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Abstract

Combining heterogeneous sources of data is essential for accurate prediction of protein function. The task is
complicated by the fact that while sequence-based features can be readily compared across species, most other
data are species-specific. In this paper, we present a multi-view extension to GOstruct, a structured-output
framework for function annotation of proteins. The extended framework can learn from disparate data sources,
with each data source provided to the framework in the form of a kernel. Our empirical results demonstrate that
the multi-view framework is able to utilize all available information, yielding better performance than sequence-
based models trained across species and models trained from collections of data within a given species. This
version of GOstruct participated in the recent Critical Assessment of Functional Annotations (CAFA) challenge; since
then we have significantly improved the natural language processing component of the method, which now
provides performance that is on par with that provided by sequence information. The GOstruct framework is
available for download at http://strut.sourceforge.net.

Introduction
The availability of a large variety of genomic data relevant
to the task of protein function prediction poses a data
integration challenge due to the heterogeneity of the data
sources. While features based on sequence can be readily
compared across species, most other data are species-spe-
cific: protein-protein interactions are probed experimen-
tally in a given species, and the expression of a given gene
measured in one set of experiments is difficult to compare
meaningfully to expression measured in another species,
under possibly different conditions.
In earlier work we have shown the power of modeling

Gene Ontology (GO) term prediction as a hierarchical
classification problem using a generalization of the binary
SVM to structured output spaces, which allows us to
directly predict the GO categories associated with a given

protein [1]. Our results demonstrated that the GOstruct
method achieves state-of-the-art performance on the
Mousefunc competition dataset. In this work we general-
ize the GOstruct method to allow us to combine both
species-specific data and cross-species data computed
from sequence, using the framework of multi-view learn-
ing [2]. The multi-view learning approach learns a sepa-
rate classifier for each set of features, and inference is
performed jointly in order to predict a label. We demon-
strate that the multi-view framework is able to utilize all
available information, yielding better performance than
sequence based models trained across species and models
trained from collections of data within a given species.
Preliminary results of the multi-view approach using a
limited number of data sources were presented elsewhere
[3]. This approach achieved state-of-the-art performance
in the recent Critical Assessment of Functional Annota-
tions (CAFA) challenge.
In addition to data that is commonly used in prediction

of protein function, namely gene expression and protein-
protein interactions (PPI), we report the successful use of
large-scale data mined from the biomedical literature, and
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find that it provides a large boost in accuracy. Together
with the text mining data, features based on sequence
similarity and PPI account for most of the predictor
performance.
We examined the tasks of predicting molecular function,

biological process and cellular component in isolation.
Our empirical results demonstrate that sequence-based
data is more suited to inferring molecular function. Con-
versely, PPI-based classifiers do well in the other two
tasks, outperforming predictors based on any other single
source of data. Gene expression data and other sequence-
based features provide a marginal increase in accuracy.

Background
The Gene Ontology (GO) [4] is the current standard for
annotating function. GO terms belong to three name-
spaces that describe a gene product’s function: its func-
tion on the molecular level, the biological processes in
which it participates, and its localization to a cellular
component. Each namespace is structured as a hierarchy
over its set of keywords, where keywords lower in the
hierarchy provide greater specificity of description. Since
a protein may have multiple functions in each GO name-
space, the problem of protein function prediction can be
formulated as hierarchical multi-label classification [5].
For a long time, the predominant approach to inferring

GO function for newly sequenced proteins has been
transfer of annotation [6], where annotations are trans-
ferred from proteins with known function on the basis of
sequence or structural similarity. Many studies have
shown the limitations and issues with this approach
[7-10]. Nevertheless, a number of methods employ
sequence and structural similarity to make functional
annotation predictions with varying degrees of accuracy
[11-15]. New schemes are still being proposed today, an
example being the algorithm by Hamp, et al. that was
used in the 2011 CAFA challenge [12].
The transfer-of-annotation approach operates like a

nearest-neighbor classifier, and is unable to effectively deal
with today’s noisy high-throughput biological data. This
has led to the recent development of machine learning
approaches that typically address the problem as a set of
binary classification problems: whether a protein should
be associated with a given GO term (see e.g., [16]). The
issue with breaking the problem up into a collection of
binary classification problems is that the predictions made
for individual GO terms will not necessarily be consistent
with the constraint that if a term is predicted, all its ances-
tors in the hierarchy should be predicted as well. There-
fore, some methods attempt to reconcile the predictions
with the hierarchy to produce a set of consistent annota-
tions e.g., using Bayesian networks or logistic regression
[5,17,18]. Other methods employ inference algorithms on
graphs to directly produce a hierarchical label [19,20]. But

the common approach is to forgo the reconciliation step
entirely, partly because the predominant approach to mea-
suring prediction accuracy for this problem is on a “per
GO term” basis [21]. In this case, the interpretation of
potentially conflicting binary predictions is left up to the
user.
The biomedical literature is a resource that has been

previously explored for protein function prediction,
including as the topic of a shared task ([22]). Several of the
previous efforts in this area take advantage of machine
learning (e.g. [23-25]), typically training a binary classifier
for each GO term as in other related work, where the fea-
tures employed in the models are derived from informa-
tive or discriminating words in text associated to a
protein. While some of these approaches show promise,
each paper also suggests that integration of external data
sources would be useful (and arguably necessary) to
improve their results.

