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Abstract

Background: Elevated sequencing error rates are the most predominant obstacle in single-nucleotide
polymorphism (SNP) detection, which is a major goal in the bulk of current studies using next-generation
sequencing (NGS). Beyond routinely handled generic sources of errors, certain base calling errors relate to specific
sequence patterns. Statistically principled ways to associate sequence patterns with base calling errors have not
been previously described. Extant approaches either incur decisive losses in power, due to relating errors with
individual genomic positions rather than motifs, or do not properly distinguish between motif-induced and
sequence-unspecific sources of errors.

Results: Here, for the first time, we describe a statistically rigorous framework for the discovery of motifs that
induce sequencing errors. We apply our method to several datasets from Illumina GA IIx, HiSeq 2000, and MiSeq
sequencers. We confirm previously known error-causing sequence contexts and report new more specific ones.

Conclusions: Checking for error-inducing motifs should be included into SNP calling pipelines to avoid false positives.
To facilitate filtering of sets of putative SNPs, we provide tracks of error-prone genomic positions (in BED format).

Availability: http://discovering-cse.googlecode.com

Introduction
Next-generation sequencing (NGS) technologies have
tremendously influenced biomedical research. Thanks to
its high speed and low cost, NGS has facilitated projects
[1,2] that are based on tens of terabytes of sequencing
data. Exome sequencing [3], which has been used in
hundreds of studies [4], is even more cost-effective, as it
limits itself to the medically most relevant coding
regions. A major focus in most NGS-based studies are
single-nucleotide polymorphisms (SNPs), many of which
can be associated with phenotypic traits or diseases.
For all NGS platforms, cost efficiency and higher

throughput come at the price of higher sequencing error
rates. Beyond random miscalls, there are also systematic
sources of errors. Since any base-calling error can be mis-
taken for a SNP, correcting for a maximum amount of
(whatever kind of) sequencing errors is vital. In this study,
we focus on a class of such errors that are characteristic

for Illumina sequencing platforms [5]. On Illumina plat-
forms, sequencing proceeds in cycles, where, in a rough
sketch, during the i-th cycle, the i-th base of the fragment
is read. Cycling can be confounded by various factors,
which leads to dephasing: sequencing of partial amounts
of fragments lags behind the overall sequencing procedure.
Indeed, it is routine for Illumina sequencers to correct for
mistakenly calling the (i + 1)-th or (i - 1)-th base in the
i-th cycle. Beyond this, higher error rates close to the end
of reads [6] and an increase in miscalls in GC-rich regions
[7] have been observed. Both of these error sources are
likely to be related to dephasing. In the meantime, they
have become common knowledge and are routinely
handled.
In this work, we focus on a third kind of error, which,

to date, has not yet undergone much principled investi-
gation. In an initial study [8], it was pointed out that
dephasing is also likely to be associated with specific
sequence patterns. For example, large amounts of mis-
calls followed the nucleotide motif GGC and inverted
repeats. It was hypothesized that dephasing may be due
to backfolding of DNA (inverted repeats) and/or

* Correspondence: T.Marschall@cwi.nl
2Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam,
Netherlands
Full list of author information is available at the end of the article

Allhoff et al. BMC Bioinformatics 2013, 14(Suppl 5):S1
http://www.biomedcentral.com/1471-2105/14/S5/S1

© 2013 Allhoff et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://discovering-cse.googlecode.com
mailto:T.Marschall@cwi.nl
http://creativecommons.org/licenses/by/2.0


sequence-specific, preferential inhibition of RNA poly-
merase binding. Both phenomena are plausible and
relate specific sequence patterns with delays in the
cycling procedure. However, no rigorous framework for
detecting those sequence patterns was provided in [8].
To overcome this limitation, Meacham et al. [9] devel-
oped a statistically principled framework, which com-
bines hypothesis testing with logistic regression based
classification. As an example, they report that the most
common error-associated sequence context is GGT. The
integration of (Phred-score based) read error profiles
into the framework yields a gain in statistical power
(recall) for detecting miscalls. However, it also leads to
detection of sequence-unspecific error positions.
In the following, we refer to systematic, truly sequence-

specific errors as context-specific errors (CSEs) and we
refer to error-inducing sequence motifs as contexts. The
method of choice to distinguish a CSE from a true SNP is
to consider strand bias: Since a CSE is elicited by
sequence patterns preceding it, but not following it, the
error should be enriched in reads of one direction, but
absent in reads of the other direction. Figure 1 illustrates
such CSEs and their relationship with strand bias. We
give a formal definition of strand bias in the Preliminaries
section.
Thanks to previous studies [8,9], detecting and filtering

positions with strand bias has become routine. The Gen-
ome Analysis Toolkit (GATK) [10,11], for instance,
annotates all putative SNPs with a p-value derived from a
test for mismatch positions to be independent of read
directionality (Fisher’s exact test). This strategy, however,
requires sufficient read coverage: If the coverage of a

