.

Node scores
In an experiment, DE genes are often associated with p-
values obtained from some statistical tests. A subnet-
work with nodes having low p-values is a desirable fea-
ture of an ASN [10]. Additionally, it is often desirable to
exclude highly connected nodes in an ASN [33-35].
Here we adopt Dittrich et al’s [15] node scoring method
to include low p-values in the networks (profit). At the
same time, we use a simple approach to penalise highly
connected nodes (cost).
Let pn be the p-value of a node n. Then the node’s

profit score Wn is given as [15],

Wn = (a − 1) × (log(pn) − log(τ )) (1)

where a = (0, 1] is a shape parameter of the beta dis-
tribution fitted for a dataset representing a signal to
noise ratio, and τ is a threshold to control the size of
the ASN (interpreted as the false discovery rate). In this
case, the value of (a - 1) acts as a scaling factor. This
factor is useful to compare the scores of a node
obtained from different datasets having different p-value
distributions. On the other hand, τ can be a selected
threshold which can make a node score positive or

Figure 5 Conserved subnetwork in mesenchymal glioblastoma and ER- breast cancers. Here, the red and green circles represent the
genes that are respectively over- and under-expressed in the subtypes of both cancers. The red and green diamonds represent the genes which
are respectively over-expressed in glioblastoma but low in ER- cases and vise-versa. It shows that not only the inflammation regulating genes
such as IL6 and IL8, but also the mesenchymal marker genes such as CD44 and SNAI1 are conserved across the two subtypes.
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negative, and thereby controls the size of the ASNs.
Since the value of a does not affect the sign of the
scores, and if a single p-value dataset is used, a can be
assigned a constant value without affecting the resulting
ASN. Practically, a is close to 0. Therefore, the node
score can be simplified by assigning a = 0 as Wn = -1 ×
(log(pn) - log(τ)). Furthermore, if a set of significant
genes is used in an experiment after applying a p-value
threshold, the Eq. 1 can be further reduced to, Wn = 1
× log(pn) for all the genes in the set and Wn = -1 × |
Constant| for the genes not in the list.
If D is the degree of a node n (i.e. it is connected to D

other nodes), we assign a cost Cn to the node to penalise
highly connected nodes, as, Cn = log(D).
Since the profit and the cost scores of a node do not

have the same scale, we scale these values to a range
of [-1, 1] to obtain standard scores as,
W ′

n = Wn
maxm∈V (|Wm|) ;C

′
n = Cn

maxm∈V (|Cm|)

Edge scores
It is desirable to assign a high positive score to an edge
which is consistent with the data, so that including such
edges will increase the subnetwork scores. Similarly, the
inconsistent edges should be penalised by assigning
negative scores to them. Additionally, the confidence
value of an edge should be used to scale these scores.
Therefore, we use the following scheme to obtain the
edge scores:

1. If n1 promotes n2, then the consistency score We is
equal to (i) 2 if both n1 and n2 are changed in the
same direction, (ii) -1 if either n1 or n2 is unchanged
and (iii) -2, if n1 and n2 are changed in opposite
direction.
2. Similarly, if n1 suppresses n2, then the consistency
score We is equal to (i) 2 if n1 and n2 are changed in
an opposite direction, (ii) -1 if only one of n1 and n2
is changed and (iii) -2, if n1 and n2 are changed in the
same direction.
3. For edges n1 ⊸ n2 and n1 - n2, a constant value can
be assigned depending on whether including such
edges is desirable or not. For example, We = 1 could
be used in PPI networks, while We = -1 could be used
in the networks where having these edges is not
desirable. By default, we use We = -1 to lessen empha-
sis on undirected edges.