Function as a structured label
Rather than treating the task as a collection of binary
classification problems ("is a particular GO keyword asso-
ciated with a particular protein?”), the GOstruct method
trains a predictor to infer a full set of annotations directly
("what GO keywords are associated with a particular pro-
tein?”) using the methodology of structured learning [1].
This is accomplished by learning a compatibility function
f (x, y) that measures the level of association between a
protein x and a vector of annotations y. Inference of
anno-tations is then performed by finding the most com-
patible label with a given protein: ŷ = arg maxy f (x, y).
An algorithm aimed at directly inferring complex labels
such as GO annotations is called a structured-output
method. Structured-output methods have been intro-
duced to the field of machine learning fairly recently and
span a number of discriminative and probabilistic
approaches [26]. The most popular of these is the struc-
tured SVM, which shares many of the advantages of its
binary counterpart [27]. Structured SVMs have been suc-
cessfully applied to a variety of problems, including text
categorization [27,28], prediction of disulfide-bond con-
nectivity [29], and prediction of enzyme function [30],
but are still not as widely used as binary SVMs due to
their higher level of conceptual complexity and lack of
easy to use software. In what follows we describe the
extension of the GOstruct to multi-view classification.

Methods
Our labeled training data is provided as{(
xiyi

)}n
i=1 ∈ (X × Y)n, where X is the space used to

represent a protein, Y is the label space, and n is the
number of examples. Our goal is to construct an accu-
rate mapping h : X → Y that minimizes the empirical
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loss
∑n

i=1
�(yi, h(xi)) for a given loss function Δ. This

mapping is computed using the compatibility function f
via the arg max operator:

h (x) = argmax
y∈Y

f
(
x, y

)
, (1)

which selects the label y most compatible with the input
x. The learning objective is then to ensure that the correct
label yi yields the highest compatibility score with xi for
every training example, as shown in Figure 1.
In this work, we utilize the structured SVM [27], which

aims to maximize the separation between the compatibil-
ity value associated with the true label yi and all other
candidate labels for every training example xi. The com-
patibility function for the structured SVM is linear in the
joint input-output space defined by a feature map ψ: f (x,
y) = wT ψ(x, y). The structured SVM can be formulated
as the following quadratic optimization problem [27]:

minw,ξ
1
2‖w‖2 + C

n

∑n

i=1
ξi (2)

s.t. wT(ψ(xi, yi) − ψ(xi, y)) ≥ �(y, yi) − ξi for i = 1, . . . ,n; y ∈ Y\{yi} (3)

ξi ≥ 0 for i = 1, . . . ,n, (4)

where ξi is the slack variable associated with margin vio-
lation for xi, C is a user-specific parameter that controls
the trade-off between two competing objectives: maximiz-
ing the margin through minimization of the norm of w
and minimizing the amount of margin violation in the
training data, as given by the sum of the slack variables.
This is known as the margin-rescaling formulation of the
structured SVM [27], because the margin with respect to
which violations are measured is scaled according to how
similar the true and the candidate labels are as measured
by Δ(y, yi). Here, we use the kernel F1 loss function [1]:

�ker(y, ŷ) = 1 − 2K(y, ŷ)
K(y, y) + K(ŷ, ŷ)

, (5)

which reduces to the F1-loss [27] when using a linear
kernel.
To make use of kernels, we solve the problem in Equa-

tions (2)-(4) in its dual formulation [27]. When dealing
with structured-output problems, the kernels correspond
to dot products in the joint input-output feature space
defined by ψ, and the kernels are functions of both inputs
and outputs: K((x1, y1), (x2, y2)) = ψ(x1, y1)

T ψ(x2, y2). In
our experiments, we use a joint kernel that is the product
of the input-space and the output-space kernels:

Figure 1 Graphical representation of the training objective for structured-output methods. Training examples are displayed along the
horizontal axis. The structured SVM aims to maximize the margin between the compatibility values for the true label and all other labels, as depicted
with the two dashed lines. Example x1 satisfies this. Example x2, while correctly classified, has a margin violation. Example x3 is misclassified. For
demonstration purposes, we assume that the highest compatibility values for the three presented examples are all equal to each other.
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K((x1, y1), (x2, y2)) = KX (x1, x2)KY(y1, y2).

Our intuition is that two example-label pairs are similar
if they are similar in both the input and the output
spaces. The corresponding feature map ψ is given by all
pair-wise combinations of the input-space and output-
space features. Different sources of data are combined by
adding kernels at the input-space level, and for the out-
put space we use a linear kernel between label vectors.
All kernels were normalized according to

K(z1, z2) =
K(z1, z2)√

K(z1, z1)K(z2, z2)

to ensure consistent contribution across different fea-
ture spaces. Multiple sets of features were combined via
unweighted kernel summation.

Multi-view learning
The challenge in combining species-specific data such as
gene expression and PPI data with sequence information
in the structured SVM framework is that sequence is com-
parable across species whereas genomic data like gene
expression and PPI data are not. To solve this problem we
divide the data into two views: a cross-species view which

will have a sequence-based kernel K(C)
X (x1, x2) associated

with it, and a species-specific view whose kernel

K(s)
X (x1, x2)will be computed from a collection of genomic

data. Each view is trained in-dependently of the other
using the margin-rescaling structured SVM formulation
from Equations (2)-(4). As presented in Figure 2, the train-
ing leads to two compatibility functions: f(c), which handles
the cross-species view, and f(s), which handles the species-
specific view. Inference is then performed according to

ŷ = h(x) = argmax
y∈Y

(
f (c)(x, y) + f (s)(x, y)

)
. (6)

In addition to the multi-view method outlined above, we
investigate an approach we call the chain classifier. In this
approach, the predictions made by the cross-species classi-
fier are incorporated into the species-specific feature map
by adding a feature for each GO term. In other words, arg
maxy f

(c)(xi, y) becomes a set of features for the training of
the species-specific classifier. The inference made by the
species-specific classifier is then reported as the overall
prediction. This approach is related to the method of
Clark and Radivojac, which trains a neural network over
GOtcha scores [31]. The chain approach, depicted in
Figure 3, is an alternative way of learning from the training
information available in the two views, and one of its
advantages is that the user is not limited to structured
SVMs for constructing the features from the cross-species

view, and a simple BLAST nearest-neighbor approach can
be used to produce predictions from the cross-species
information instead of the structured SVM.