position is low, the statistical power for detecting
whether that position is affected by strand bias is dimin-
ished, as illustrated in Figure 2.
Meacham et al. [9] also report substantial loss of power

when considering statistics on position-wise read direction-
ality, which motivates their above-mentioned integration of
position-wise error profiles. This, however, while attaining
good performance rates, also leads to potential confusion
with sequence-unspecific errors, such as certain batch
errors. In summary, none of the previous approaches pro-
vides a rigorous, statistically consistent framework to reveal
sequence motifs as the very reason for base call errors.
While [8] exclusively focus on CSEs, their approach for
CSE detection is ad-hoc and, in fact, they report on subop-
timal performance rates when distinguishing between true
SNPs and CSEs. The GATK pipeline acts in a statistically
principled manner, but has too little power where read
coverage is low.

Our approach
In this article, we propose a statistically principled proce-
dure for CSE detection at maximum power. Our main
idea is to pool genomic positions according to contexts.
When screening pools for significant strand bias, we
associate base calling errors with contexts, instead of single
positions. This direct association is not only helpful in
detecting relevant CSE-related sequences, but can also
compensate for too low overall coverage, because pooling
keeps statistical power at a high level. The detected motifs
can serve for spotting error-prone positions already before
the read mapping step. Last but not least, the motifs iden-
tified may also yield further insights into sequencing

Figure 1 Aligned reads with strand biased errors. Hypothetical reads of two directions (red: forward; blue: backward) are aligned to a
reference genome shown on top. Nucleotides within reads indicate mismatches to the forward reference. Three genome positions with extreme
strand bias are marked by arrows. CSE-causing motifs described in [8] (GGC, inverted repeats) and [9] (GGT) are highlighted in yellow. Created
with the Integrative Genomics Viewer (IGV) [18].
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technology itself. Note also that our approach is generic
and can be applied to any CSE-prone sequencing
technology.
The article is organized as follows. In the Preliminaries

section, we summarize a common SNP calling approach
together with the statistical foundations to quantify
strand bias. In the Algorithm section, we introduce our
motif-based context discovery algorithm. We report the
discovered sequence contexts in datasets from different
Illumina sequencing platforms in the Results section,
where we also investigate whether known SNPs (from
dbSNP) are related to our discovered contexts. After that,
we present a concluding discussion.

Preliminaries
Large-scale SNP analysis
SNPs are the most common kind of DNA mutation iden-
tified by the 1000 Genomes Project [1,12]. In diploid
organisms, we distinguish between two types of SNPs. A
homozygous SNP differs from a reference genome in both
alleles, while a heterozygous SNP only differs in one allele.
CSEs may be mistaken for heterozygous SNPs (if strand
bias is not taken into account), as on average half of the
reads differ from the reference.
We now briefly review a typical SNP calling pipeline.

Read mappers usually align reads one by one, so they
cannot make use of the information available through
the set of all reads mapping to a locus. Therefore, tools

such as the GATK [10,11] provide a local realignment
algorithm for reads close to insertions and deletions,
avoiding many wrong indel calls. Duplicates, i.e. reads
which are derived from a single DNA fragment, are
removed, since they do not give any additional evidence
for or against a mutation and should not be considered
independent in downstream analyses. The nucleotide
(phred) quality scores given by the NGS device are reca-
librated based on empirical probabilities. None of these
steps is intended to detect or correct context-specific
errors. We also remark that more accurate base-calling
algorithms do not prevent CSEs [9].
Each (sufficiently covered) genome position is tested

for a SNP as follows. A pileup is produced (i.e., a list of
all reads covering the position), from which a 2 × 2 con-
tingency table is derived, containing the number of
matches/mismatches of forward/backward reads at that
position (see Table 1). The GATK avoids wrong SNP
calls due to CSEs by testing each putative SNP position
for strand bias using Fisher’s exact test (see the follow-
ing section). The plausibility of a true SNP decreases
with increasing strand bias. The coverage at a position
determines the statistical power to detect significant
strand bias and, thus, the above procedure can fail to
detect strand bias in regions of low coverage.

Fisher’s exact test
Fisher’s exact test computes a p-value from a 2 × 2 con-
tingency table (Table 1) to decide whether the two data
characteristics “read direction” and “mismatch fraction”
are independent, which is equivalent to testing whether
the rows have the same distribution. If this is the case,
then there is no evidence for strand bias.
To calculate the p-value of Table 1, Fisher’s test

assumes that all marginals are fixed and given. We write
M = (f , k, m, s, n), where n = f + k = m + s to denote
the marginal information. Given M and one entry
(without loss of generality, we choose a), we can com-
pute all further table’s entries, and we write (a|M) for
such a representation of Table 1. The null hypothesis
probability PrH0 (a|M) of an observed table (a|M) is

PrH0 (a|M) =

(
a + b
a

)
·

(
c + d
c

)
(
a + b + c + d

a + c

) .