Now, an edge score is defined as, Se = We × Ce where
Ce = (0, 1] is the confidence score of the edge obtained
from the interaction network.
Finally, the standard edge score is obtained as,

S′
e =

Se
maxf∈E|Sf |

Sub-network score
Based on the standard node and edge scores, the score
of a subnetwork G’-is obtained by-using the linear equa-
tion,

S =
∑

n∈V
xn × (α × W ′

n − βn × C′
n) + γ ×

∑

e∈E

xe × S′
e (2)

where a, b and g are the scaling factors of the node
weight profits, the node connectivity costs and the edge
consistency scores respectively and xn and xe are boo-
lean variables with values 1 if n Î V’, e Î E’ and 0
otherwise. The values of these scaling factors could be
obtained by using gold standard network and experi-
ment datasets. In the absence of such datasets, we use a
= g = 1 and b = 0 for the positive scoring nodes and b =
1 for negative scoring nodes in our experiments. This is
because a large number of edges around cancer related
genes exist in the biological networks, since a high num-
ber experiments have been performed in those genes.
Penalising them at the same rate as others eliminates
the highly DE genes (results not shown).
The objective function for finding ASNs is to obtain a

sub-network which maximises the subnetwork score S.

The MIP model
Here, we model the problem of finding an ASN by using
the mixed integer linear programming (MIP) model in
CPLEX which maximises the objective function in Eq. 2.
xn and xe are defined as boolean variables (i.e. x Î 0, 1).
Further to this, the following additional constraints are
imposed: (a) xn(i) ® ∃xe(i, j) i.e. xn(i) ≤ Σjxe(i, j). (b) xe(i, j)
® xn(i); i.e. xe(i, j) ≤ xn(i). (c) xe(i, j) ® xn(i); i.e. xe(i, j) ≤ xn
(i). where n(i) is the ith node and e(i, j) is an edge con-
necting the nodes n(i) and n(j).

Conclusion
A large number of datasets that are currently being pro-
duced, such as TCGA and ICGC, include definitive gen-
ome wide mutational status of many samples, making
the task of interpreting the results, and identifying com-
mon features even more formidable. Adapting to these
high dimensional datasets, biological interaction data-
bases are being integrated into single databases to pro-
vide more comprehensive information. Since all the
interactions among the nodes might not be active at the
same point of time or environmental conditions, the
current methodologies of enrichment assessment for
candidate networks or pathways can fall short in their
ability to discriminate between real biological inferences
from false positive ones. Better methodologies are
required to use these networks and systematically find
interesting and meaningful interactions in disease
conditions.
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In this paper, we presented a methodology to analyse
gene expression results of diseases with STRING net-
work, to not only find a connected subset of nodes that
are observed to be highly differentially expressed, but
also use the edges in the network to generate hypoth-
eses regarding the reason behind the observed changes.
Our methodology, CASNet, enhances existing meth-
odologies by introducing edge scores to solve node cen-
tricity, p-value sensitivity problems and subnetwork
comparability problems.
We demonstrated that complicated regulatory ASNs

and PFLs exist in low surviving cancer cases such as the
mesenchymal subtype of GBM and the basal/triple nega-
tive subtype of breast cancer. Finally, we showed that by
comparing ASNs of different disease types, molecular
similarities of the disease can be identified that can be
useful in their treatments. In this way, CASNet has
widened the possibilities of network analysis in generat-
ing biologically significant hypotheses and directing the
future researches.

Limitations
Firstly, the current state of directed interaction network
has low coverage. Additionally, a large number of edges
around the genes of well studied diseases, including can-
cer, exist due to the large number of experiments that
have been carried out with those genes. This creates a
bias toward some parts of networks. The parts of net-
work where directionality information exists are most
likely the pathways that are already well-understood. As
such, the discovery of new genes and their interactions
from these networks may be less likely. Secondly, we
found several instances where the edges are incorrectly
defined in STRING. The edges in our ASNs are only as
good as the curation and literature mining methodolo-
gies used in creating the networks. Finally, the interac-
tion networks do not differentiate wild type/mutant and
active/inactive molecules in their nodes. In the absence
of this level of sensitivity in the existing biological net-
works, precise conclusions cannot be made. Conse-
quently, the results obtained from ASN finding methods
are susceptible to the problems associated with the
underlying networks and the datasets being used, and
hence require independent validations.
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