Training and inference
To make inference via Equation (1) feasible we limited
the output space Y to the labels that occur in the training
set only, arguing that this allows the classifier to focus on
combinations of GO terms that are biologically relevant.
We have found that it is possible to perform approximate
inference using an efficient dynamic programming algo-
rithm [32], but experiments have shown that performing
inference that way leads to reduced accuracy, further
supporting our choice to limit inference to combinations
of GO terms observed in the data. We solve the SVM
optimization problem in its dual formulation using the
working set approach [27], which starts by optimizing
the dual objective with no constraints. The algorithm
then alternates between two steps: adding the most vio-
lated constraint to the working set, and solving the opti-
mization problem with respect to the working set. The
algorithm terminates when any constraint outside of the
working set is violated by no more than any constraint in
the working set.

Measuring performance
Performance in hierarchical classification can be mea-
sured either at the level of individual GO terms, or by
collectively comparing the discrepancy between the
structured labels [1]. For ease of interpretability we
choose to measure accuracy at the GO term level, and
perform averaging across GO terms [21]. However, since
GOstruct assigns a confidence to a set of predicted GO
terms, we need to extract out of the compatibility func-
tion a confidence measure for individual GO terms. We
compute a score ci(x) for GO term i on protein x accord-
ing to:

ci(x) = max
y∈Y+

i

f (x, y) − max
y∈Y−

i

f (x, y), (7)

where Y+
i = {y ∈ Y|yi = 1} is a subset of all labels that

satisfy the hierarchical constraints and have the ith variable
set to 1. The subset Y−

i is defined in a similar fashion,
except for the ith variable being set to 0. This score mea-
sures the difference in compatibility values between the
most compatible label that includes GO term i and the
most compatible label that doesn’t; higher values of this
difference reflect stronger confidence that GO term i is
associated with protein x. Given this score, we can gener-
ate ROC and precision-recall curves in the usual way; in
our results we quantify performance using the area under
the ROC curve (AUC), and the precision at a recall level
of 20% (P20R).
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Evaluation procedure and model selection
Performance was evaluated using five-fold cross-validation
on mouse proteins that have species-specific in-formation
and valid annotations. Additional proteins, with cross-spe-
cies features only, were obtained from the external species
H. sapiens. In the interest of keeping the run times down,
we randomly subsampled the external set down to 5000
proteins for molecular function and cellular component

experiments and down to 3000 proteins for biological pro-
cess experiments. Since sequence information was used,
cross-validation folds were randomly selected such that no
two proteins from different folds have more than 50%
sequence identity. To select appropriate values for the
SVM parameter C, we ran nested four-fold cross-valida-
tion on the training data. The value of C

n = 1 yielded the
highest accuracy on the validation set almost universally.

Figure 2 The multi-view approach. Data is separated into two views: a cross-species view that contains features computed from sequence,
and a species-specific view that contains features computed from PPIs, gene expression and protein-GO term co-mention in mouse. A separate
classifier is trained on the data from each view; the multi-view classifier uses the sum of the two compatibility functions.
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Data
As a target species we focus on M. musculus, and use H.
sapiens as the external species that participates in the
cross-species view. We choose the external species that is

reasonably close to the target species and have a significant
number of experimentally derived GO annotations. We
obtained annotations from the Gene Ontology website
(http://www.geneontology.org) and excluded annotations

Figure 3 The chain classifier approach. Predictions from the cross-species view are provided as features to the species-specific view, along
with other data.
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that were predicted through computational means to limit
classifier assessment bias [33]. Table 1 and Figure 4 provide
further information about each dataset.

Cross-species data
We used features based on protein sequence to construct
the cross-species view. Protein sequences for all species
were retrieved from the UniProt database (http://uniprot.
org). In the cases where a gene has multiple splice forms,
the longest one was used. Sequence features were extracted
as follows, and a linear kernel was used for the input space
kernel for the cross-species view.
BLAST hits
We represented a protein in terms of its BLAST similar-
ity scores against a database of annotated proteins [34].
We performed all-vs-all BLAST and the output was post-
processed by excluding all hits with e-values above 50.0.
The remaining e-values were divided by 50.0 to normal-
ize them. Any values below 1e-10 after normalization
were brought up to 1e-10. We then use the negative log
of the resulting values as features.
Localization signals
Many biological processes are localized to particular cel-
lular compartments. Information about protein localiza-
tion can, therefore, be indicative of the function those
proteins perform [10]. To take advantage of such infor-
mation, we use the features computed by the WoLF
PSORT algorithm [35].
Transmembrane protein predictions
A large fraction of proteins are embedded in one of the cel-
lular membranes. Transmembrane proteins tend to be
associated with certain functions, such as cell adhesion and
transport of ions. Therefore information indicating whether
a given protein is a transmembrane protein, and more spe-
cifically, how many transmembrane domains it has can also
be indicative of protein function. For each protein, we esti-
mated the number of transmembrane domains using the
TMHMM program [36], and an indicator variable was
associated with each number of transmembrane domains.
K-mer composition of the N and C termini
The N and C termini of a protein contain signals that
are important for protein localization, binding and other

protein functions [37]. Therefore we computed features
that represent the 3-mer composition of 10 amino acid
segments in the N and C termini of each protein.
Low complexity regions
Low-complexity regions in proteins are abundant, have
an effect on protein function and are not typically cap-
tured by standard sequence comparison methods [38].
We scanned each protein with a sliding window of size
20, and a defined the low-complexity segment as the win-
dow that contains the smallest number of distinct amino
acids. We used the amino acid composition of that seg-
ment as features.