Figure 2 Statistical power analysis. Statistical power (probability,
y-axis) to detect significant strand bias at a human exome position with
Fisher’s exact test, depending on read coverage (x-axis) and on assumed
position-specific error rate (color) higher than the assumend background
error rate of 0.01. Example: Even at an extremely high error rate of 0.5
(cyan), even a coverage of 100 grants only a discovery chance of 40%.
Fluctuations are caused by finite sampling size for simulations.

Table 1 2 × 2 contingency table

Match Mismatch Total

Forward a b f

Backward c d k

Total m s n

2 × 2 contingency table; a, b, c, d: numbers of reads; f, k, m, s: marginals; n =
a + b + c + d = f + k = m + s.
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The p-value of (a|M) is the probability of observing
this or a more extreme table under the null hypothesis.
A more extreme table means a table with a lower prob-
ability than the observed one.

p-value(a|M) =
∑

a′∈E(a,M)

PrH0 (a
′|M),

where the “extreme” values of a’ are from the
set E(a,M) := {a′ : PrH0 (a

′|M) ≤ PrH0 (a|M)}. If the
p-value is sufficiently low, we reject the null hypothesis,
meaning we assume that the two rows were not sampled
from the same distribution. The quantity - log10
(p-value(a|M)) can be considered as a quantitative
measure of strand bias and is called the strand bias
score.
Fisher’s exact test is computationally expensive for

tables with large entries, but can be replaced by a c2

test in this case [13].

Multiple testing
When many statistical tests are performed, the expected
number of false positives can also be large. There are
many strategies to deal with such situations of multiple
hypotheses testing. One popular approach, for instance, is
to control the false discovery rate (FDR) as advocated by
Benjamini and Hochberg [14]. Another option is to con-
trol the family-wise error rate (FWER) by means of a
Bonferroni correction, that is, controlling the probability
of making at least one type I error among all tested
hypotheses, which is more conservative than controlling
the FDR (at the same level). In our case, p-values of sig-
nificant motifs are very low due to the large amounts of
available NGS data and, in particular, due to our pooling
strategy. Therefore, we can opt for the more conservative
Bonferroni correction without losing many significant
motifs.

Power considerations
We analyse the power of Fisher’s exact test by a sam-
pling procedure, resulting in Figure 2.
To this end, we pick an error probability e (color-

coded in Figure 2, between 0.1 and 0.9) and a coverage
n (x-axis in Figure 2, between 2 and 200 with a step size
of 2) for a simulation. We assume that there is a con-
stant low background error probability unrelated to
CSEs, here set to ε = 0.01.
We draw n/2 samples to obtain the “forward” row of

Table 1 using a mismatch probability of e; that is, on aver-
age, we obtain a = (1 - e)n/2 and b = en/2. We draw
further n/2 samples (for a total coverage of n) to obtain
the “backward” row of the table using a mismatch prob-
ability of ε; i.e., on average, c = (1 - ε)n/2 and d = εn/2.
This restricts the sampled tables to those with equal row
sums, which is sufficient for our illustration.

We perform Fisher’s exact test and record whether we
reject the null hypothesis (as we should, since e ≫ ε) at
a = 0.05/(5 · 107), a Bonferroni-corrected test level for
the human exome. We repeat the sampling experiment
T = 3000 times. The empirical power is the fraction of
times that we reject the null hypothesis out of these T
repetitions.
Figure 2 clearly shows that at low coverages, it is

almost impossible to detect significant strand bias. The
power curves are improved by choosing less conserva-
tive thresholds, but in the end, only high coverage guar-
antees statistical power.

Algorithm
Motif space
Given a set of reads aligned to a reference genome, our
aim is to discover motifs that cause sequencing errors. We
model motifs as generalized strings, that is, sequences of
sets of characters allowed at each position. Such character
sets are usually abbreviated by IUPAC characters, e.g. N
stands for aNy character and thus corresponds to the set
{A, C, G, T}. The motif GNT, for example, matches the
strings GAT, GCT, GGT, and GTT. To limit the number
of hypotheses to test, we only allow the wildcard N (and
no other IUPAC wildcards). We assume that the motif
length q and the maximal number n of allowed Ns are
given as input parameters. Let S(q,n) be the resulting
motif space. Thus, the size of S(q,n) is

S(q,n) := |S(q,n)| =
n∑
i=0

(
q
i

)
· 4q−i,

the i-th term of the sum giving the number of motifs
with i Ns. Conceptually, we want to perform one strand
bias test as described in the Preliminaries section for
each motif in the motif space S(q,n), omitting motifs
that do not occur in the given reference genome.