Species-specific data
We characterize functional similarity within a species
using three sources of data: protein-protein interactions
(PPI), gene expression, and protein-GO term co-men-
tions extracted from the biomedical literature.
Protein-protein interactions
We extracted M. musculus protein-protein interaction
(PPI) data from version 8.3 of the STRING database [39].
A protein is represented by a vector of variables, where
component i provides the STRING evidence score of an
interaction between protein i and the given protein. Preli-
minary experiments indicate that the resulting linear ker-
nel performs as well as the more sophisticated diffusion
kernel.
Gene expression
Similarity of expression was measured using a linear ker-
nel across a compendium of 14,696 microarray experi-
ments provided by the authors of Platform for Interactive
Learning by Genomics Results Mining (PILGRIM) [40].
Experiments using more sophisticated kernels will be
provided elsewhere.
Protein-GO term co-mentions
If a protein and a gene ontology term are mentioned in
close proximity in a paper, this can be evidence that the
corresponding function is associated with the protein. A
set of 11.7 million PubMed abstracts, all Medline
abstracts on 9/8/2011 that had title and body text, were
used to create a protein-GO term co-mention kernel.
The abstracts were fed into a natural language processing
pipeline based on the BioNLP UIMA resources (http://
bionlp-uima.sourceforge.net/) which consists of the fol-
lowing steps: 1) splitting the abstracts into sentences 2)
protein name tagging using the LingPipe named entity
recognizer (http://alias-i.com/lingpipe) with the CRAFT
model [41] 3) Gene Ontology term recognition via dic-
tionary lookup and 4) extraction of protein-GO term co-
occurrence at the abstract level. Protein names were
mapped to mouse MGI IDs using MGI name dictionary
lookup. Assuming only mouse references allowed us to
avoid the full gene normalization problem [42] and fit in
well with the other data sources of the species-specific

Table 1 The number of proteins in mouse and human
that participated in classifier training and testing, as well
as the number of GO terms considered in each
namespace.

Statistic Namespace

MF BP CC

mouse proteins 3150 2633 2125

human proteins 5000 3000 5000

number of GO terms 310 1697 240

Namespace designations are as follows: MF - molecular function; BP -
biological process; CC - cellular component.
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classifier. The MGI ID-GO ID co-occurrence frequency
data was used as features. In this data, each protein is
characterized by a vector that provides the number of
times it co-occurs with each GO term. In preliminary
experiments we also explored the use of protein-protein
co-occurrences, but found that they actually hurt
performance.
Overall we extracted a total of 146,947,306 protein-

GO term co-mentions. However, only 1,392,023 of those
were unique - many GO-term protein pairs co-occur
many times. An extreme example is interleukin 6, which
is mentioned 426,031 times in conjunction with interleu-
kin-6 receptor binding. Across the dataset, each protein
co-occurred with a median of 50 molecular function,
117 biological process, and 42 cellular component GO-
term mentions. Some basic statistics are presented in
Table 2.
While it is clear from previous research that exact term

matching is inadequate for good recall of Gene Ontology
terms in text [43], it is also clear that accurately recogniz-
ing Gene Ontology terms is a challenging problem not
only due to linguistic variation [24] but due to variability
in term informativeness in the context of the GO itself
[44]. Our conservative exact-match approach to recog-
nizing GO terms is highly precise, and its low coverage is
likely offset by the large document collection we have
considered in this work. Our collection is orders of mag-
nitude larger than previous collections (for instance, [25]
uses 68,337 abstracts for training and the BioCreative

data [22] consisted of 30,000 (full text) documents). Our
use of direct protein mentions within a document to
relate proteins to GO terms, and aggregated across the
corpus as a whole, also differentiates this work from pre-
vious efforts that use externally provided protein-text
links. In BioCreative, the test data consisted of protein-
document pairs in the input and most systems consid-
ered only the information within the document(s) pro-
vided for a protein rather than any document in the
collection that might mention the protein; [25] associates
proteins to text via curated protein-document links in
UniProt. This means our methods consider many more
implied relationships than other methods.

Figure 4 The distribution of the GO term depth in the annotations provided by the dataset. Term depth is computed as the length of
the longest path to the root of the corresponding ontology.

Table 2 Statistics of the co-mention data across GO
namespaces.

Namespace MF BP CC

Number of GO terms mentioned 3,611 6,684 1,296

Number of protein-GO term co-
mentions

53,313,608 57,723,143 35,910,555

Number of unique co-mentions 376,498 768,876 246,649

Mean per protein 104 206 66

Std dev 131 250 70

Median 50 117 42

Range 1 - 1108 1 - 2034 1 - 531

We provide the number of GO terms mentioned, the number of unique co-
mentions (number of protein-GO term pairs), and their total number, the
average, median, standard deviation and range of the number of unique co-
mentions per protein.
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Results
Comparing classification approaches
We trained cross-species, species-specific, multi-view and
chain models and assessed their performance in prediction
of mouse protein function using cross-validation as
described above. The cross-species classifier uses only
sequence information, the species-specific classifier uses
PPI, gene expression, and protein-GO term co-mentions.
The results in Table 3 demonstrate the advantage of the
multi-view and chain approaches: these classifiers achieve
the highest precision and AUC than either view by itself,
and the multi-view approach is generally better than the
chain method. The only exception is the biological process
namespace, where the species-specific classifier achieves
slightly better AUC (although worse P20R) than the multi-
view and chain classifiers. This is the result of the rela-
tively poor performance of the cross-species classifier in
this case.
The cross-species SVM outperforms the species-specific

SVM in molecular function, which is consistent with the
literature demonstrating that molecular function annota-
tions are the easiest to infer from sequence [33]. In the
other two namespaces the species-specific SVM performs
best, with the strongest contribution coming from the PPI
data, as discussed below. This suggests that features that
describe the functional network within a species are more
predictive of biological process and cellular component
than sequence-based features.

Contribution from individual sources of data
To assess the contribution of each source of data to the
prediction accuracy, we compared the performance of
models trained on individual kernels. These results are
presented in Table 4. Our first observation is that BLAST
data accounts for the largest contribution to the predic-
tive power of the cross-species SVM, although the addi-
tional sequence-based kernels provide an increase in
performance. A further boost to performance in the

cross-species view comes from the human sequence data,
particularly in the molecular function namespace; this
can be observed by comparing the “Sequence” entry in
Table 4 to the “Cross-species” entry in Table 3.
In the species-specific view, the PPI kernel yields the

highest accuracy, and outperforms all sequence-based pre-
dictors in biological function and cellular component
namespaces, including the full cross-species SVM from
Table 3. This suggests that functional network informa-
tion, which is the basis for the “guilt by association”
approach for function prediction is effective in those two
namespaces (we note that the GOstruct framework was
shown to outperform guilt by association methods in a
comparison on the Mousefunc challenge data [1].)
Furthermore, these features are complementary to the co-
mention features, as demonstrated by the strong increase
in performance over either kernel by itself when using the
combination of the two. A classifier based solely on gene
expression data did not fare well by itself. Nevertheless,
inclusion of gene expression data provides a marginal
increase in performance. Prediction of function from
expression is challenging and others have observed poor
performance using expression data alone [45]; we are cur-
rently exploring alternative representations that will
improve its usefulness.
A manual analysis of incorrect predictions using litera-

ture features was performed to examine what informa-
tion GOstruct used to make the prediction. Analysis of
the top 25 false positives from the molecular function
namespace can be found in Additional File 1 with the
first few entries presented in Table 5. Three main conclu-
sions can be drawn from the analysis. First, predictions
made are more accurate than the evaluation allowed; our
system identified biologically correct annotations that
were not yet available in the gold standard. The gold
standard used for evaluation was from Feb 2011. When
evaluated against the contents of Swiss-Prot from April

Table 3 Classifier performance in predicting GO terms in
mouse, quantified by area under the ROC curve (AUC)
and precision at 20% recall (P20R).

Namespace AUC P20R

MF BP CC MF BP CC

Cross-species 0.90 0.67 0.81 0.52 0.16 0.42

Species-specific 0.86 0.83 0.86 0.42 0.29 0.46

Multi-view 0.91 0.81 0.88 0.57 0.30 0.58

Chain 0.89 0.82 0.87 0.51 0.28 0.52

The cross-species classifier uses only sequence data; the species-specific
classifier uses a collection of genomic data–PPI, gene expression, and protein-
GO term co-mention mined from the biomedical literature. The multi-view
and chain classifiers are two approaches for integrating cross-species and
species-specific data. The presented values are averages across all GO terms
considered in a particular namespace. The results were obtained using five-
fold cross-validation.

Table 4 Classifier performance in predicting GO terms
using individual sources of data and some of their
combinations using only data from mouse.

Source AUC P20R

MF BP CC MF BP CC

BLAST 0.77 0.61 0.69 0.40 0.13 0.25

Sequence 0.83 0.65 0.76 0.41 0.14 0.26

PPI 0.78 0.80 0.81 0.33 0.25 0.43

Protein-GO term co-mention 0.78 0.75 0.79 0.24 0.17 0.33

Expression 0.58 0.64 0.62 0.04 0.06 0.10

PPI + co-mention 0.85 0.82 0.85 0.43 0.29 0.45

PPI + co-mention + expression 0.86 0.83 0.86 0.42 0.29 0.46

BLAST refers to a classifier trained on BLAST scores only; the Sequence entry
uses all the sequence-based features. In addition to classifiers trained on PPI,
co-mention and expression individually, we also provide results using PPI and
co-mention and the combination of all three.
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2012, 16 out of the top 25 predictions are supported. Sec-
ond, our NLP pipeline is able to extract pertinent infor-
mation for function prediction. Even individual sentences
can contain evidence of multiple GO annotations. For
example, a sentence extracted by our pipeline from
PMID:19414597, “LKB1, a master kinase that controls at
least 13 downstream protein kinases including the AMP-
activated protein kinase (AMPK), resides mainly in the
nucleus.”, describes both the function and the subcellular
localization of the protein LKB1. Finally, even though the
sentences extracted provide useful information, more
sophisticated methods to extract information from them
will need to be developed. Because we are using simple
co-occurrence of protein and GO-terms, extracted asso-
ciations are not always correct. For example, our pipeline
associated peptidase activity with TIMP-2 on the basis of
the following sentence: “The 72-kDa protease activity has
been found to be inhibited by tissue inhibitor of metallo-
protease-2 (TIMP-2), indicating that the protease is the
matrix metalloprotease-2 (MMP-2).” Clearly, TIMP-2
does not actually have peptidase activity, but inhibits it.
This incorrect association led to an incorrect GOstruct
prediction. Such errors will be addressed in future work
by incorporating the semantic role of the protein in
regards to the described function. Overall, literature is a
very informative feature for function predictions and
continued work to develop more sophisticated methods
for extracting protein-GO relations are required.

Performance comparison on individual GO terms
For further analysis of performance we examined our clas-
sifiers in the context of individual GO terms. For each
namespaces we wanted to see whether there are trends in
performance as a function of the GO term depth, and
whether there are certain categories that are particularly
easy or difficult to predict. Overall, we observed a slight
upward trend, with predictors achieving higher accuracy
on terms deeper in the ontologies. This was most pro-
nounced in the biological process namespace.
Molecular Function
Figure 5 presents the accuracy for molecular function GO
terms. Among the more difficult to predict were several
rather generic binding-related terms (GO:0019904 - “pro-
tein domain specific binding”, GO:0019899 - “enzyme bind-
ing”, and GO:0042802 - “identical protein binding”, all with
AUC values below 0.63 across all classifiers). A comparison
of the cross-species classifier with the species-specific classi-
fier shows that the cross-species classifier has better perfor-
mance at predicting functions related to enzymatic activity
(average AUC values of 0.93 and 0.89, respectively).
Biological Process
The results for the biological process namespace are pre-
sented in Figure 6. The striking feature of the results is
that the species-specific view outperforms the cross-spe-
cies classifier on almost every GO term. The difference in
performance was largest in the more specific terms, which
corresponds to the right part of the plot. Among the most

Table 5 The top 5 false positive predictions made by GOstruct.