Contingency table construction
For a given motif m, we locate all occurrences of m in the
reference genome and its reverse complement. From
pileups, we costruct an aggregated contingency table,
whose entries we name a, b, c, d as in Table 1. This is in
principle straightforward, but some care is required to
keep track of the two genome strands and both read
directions. The pileup position (i.e., the position of inter-
est) is defined to be the last position of the motif. This is
not a severe restriction when a sufficient number of wild-
cards is allowed.
Let us call a genomic interval where the motif m

matches the forward (resp. reverse complementary)
reference an F-interval (resp. R-interval), and the last
(resp. first) position of an F-interval (resp. R-interval) an
F-position (resp. R-position). Genomic positions i always
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refer to the forward reference. Further, let us call a read
that has been mapped to the forward (resp. reverse
complementary) reference an F-read (resp. R-read).
Figure 3 provides an illustration.
A match occurs at position i if either the read is an

F-read and the nucleotide of the forward reference at
position i equals the aligned read nucleotide, or if the
read is an R-read and the forward reference at position i
equals the complement of the aligned read nucleotide. In
all other cases, a mismatch occurs. As a convention, in a
pileup, the nucleotides of R-reads have been already
complemented, so a pileup column can always be com-
pared to the forward reference. At the single R-position
in Figure 3, while the pileup indicates an A ® G mis-
match in many of the R-reads, this is in fact technically
a T ® C mismatch because of this convention. All
three positions shown in this hypothetical example
would therefore consistently indicate strand bias and
hence a CSE (more precisely, a consistent T ® C mis-
call after CCAGAC).
We compute the motif’s contingency table entries as

follows:

• Initialize a = b = c = d = 0.
• For every F-position of motif m, we obtain a pileup,
and we increment a by the number of matching
F-reads, b by the number of mismatching F-reads, c by
the number of matching R-reads, and d by the number
of mismatching R-reads in each pileup.
• For every R-position of motif m, we obtain a pileup,
and we increment a by the number of matching
R-reads, b by the number of mismatching R-reads,

c by the number of matching F-reads, and d by the
number of mismatching F-reads in each pileup.

Note that in some cases, a genome position may be
both an F-position and an R-position, such as for the
motif GGN and the reference ...GGACC..., where this
occurs at the A.

Context discovery algorithm
We now describe our algorithm to discover contexts
inducing CSEs. The input to the algorithm consists of a
reference genome, a collection of aligned reads, a motif
length q, a maximal wildcard number n, an FWER
threshold a >0, a background error rate threshold ε >0
and an error rate difference (ERD) cutoff δ >0. Typical
values are q ≤ 10, n ≤ q/2, a = 0.05, ε = 0.03, δ = 0.05.
We first compute the Bonferroni threshold

T := α/|S(q, n)|. By a single linear pass through the
reference genome (computing its reverse complement
locally on the fly), we incrementally compute the contin-
gency tables of each q-gram (a DNA sequence of length
q without wildcards). All contingency tables are stored
in a hash map; the q-gram sequence is mapped to its
contingency table. For each motif m ∈ S(q, n), we now
obtain the contingency table of m by adding the tables
of all q-grams that match m. We apply Fisher’s test and
compute the strand bias p-value and score and deem all
motifs with a p-value lower than or equal to the Bonfer-
roni threshold T significant.
For each significant motif, we compute the forward

error rate FER = b/(a + b) and the reverse error rate
RER = d/(c + d) in terms of the contingency table

Figure 3 Contingency table construction for the motif CCAGACT. Contingency table construction for the motif CCAGACT. The forward
reference (5’ to 3’) is displayed at the top; below, its complement is shown (3’ to 5’). F-reads are indicated as red arrows, R-reads as blue arrows.
F-intervals are marked in the forward reference, R-intervals are marked in the reverse complementary reference. Two F-positions (last position in
an F-interval) and one R-position (first position in an R-interval) are indicated by vertical boxes. The corresponding individual contingency tables
and the resulting joint contingency for the motif CCAGACT are shown below the alignments. Note that F-positions and R-positions both
contribute to the motif’s contingency table, as described in the Algorithm section.
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(Table 1). We remove motifs with RER ≥ ε (i.e., above
the typical background error rate threshold). For the
remaining motifs, we compute the error rate difference
ERD = FER - RER. We remove those motifs with too
small ERD to be of interest, i.e., those with ERD < δ.
We sort the remaining motifs by decreasing ERD and

report them with their properties. We opted for sorting the
motifs by ERD (instead of by strand bias score), because a
higher score does not imply that the motif is more likely to
cause sequencing errors. A higher score (i.e., lower
p-value) may simply reflect that the motif occurs more
often in the genome or is covered by more reads, which
grants higher statistical power and lower p-values.
Note that some of the best motifs (with highest ERD)

may be similar to each other and do not provide funda-
mentally new information. We choose to report all
motifs initially, as the resulting list may be postpro-
cessed by comparing motifs depending on the situation.