Protein GOstruct Prediction/Current
Annotation (if different)

Best Supporting Sentence Pubmed
ID

GO term(s) in
Supporting
Sentence

Evidence
Code

MGI:103293 GO:0016787 hydrolase activity We recently demonstrated that human protein tyrosine
phosphatase (PTP) L1, a large cytoplasmic phosphatase
also known as PTP-BAS/PTPN13/PTP-1E, is a negative
regulator of IGF-1R/IRS-1/Akt path-way in breast cancer
cells.

19782949 GO:0004722 IEA

MGI:103305 GO:0016787 hydrolase activity/N/A N/A N/A N/A N/A

MGI:104597 GO:0016740 transferase activity/N/
A

Using this assay system, chloramphenicol acetyltransferase
activity directed by the cTNT promoter/upstream region
was between two and three orders of magnitude higher
in cardiac or skeletal muscle cells than in fibroblast cells,
indicating that cis elements responsible for cell-specific
expression reside in this region of the cTNT gene. Many
Andersen syndrome cases have been associated with loss-
of-function mutations in the inward rectifier K(+) channel
Kir2.1 encoded by KCNJ2.

3047142 GO:0008811
GO:0016407

N/A

MGI:104744 GO:0022857 transmembrane
transporter activity/GO:0005242
inward rectifier
potassium
channel activity

Many Andersen syndrome cases have been associated
with loss-of-function mutations in the inward rectifier
K(+) channel Kir2.1 encoded by KCNJ2

18690034 GO:0015267 IEA

MGI:104744 GO:0022892 substrate-specific
transporter activity/GO:0005242
inward rectifier potassium
channel activity

IRK1, but not GIRK1/GIRK4 channels, showed a marked
specificity toward phosphates in the 4,5 head group
positions.

10593888 GO:0015267 IEA

We present the best supporting sentence for the function of each protein, the document source, and the most recent known annotation along with the
associated evidence code.
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difficult terms, on which all three predictors performed
poorly, were GO:0019725 - “cellular homeostasis”,
GO:0040007 - “growth”, and GO:0065003 - “macromole-
cular complex assembly"; the corresponding AUC values
were below 0.67.
Cellular Component
Figure 7 presents the cellular component results. Similar
to biological process, the species-specific classifier outper-
formed the cross-species one on nearly all GO terms; the
only terms on which the cross-species does better are very

general (e.g., “extracellular region”). The most difficult
terms in this namespace were GO:0000267 - “cell fraction”
and GO:0005829 - “cytosol” with the corresponding AUC
values being below 0.73 across all predictors.

Conclusions
This paper presented a multi-view extension to the GOs-
truct structured output protein function prediction frame-
work. We demonstrated the framework’s capability to
combine multiple heterogeneous sources of data–annotated

Figure 5 Accuracy plotted against the GO term depth for the molecular function namespace. Presented are average AUC values for three
of the predictors in Table 3. Term depth is computed as the length of the longest path to the root of the ontology. The labels “Cross-sp.”, “Sp.-
Spec.”, and “M. View” refer to the cross-species, species-specific and multi-view predictors, respectively.

Figure 6 Accuracy plotted against the GO term depth for the biological process namespace. Presented are average AUC values for three
of the predictors in Table 3. Term depth is computed as the length of the longest path to the root of the ontology. The labels “Cross-sp.”, “Sp.-
Spec.”, and “M. View” are the same as above.
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proteins from multiple species, and species-specific data
that includes PPIs, gene expression, and information mined
from the biomedical literature–each providing an increase
in performance. The empirical results suggest that
sequence-based features are more informative of a protein’s
molecular function, while functional association features
from PPI and text mining data provide a stronger contribu-
tion for the prediction of biological process and cellular
component annotations. Gene expression provided only a
marginal increase in performance and we speculate that
more sophisticated kernels are needed to extract more
meaningful features. Future work includes the design of
these kernels as well as framework extensions to make it
more scalable to a higher number of species and larger
datasets.

Additional material

Additional file 1: Analysis of the top 25 false positive predictions
made by GOstruct. We present the best supporting sentence for the
function of each protein, the document source, and the most recent
known annotation along with the associated evidence code.

Authors’ contributions
AS and KG collected protein sequence, gene expression and protein-protein
interaction data. CF collected protein-GOterm co-mention data. AS
implemented the GOstruct framework, performed the baseline set of
experiments and wrote the first versions of the manuscript. AS and KG
performed the experiments involving gene expression data. KV planned and
directed the NLP experiments, performed data analysis, and wrote or
integrated text for the sections pertaining to NLP experiments. KV and CF
performed all the experiments and analysis of results pertaining to the NLP
portion of the manuscript. ABH supervised all aspects of the work. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was funded by NSF grants DBI-0965616 and DBI-0965768. Chris
Funk is supported by NIH training grant T15 LM00945102. NICTA is funded
by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian
Research Council through the ICT Centre of Excellence program.

Declarations
This article has been published as part of BMC Bioinformatics Volume 14
Supplement 3, 2013: Proceedings of Automated Function Prediction SIG
2011 featuring the CAFA Challenge: Critical Assessment of Function
Annotations. The full contents of the supplement are available online at
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S3.

Author details
1Department of Biomolecular Engineering, University of California Santa Cruz,
Santa Cruz, California 95064, USA. 2Computational Bioscience Program,
University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
3National ICT Australia, Victoria Research Lab, Melbourne 3010, Australia.
4Department of Computer Science, Colorado State University, Fort Collins,
Colorado 80523, USA.

Published: 28 February 2013

References
1. Sokolov A, Ben-Hur A: Hierarchical classification of Gene Ontology terms

using the GOstruct method. Journal of Bioinformatics and Compuational
Biology 2010, 8(2):357-376.

2. Blum A, Mitchell T: Combining labeled and unlabeled data with co-
training. Proceedings of the eleventh annual conference on Computational
learning theory ACM; 1998, 100.

3. Sokolov A, Ben-Hur A: Multi-view prediction of protein function. ACM
Conference on Bioinformatics, Computational Biology and Biomedicine 2011.

4. Gene Ontology Consortium: Gene ontology: tool for the unification of
biology. Nat Genet 2000, , 25: 25-9.

5. Barutcuoglu Z, Schapire R, Troyanskaya O: Hierarchical multi-label
prediction of gene function. Bioinformatics 2006, 22(7):830.

6. Loewenstein Y, Raimondo D, Redfern O, Watson J, Frishman D, Linial M,
Orengo C, Thornton J, Tramontano A: Protein function annotation by

Figure 7 Accuracy plotted against the GO term depth for the cellular component namespace. Presented are average AUC values for three
of the predictors in Table 3. Term depth is computed as the length of the longest path to the root of the ontology. The labels “Cross-sp.”, “Sp.-
Spec.”, and “M. View” are the same as above.

Sokolov et al. BMC Bioinformatics 2013, 14(Suppl 3):S10
http://www.biomedcentral.com/1471-2105/14/S3/S10

Page 12 of 13

http://www.biomedcentral.com/content/supplementary/1471-2105-14-S3-S10-S1.PDF
http://www.biomedcentral.com/bmcbioinformatics/supplements/14/S3
http://www.ncbi.nlm.nih.gov/pubmed/16410319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16410319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19226439?dopt=Abstract


homology-based inference. Genome Biology 2009, 10(2):207 [http://
genomebiology.com/2009/10/2/207].

7. Bork P, Koonin EV: Predicting functions from protein sequences - where
are the bottlenecks? Nature Genetics 1998, 18:313-318.

8. Devos D, Valencia A: Practical limits of function prediction. PROTEINS-NEW
YORK 2000, 41:98-107.

9. Galperin MY, Koonin EV: Sources of systematic error in functional
annotation of genomes: domain rearrangement, non-orthologous gene
displacement, and operon disruption. silico Biology 1998, 1:55-67.

10. Rost B, Liu J, Nair R, Wrzeszczynski K, Ofran Y: Automatic prediction of
protein function. Cellular and Molecular Life Sciences 2003,
60(12):2637-2650.

11. Boeckmann B, Bairoch A, Apweiler R, Blatter M, Estreicher A, Gasteiger E,
Martin M, Michoud K, O’Donovan C, Phan I: The SWISS-PROT protein
knowledgebase and its supplement TrEMBL in 2003. Nucleic acids
research 2003, 31:365.

12. Hamp T, Kassner R, Seemayer S, Vicedo L, Schaefer C, Achten D, Auer F,
Böhm A, Braun T, Hecht M, Heron M, Hönigschmid P, Hopf T, Kaufman S,
Keining M, Krompass D, Landerer C, Mahlich Y, Roos Y, Rost B:
Homology-based inference sets the bar high for protein function
prediction. BMC Bioinformatics 2013, 14(Suppl 3).

13. Hennig S, Groth D, Lehrach H: Automated Gene Ontology annotation for
anonymous sequence data. Nucleic Acids Research 2003, 31(13):3712.

14. Martin D, Berriman M, Barton G: GOtcha: a new method for prediction of
protein function assessed by the annotation of seven genomes. BMC
bioinformatics 2004, 5:178.

15. Zehetner G: OntoBlast function: From sequence similarities directly to
potential functional annotations by ontology terms. Nucleic acids research
2003, 31(13):3799.

16. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q: GeneMANIA: a
real-time multiple associationnetwork integration algorithm for
predicting gene function. Genome Biology 2008, 9(Suppl 1):S4.

17. Guan Y, Myers C, Hess D, Barutcuoglu Z, Caudy A, Troyanskaya O:
Predicting gene function in a hierarchical context with an ensemble of
classifiers. Genome Biology 2008, 9(Suppl 1):S3.

18. Obozinski G, Lanckriet G, Grant C, Jordan M, Noble W: Consistent
probabilistic outputs for protein function prediction. Genome Biology
2008, 9(Suppl 1):S6.

19. Joslyn C, Mniszewski S, Fulmer A, Heaton G: The gene ontology
categorizer. Bioinformatics 2004, 20(suppl 1):i169.

20. Mostafavi S, Morris Q: Using the Gene Ontology hierarchy when
predicting gene function. Conference on Uncertainty in Artificial Intelligence
2009.

21. Peña-Castillo L, Tasan M, Myers C, Lee H, Joshi T, Zhang C, Guan Y,
Leone M, Pagnani A, Kim W: A critical assessment of Mus musculus gene
function prediction using integrated genomic evidence. Genome Biology
2008, 9(Suppl 1):S2.

22. Blaschke C, Leon E, Krallinger M, Valencia A: Evaluation of BioCreAtIvE
assessment of task 2. BMC Bioinformatics 2005, 6(suppl 1):S16.

23. Ray S, Craven M: Learning statistical models for annotating proteins with
function informationusing biomedical text. BMC Bioinformatics 2005,
6(Suppl 1):S18.

24. Rice S, Nenadic G, Stapley B: Mining protein function from text using
term-based support vectormachines. BMC Bioinformatics 2005, 6(Suppl 1):
S22.

25. Wong A, Shatkay H: Protein function prediction using text-based features
extracted from the biomedical literature: the cafa challenge.
BMC Bioinformatics 2013, 14(Suppl 3).

26. Bakir G, Hofmann T, Schölkopf B: Predicting structured data The MIT Press;
2007.

27. Tsochantaridis I, Joachims T, Hofmann T, Altun Y: Large margin methods
for structured and interdependent output variables. Journal of Machine
Learning Research 2006, 6(2):453.