Computational results
Datasets and parameters
We analyse four datsets from three different Illumina
platforms: GAIIx, MiSeq and HiSeq2000. Table 2 gives
details, and from now on we refer to the datasets by the
names given in that table. Datasets were chosen accord-
ing to the following considerations. To be able to relate
our results to those of Nakamura et al. [8], we include
their dataset (GAIIx-bs), which consists of reads from
Bacillus subtilis sequenced on the GAIIx platform. We
additionally analyse reads from the human genome due
to its prevalence in many studies. First, we include a
GAIIx dataset (GAIIx-hg) from the 1000 Genomes pro-
ject [1], from which we consider chromosome 1. For the
newer HiSeq platform, we include another 1000 Gen-
omes project dataset (HiSeq-hg). MiSeq is a benchtop
platform allowing for fast and easy sequencing of smal-
ler datasets, making it interesting also for validation of
SNP calls. Therefore, the question whether it is prone to
the same CSEs as GAIIx and HiSeq is of great interest.
As we presently do not have any MiSeq datasets on the
human genome, we include Escherichia coli reads pro-
vided by Illumina (MiSeq-ec).
We expect the discovered motifs to be platform-

dependent rather than genome-dependent and, thus, to

also cause CSEs when sequencing another genome. The
power to detect CSE-causing motifs depends on the
number of their occurrences in the used genomes and
we might thus miss motifs for MiSeq that are not fre-
quent in E. coli.
We use BWA version 0.5.9-r18-dev with standard para-

meters for read mapping [15]. As described in the Preli-
minaries section, SNP discovery pipelines spend
considerable computational effort on cleaning up the
initial mapping by re-aligning reads around gaps, remov-
ing duplicates, and recalibrating quality values. We exam-
ine how strongly these steps influence the discovered
contexts. As we report in section “Effects of postproces-
sing”, we find that they do not strongly influence the
results from a qualitative point of view. Therefore, the
results reported in the following section are based on read
mapping only, without additional postprocessing steps.
Our context discovery algorithm is run with different

parameter settings on the motif length q and number of
wildcards n; to assess a broad range of possible motifs we
analyse all datasets with the two combinations (q, n) =
(8, 4) and (q, n) = (4, 1). The setting (4, 1) was chosen to
compare our findings with previously reported motifs
which are frequently of type (3, 0), while the setting
(8, 4) aims at examining whether there exist more speci-
fic motifs that cause CSEs. These two resulting motif
spaces are quite different in size, |S(4, 1)| = 512 and
|S(8, 4)| = 386560, and thus resemble different trade-
offs between flexibility and excessive multiple testing. We
also applied our algorithm using (q, n) = (10, 2). While
the corresponding results did not undergo a thorough
analysis, we display some of the highlights below and
provide the full lists as additional files 1, 2, 3, 4.

Discovered sequence contexts
We ran the algorithm described above for each dataset
and parameter setting detailed in the previous section (8
combinations in total). To control for multiple testing,
we used a FWER cutoff of a = 0.05. Only motifs with a
“normal” RER were retained during filtering, employing
a RER cutoff of ε = 0.03. For motif space (8,4), we set
δ = 0.1 to only retain motifs with an ERD of at least 10
percent. For the shorter motifs (4,1), this setting yielded
no motifs after filtering; so we applied a less stringent

Table 2 Overview of datsets

Name Organism Reads Accession Genome Accession Ref.

GAIIx-bs B. subtilis str. 168 DRA DRX000504 NCBI NC_000964.3 [8]

GAIIx-hg Human chr. 1 HG00131 GRCh37 [1]

MiSeq-ec E. coli DH10B Illumina (*) NCBI NC_010473.1

HiSeq-hg Human chr. 1 HG00108 GRCh37 [1]

Overview of Datsets. Names refer to Illumina platform and organism. DRA: DDBJ sequence read archive.

Illumina reads (*): http://www.illumina.com/systems/miseq/scientific_data.ilmn.
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filtering at δ = 0.01. This indicates that with longer, i.e.
more specific, motifs we are indeed able to discover
contexts causing higher error rate differences than
shorter motifs that have exclusively been considered in
the literature until now. All filter cutoffs and the num-
bers of motifs after filtering are summarized in Table 3.
The discovered contexts are given in Table 4, together

with the respective contingency table entries, strand bias
score, forward/reverse error rate, and error rate difference.
For (4,1), the table contains all motifs meeting our filter
criteria. For the sake of clarity, it only includes a selection
of motifs from the (8,4) category, while the full set is pro-
vided as additional files 5, 6, 7, 8. Not suprisingly, many
motifs are similar to each other as we did not take any
measure to avoid redundancy. Instead, we decided to give
the full set as additional files and try to give a representa-
tive selection in Table 4. In the following, we discuss our
findings separately for (4, 1) and (8, 4).
Motif space (4,1)
We included motif space (4,1) to compare our results to
previous findings. As discussed in the introduction, the
3-grams GGC and GGT have been reported to be linked
to CSEs. Table 4 shows that we indeed find strong evi-
dence for a significantly biased error distribution at GGT
sites for datasets GAIIx-bs, HiSeq-hg, and MiSeq-ec.
However, the observed difference in error rates at such
sites is quite low, ranging from 1.2 to 2.0 percent, and
therefore these motifs alone will most likely not disrupt
SNP calling. The motif GGC does not appear in the
(4,1)-results. By looking at the (8,4)-results, we see that
GGC is associated to CSEs, but usually appears 4 base
pairs before the first error site. Our analysis also reveals
the motif CGGG that appears in the result list for HiSeq-
hg and MiSeq-ec.
Motif space (8,4)
The observed ERD values for (8,4)-motifs are consistently
larger than for (4,1)-motifs by approximately one order of
magnitude. This shows that our algorithm is able to dis-
cover longer, more specific and informative motifs. For
many motifs, especially for the HiSeq and MiSeq plat-
forms, ERD is around 20 percent. Motif NGGCGGGT,
for instance, leads to forward errors rates of 20.7 percent
on HiSeq instruments, while the reverse error rate is 0.7,
which is a normal value for this platform. This particular
motif was discovered in all four datasets. In general, the
found motifs were quite consistent across platforms and

datasets, showing that, on the one hand, Illumina sequen-
cers share common characteristics and, on the other
hand, that our algorithm robustly detects CSE-causing
motifs. Such specific high-ERD CSE-causing motifs have
never been reported in the literature before.
Remark on Motif Space (10,2)
While we do not analyse motifs from (10,2) in detail
here, it is notable that some of such motifs discovered
in the HiSeq-hg dataset have a FER larger than 0.5,
implying that base calls at corresponding positions are
more likely to be erroneous than to be correct. These
motifs may serve as points of entrance for examining
machine protocols. See additional files 1, 2, 3, 4 for full
lists of all (10,2)-motifs for all four datasets.

Effects of postprocessing
To assess the effects of postprocessing steps after read
mapping, as usually done in SNP calling pipelines such as
that of the GATK, on the contexts we discover, we here
report results on dataset GAIIx-bs. After read mapping,
we apply the local realignment step of GATK version
v2.2-15-g4828906 and delete duplicates with samtools
[16]. For (4, 1), exactly the same motifs as reported in
Table 4 were discovered when using this additional align-
ment postprocessing. For (8, 4), we discovered 74 motifs
with postprocessing (the top 10 of which are shown in
Table 5) instead of only 8 motifs without it (see addi-
tional files 5 and 9). The duplicate removal step appears
to have a significant effect on the FER and hence on the
ERD, such that many more motifs reach the treshold of
δ = 10%. The 74 motifs appear closely related to each
other and to those 8 discovered without postprocessing,
so the results are, from a qualitative standpoint, compar-
able. To summarize, postprocessing does neither prevent
CSEs (and does not intend to) nor does it fundamentally
change the discovered contexts.

Effects on SNP calling
Today, detecting SNPs is routinely done and millions of
SNPs have been collected in databases like db-SNP [17].
In the following, we discuss to what extend SNP calling is
influenced by error-causing motifs. To identify known
SNPs that might be difficult to call using Illumina technol-
ogy, we pool all (8,4)-motifs discovered in the four data-
sets. The resulting 91 motifs yield 6 622 827 putatively
error-prone positions on the human genome (0.21% of all

Table 3 Overview of filter settings

Search space Thresholds Number of motifs per dataset

FWER RER ERD GAIIx-bs GAIIx-hg MiSeq-ec HiSeq-hg

(4,1) a = 0.05 ε = 0.03 δ = 0.01 4 0 6 5

(8,4) a = 0.05 ε = 0.03 δ = 0.1 8 13 26 74

Overview of filter settings and number of remaining significant motifs after filtering per dataset and per search space.
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positions). Of these, 82 684 are co-located with SNPs in
dbSNP build 137; that means, 0.29% of all 28 440 783
SNPs in the database lie at error-prone positions.
Although the fraction is small, an absolute number of 82
684 SNPs that are difficult to genotype using Illumina
devices is still remarkable. The difference between 0.21%
of all genomic positions and 0.29% of all SNPs is small,
but it is statistically significant (p < 10-15 according to a

c2-test). However, whether this difference is due to false
positives caused by CSEs or due to other effects remains
open.
As a next step, we called SNPs in the two human

datasets GAIIx-hg and HiSeq-hg to test whether they
are enriched for CSE-prone positions. For SNP calling,
we used the GATK’s UnifiedGenotyper with default
parameters. Datasets GAIIx-hg and HiSeq-hg yielded