28. Rousu J, Saunders C, Szedmak S, Shawe-Taylor J: Kernel-based learning of
hierarchical multilabel classification models. The Journal of Machine
Learning Research 2006, 7:1601-1626.

29. Taskar B, Chatalbashev V, Koller D, Guestrin C: Learning structured
prediction models: a large margin approach. Twenty Second International
Conference on Machine Learning (ICML05) 2005.

30. Astikainen K, Holm L, Pitkanen E, Szedmak S, Rousu J: Towards structured
output prediction of enzyme function. In BMC proceedings. Volume 2.
BioMed Central Ltd; 2008:S2.

31. Clark W, Radivojac P: Analysis of protein function and its prediction from
amino acid sequence. Proteins: Structure, Function, and Bioinformatics 2011,
79(7):2086-2096.

32. Sokolov A: Accurate prediction of protein function using GOstruct. PhD
thesis Colorado State University; 2011.

33. Rogers M, Ben-Hur A: The use of gene ontology evidence codes in
preventing classifier assessment bias. Bioinformatics 2009, 25(9):1173.

34. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403-410.

35. Horton P, Park K, Obayashi T, Nakai K: Protein subcellular localization
prediction with WoLF PSORT. Proceedings of the 4th annual Asia Pacific
bioinformatics conference APBC06, Taipei, Taiwan Citeseer; 2006, 39-48.

36. Krogh A, Larsson B, Von Heijne G, Sonnhammer E: Predicting
transmembrane protein topology with ahidden markov model:
application to complete genomes. Journal of molecular biology 2001,
305(3):567-580.

37. Bahir I, Linial M: Functional grouping based on signatures in protein
termini. Proteins: Structure, Function, and Bioinformatics 2006,
63(4):996-1004.

38. Coletta A, Pinney J, Solís D, Marsh J, Pettifer S, Attwood T: Low-complexity
regions within protein sequences have position-dependent roles. BMC
systems biology 2010, 4:43.

39. Jensen L, Kuhn M, Stark M, Charon S, Creevey C, Muller J, Doerks T, Julien P,
Roth A, Simonovic M: STRING 8.a-global view on proteins and their
functional interactions in 630 organisms. Nucleic acids research 2009,
37(suppl 1):D412.

40. Greene CS, Troyanskaya OG: PILGRM: an interactive data-driven discovery
platform for expert biologists. Nucleic acids research 2011, 39(Web Server):
W368-W374[http://dx.doi.org/10.1093/nar/gkr440].

41. Verspoor KM, Cohen KB, Lanfranchi A, Warner C, Johnson HL, Roeder C,
Choi JD, Funk C, Malenkiy Y, Eckert M, Xue N Jr, WAB, Bada M, Palmer M,
Hunter LE: A corpus of full-text journal articles is a robust evaluation tool
for revealing differences in performance of biomedical natural language
processing tools. BMC Bioinformatics .

42. Lu Z, Kao H, Wei C, Huang M, Liu J, Kuo C, Hsu C, Tsai R, Dai H, Okazaki N,
Cho H, Gerner M, Solt I, Agarwal S, Liu F, Vishnyakova D, Ruch P,
Romacker M, Rinaldi F, Bhattacharya S, Srinivasan P, Liu H, Torii M, Matos S,
Campos D, Verspoor K, Livingston K, Wilbur W: The gene normalization
task in BioCreative III. BMC Bioinformatics 2011, 12(Suppl 8):S2.

43. Verspoor C, Joslyn C, Papcun G: The gene ontology as a source of lexical
semantic knowledge for a biological natural language processing
application. Proceedings of the SIGIR’03 Workshop on Text Analysis and
Search for Bioinformatics 2003.

44. Couto F, Silva M, Coutinho P: Finding genomic ontology terms in text
using evidence content. BMC Bioinformatics 2005, 6(suppl 1):S21.

45. Lanckriet G, Deng M, Cristianini N, Jordan M, Noble W: Kernel-based data
fusion and its application to function prediction in yeast. In Proceedings
of the Pacific Symposium on Biocomputing. Volume 9. World Scientific
Singapore; 2004:300-311.

doi:10.1186/1471-2105-14-S3-S10
Cite this article as: Sokolov et al.: Combining heterogeneous data
sources for accurate functional annotation of proteins. BMC
Bioinformatics 2013 14(Suppl 3):S10.

Sokolov et al. BMC Bioinformatics 2013, 14(Suppl 3):S10
http://www.biomedcentral.com/1471-2105/14/S3/S10

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/19226439?dopt=Abstract
http://genomebiology.com/2009/10/2/207
http://genomebiology.com/2009/10/2/207
http://www.ncbi.nlm.nih.gov/pubmed/9537411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9537411?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14685688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14685688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12520024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12520024?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824400?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15550167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15550167?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824422?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12824422?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15262796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15262796?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18834493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351742?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19254922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19254922?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11152613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11152613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11152613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20385029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20385029?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940858?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21653547?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21653547?dopt=Abstract
http://dx.doi.org/10.1093/nar/gkr440
http://www.ncbi.nlm.nih.gov/pubmed/22373013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22373013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351748?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16351748?dopt=Abstract

	Abstract
	Introduction
	Background
	Function as a structured label

	Methods
	Multi-view learning
	Training and inference
	Measuring performance
	Evaluation procedure and model selection
	Data
	Cross-species data
	BLAST hits
	Localization signals
	Transmembrane protein predictions
	K-mer composition of the N and C termini
	Low complexity regions

	Species-specific data
	Protein-protein interactions
	Gene expression
	Protein-GO term co-mentions


	Results
	Comparing classification approaches
	Contribution from individual sources of data
	Performance comparison on individual GO terms
	Molecular Function
	Biological Process
	Cellular Component


	Conclusions
	Authors’ contributions
	Competing interests
	Acknowledgements
	Declarations
	Author details
	References