Table 4 A selection of CSE-causing motifs

(q, n) Context Rk. Occ. FM
= a

RM
= c

FMM
= b

RMM
= d

- log(p) FER
[%]

RER
[%]

ERD
[%]

Dataset: GAIIx-bs

(8, 4) NGGCGGGT 3 264 5857 6867 859 40 180.0 12.8 0.6 12.2

CGGNGGGT 4 136 3366 3930 477 22 121.2 12.4 0.6 11.9

GGCGGGGT 5 62 1318 1624 180 5 52.0 12.0 0.3 11.7

ACGGCGGG 6 84 1690 2065 241 17 58.3 12.5 0.8 11.7

(4, 1) GGGT 1 13478 374933 384732 10002 2643 ∞ 2.6 0.7 1.9

CGGT 2 25144 716801 730328 14765 5071 ∞ 2.0 0.7 1.3

AGGT 3 20146 581562 584578 12086 4237 ∞ 2.0 0.7 1.3

NGGT 4 79810 2272988 2317196 46304 16224 ∞ 2.0 0.7 1.3

Dataset: GAIIx-hg

(8, 4) CGGCGGGT 1 532 731 1330 169 7 60.7 18.8 0.5 18.3

TGGCGGGT 2 3232 5715 6410 1128 37 229.3 16.5 0.6 15.9

CGGCAGGT 3 1396 2788 3522 409 19 110.8 12.8 0.5 12.3

NGGCGGGT 10 13712 24040 30886 3029 158 ∞ 11.2 0.5 10.7

(4, 1) No motifs passed filter

Dataset: HiSeq-hg

(8, 4) TGGCGGGT 1 3232 3803 5547 1475 53 ∞ 27.9 0.9 27.0

CGGCGGGT 2 532 418 777 152 4 56.1 26.7 0.5 26.2

CGGCAGGT 4 1396 1935 2820 567 23 167.5 22.7 0.8 21.9

NGGCGGGT 10 13712 17251 26924 4432 177 ∞ 20.4 0.7 19.8

GTGGCTTG 17 7568 12047 18583 2526 67 ∞ 17.3 0.4 17.0

(4, 1) GGGT 1 1366400 3208669 3340323 82048 15104 ∞ 2.5 0.5 2.0

AGGT 2 1836218 4530889 4740634 87166 20448 ∞ 1.9 0.4 1.5

NGGT 3 5261516 13265123 13614878 239748 57694 ∞ 1.8 0.4 1.4

CGGG 4 460830 876560 861233 16336 4710 ∞ 1.8 0.5 1.3

CGGT 5 232662 516547 521942 9306 2544 ∞ 1.8 0.5 1.3

Dataset: MiSeq-ec

(8, 4) GGCGGGGT 1 102 16780 24956 5809 88 ∞ 25.7 0.4 25.4

GGCGCCTC 4 4 349 506 84 1 28.7 19.4 0.2 19.2

NGGCGGGT 5 762 122922 171199 28401 879 ∞ 18.8 0.5 18.3

CGGNGGGT 11 444 74979 95226 12415 568 ∞ 14.2 0.6 13.6

CGGCGGGN 12 942 158741 205881 25090 1187 ∞ 13.6 0.6 13.1

(4, 1) GGGT 1 24802 5324301 5495475 145090 24701 ∞ 2.7 0.4 2.2

AGGT 2 27414 5979767 6104684 121330 29230 ∞ 2.0 0.5 1.5

NGGT 3 146116 32813986 33422161 604790 162298 ∞ 1.8 0.5 1.3

CGGT 4 49530 10934765 11081037 184200 54762 ∞ 1.7 0.5 1.2

GGGN 5 78504 20903313 21323544 338589 114360 ∞ 1.6 0.5 1.1

CGGG 6 32740 7089342 7227334 115433 42523 ∞ 1.6 0.6 1.0

A selection of CSE-causing motifs for each combination of dataset and parameters. For each motif, we give the rank (Rk.) in the original list sorted by ERD;
number of occurrences in the respective genome (Occ.); the contingency table entries FM, RM, FMM, and RMM; the forward error rate FER = FMM/(FM + FMM);
the reverse error rate RER = RMM/(RM + RMM); and the error rate difference ERD = FER - RER. If a motif’s p-value cannot be numerically distinguished from zero
within double precision, we report a - log(p) score of ∞.

Allhoff et al. BMC Bioinformatics 2013, 14(Suppl 5):S1
http://www.biomedcentral.com/1471-2105/14/S5/S1

Page 8 of 10



2 525 553 and 2 609 149 SNPs, respectively; out of
these, 9 126 (0.36%) and 14 844 (0.57%) were found at
CSE-prone positions. Thus, the fractions of SNPs at
such positions are clearly higher than the corresponding
fraction in dbSNP, which might indicate that the set of
called SNPs does indeed contain false positives that are
due to CSEs.

Discussion and conclusion
We have presented an algorithm to identify sequence con-
texts that cause context-specific sequencing errors (CSEs).
In contrast to previous approaches, which detect positions
with strand bias and then report on common sequence
motifs at the identified positions, we start from the motifs
and aggregate information at matching positions, which
grants much higher statistical power. Our approach is
thus able to integrate many weak but consistent positional
signals. Allowing wildcards within the sequence motifs
grants additional flexibility, e.g. the motifs with (n, q) =
(4, 1) will also discover contexts of length 3.
Our approach is the first motif-based CSE discovery

method. We confirm previously reported error-prone
sequence contexts [8,9] but also find much more informa-
tive motifs with an ERD higher by one order of magnitude.
This allows to exactly pinpoint problematic positions,
while the previously known short contexts GGT and GGC
do not reliably predict strongly CSE-prone positions. The
approach is also robust in the sense that extracted motifs
were closely related across datasets.
The practical significance of error context discovery lies

in the fact that an increasing number of exome sequencing
studies to identify genetic causes of Medelian diseases and
genome-wide association studies depend on reliable SNP
calling. Our work can be integrated as an additional step
into SNP calling pipelines, down-weighting proposed
SNPs at known error contexts for the platform, indepen-
dently of the coverage and strand bias in the particular

dataset under investigation. To facilitate filtering of SNPs,
we provide platform-specific annotation tracks (in BED
format) with positions in the human genome matching
discovered contexts. Our implementation is available
under the terms of the GNU General Public License.
Annotation tracks and source code can be obtained from
the URL given in the Abstract.
We plan to systematically compare discovered con-

texts on more datasets from different organisms,
sequenced on the same platform and with more para-
meter combinations (q, n) and with additional IUPAC
wildcards (beyond N) to quantify the robustness of
motif-based approaches comprehensively. We will also
extend our algorithm to contexts on both sides of error-
prone positions, with a special emphasis on inverted
repeats. Furthermore, we plan to provide error contexts
and annotation tracks for other (non-Illumina) sequen-
cing platforms.

Additional material

Additional File 1: Full list of (10,2)-motifs for dataset GAIIx-bs.
All (10,2)-motifs found in dataset GAIIx-bs (after filtering).

Additional File 2: Full list of (10,2)-motifs for dataset GAIIx-hg.
All (10,2)-motifs found in dataset GAIIx-hg (after filtering).

Additional File 3: Full list of (10,2)-motifs for dataset MiSeq-ec.
All (10,2)-motifs found in dataset MiSeq-ec (after filtering).

Additional File 4: Full list of (10,2)-motifs for dataset HiSeq-hg.
All (10,2)-motifs found in dataset HiSeq-hg (after filtering).

Additional File 5: Full list of (8,4)-motifs for dataset GAIIx-bs.
All (8,4)-motifs found in dataset GAIIx-bs (after filtering).

Additional File 6: Full list of (8,4)-motifs for dataset GAIIx-hg.
All (8,4)-motifs found in dataset GAIIx-hg (after filtering).

Additional File 7: Full list of (8,4)-motifs for dataset MiSeq-ec.
All (8,4)-motifs found in dataset MiSeq-ec (after filtering).

Additional File 8: Full list of (8,4)-motifs for dataset HiSeq-hg.
All (8,4)-motifs found in dataset HiSeq-hg (after filtering).

Additional File 9: Full list of (8,4)-motifs for dataset GAIIx-bs after
alignment postprocessing. All (8,4)-motifs found in dataset GAIIx-bs
with alignment postprocessing.
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Table 5 Top 10 discovered motifs after alignment
postprocessing

Rank Context FER
[%]

RER
[%]

ERD
[%]

1 ACGGCGGT 26.1 0.5 25.6

2 GTGGCGGT 25.1 0.7 24.4

3 GCGGCGGT 22.9 0.7 22.2

4 GTGGCTGT 22.4 0.6 21.8

5 ATGGCGGT 21.2 1.0 20.3

6 NCGGCGGT 20.0 0.7 19.3

7 GTGGCTTG 20.2 1.2 19.0

8 GNGGCGGT 19.2 0.7 18.5

9 GCGGCTGT 18.8 0.7 18.1

10 ACGGCTGT 18.6 0.8 17.7

Top 10 (based on ERD) contexts on dataset GAIIx-bs with (q, n) = (8, 4) after
GATK postprocessing and duplicate removal.
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