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Abstract

Background: DNA methylation profiling reveals important differentially methylated regions (DMRs) of the genome
that are altered during development or that are perturbed by disease. To date, few programs exist for regional
analysis of enriched or whole-genome bisulfate conversion sequencing data, even though such data are
increasingly common. Here, we describe an open-source, optimized method for determining empirically based
DMRs (eDMR) from high-throughput sequence data that is applicable to enriched whole-genome methylation
profiling datasets, as well as other globally enriched epigenetic modification data.

Results: Here we show that our bimodal distribution model and weighted cost function for optimized regional
methylation analysis provides accurate boundaries of regions harboring significant epigenetic modifications. Our
algorithm takes the spatial distribution of CpGs into account for the enrichment assay, allowing for optimization of
the definition of empirical regions for differential methylation. Combined with the dependent adjustment for
regional p-value combination and DMR annotation, we provide a method that may be applied to a variety of
datasets for rapid DMR analysis. Our method classifies both the directionality of DMRs and their genome-wide
distribution, and we have observed that shows clinical relevance through correct stratification of two Acute
Myeloid Leukemia (AML) tumor sub-types.

Conclusions: Our weighted optimization algorithm eDMR for calling DMRs extends an established DMR R pipeline
(methylKit) and provides a needed resource in epigenomics. Our method enables an accurate and scalable way
of finding DMRs in high-throughput methylation sequencing experiments. eDMR is available for download at
http://code.google.com/p/edmr/.

Background
Advanced, high-throughput sequencing technologies allow
for fast, single-base resolution scans of entire epigenome.
Large-scale sequencing projects are producing these data-
sets for cancer research, and these epigenetic marks pro-
vide important information about cellular phenotypes in
normal and diseased tissues [1,2]. DNA methylation
pattern changes are pivotal marks needed in cells’ differen-
tiation during tissue and lineage specification, and, as
such, contribute to the complexity of organisms’ cellular

sub-types [3,4]. Furthermore, aberrant DNA methylation
not only defines malignant subtypes of disease [5,6], but
also contributes to malignant disease pathophysiology and
can be used in clinical outcome predictions [7].
Bisulfite sequencing of genomic DNA is a widely

applied method for methylation measurement. Whole-
genome bisulfite sequencing is a genome-wide technique
for the measurement of DNA methylation [8]. However,
other enrichment DNA methylation sequencing methods
have been developed to achieve cost-effective coverage of
variable regions of DNA methylation. These methods
often utilize reduced representation of bisulfite sequen-
cing by focusing on restriction sites, including methods
such as Reduced Representation Bisulfite sequencing
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(RRBS) [9-11], Enhanced RRBS (ERRBS) [12], multi-
plexed RRBS [13], methylation-sensitive restriction
enzyme sequencing [14], as well as other enrichment
approaches, including methylated DNA immunoprecipi-
tation sequencing [15] and methylated DNA binding
domain sequencing [16].
Previously, epigenome analysis tools such as methylKit

[17] have focused on comprehensive DNA methylation
analysis of single base sites, in order to find differentially
methylated cytosines (DMCs). However, biological regula-
tion by methylation can be mediated by a single CpG or
by a group of CpGs in close proximity to each other.
Therefore, a combination of baseresolution analysis and
regional analysis of DNA methylation may offer a more
comprehensive and systematic view of bisulfate sequen-
cing data. This increasing demand for tools to find differ-
entially methylated regions (DMRs) increases as more data
emerge from both large-scale epigenomics consortiums
and from individual labs. To address this need, we have
created eDMR, which exists as stand-alone code for use
with other tools and packages. It can also be used as an
expansion of the methylKit R package for comprehensive
DMR analysis. eDMR can directly take objects from
methylKit or data frames with differential methylation
information, or any DMC result in bed file format, and
perform regional optimization calling and DMR statistical
analysis and filtering. Furthermore, eDMR offers annota-
tion functions that map DMRs to gene body features (cod-
ing sequences, introns, promoters, 5’ untranslated regions
(UTR), and 3’UTR), CpG island and shore locations, as
well as the use of any other user-supplied coordinate files
for annotation. Here, we describe an example of using
eDMR with DNA methylation data from the ERRBS
protocol.

Methods
Data source
Ten acute myeloid leukemia (AML) de-identified patient
samples enriched for myeloblast cells and five normal
bone marrow (NBM) samples (purchased from AllCells)
were used in the experiments. Institutional review board
approval was obtained at Weill Cornell Medical Center
and at the Royal Adelaide Hospital and this study was
performed in accordance with the Helsinki protocols.
DNA was extracted using standard techniques and
ERRBS library preparations were performed as previously
described [12]. Libraries were sequenced on a HiSeq2000
Illumina machine using 75 bp single-end reads to an
average depth of 79X per covered CpG. A previously
published dataset of two AML subtypes (IDH mutants
and MLL rearranged) and two CD34+ normal bone mar-
row controls [12] (GEO accession number GSE37454)
was also used in the analysis.

Computational tools
R version 2.15.2 [18] and methylKit 0.5.6 [17] were used
for the analysis. eDMR depends on Bioconductor packages
[19], including methylKit 0.5.6 [17], GenomicRanges
1.8.13, data.table 1.8.6, mixtools [20], doMC 1.2.5, ggplot2
0.9.3 [21].

Data preprocessing
We performed bisulfite treated read alignment to hg19
genome and methylation calls as previously described
[12]. Five NBM samples served as controls for the AML
samples. The total coverage for each CpG in the controls
is the sum coverage from 5 NBM samples. The methyla-
tion level for each CpG in the control is the mean of all
NBM samples. We required the coverage of each CpG
site be equal or greater than 10X in at least 3 NBM sam-
ples for control. For AML samples, the coverage for each
CpG site for each sample is 10X. We used fisher exact
test from methylKit [17] to compare AML samples with
control.

eDMR algorithm
Our eDMR algorithm contains five distinct components,
which are described below (Also see Figure 1 for a work-
flow of the eDMR analysis). Our definition of a DNA
methylated region is a cluster of CpGs in close spatial
proximity. If two adjacent CpGs are separated by more
than a certain (algorithm-specified) genomic distance, we
define them as coming from different methylated regions.
If two CpGs are within a specified genomic distance from
each other, then we define them to be within the same
region. The eDMR algorithm aims to optimize the thresh-
old for determining DNA methylation regions and to per-
form statistical significance testing.
1. Empirical regions boundary determination
We used a bimodal normal distribution to identify the
optimum cutoff for calling a gap between two DMRs. First,
we examined the distribution of the distance between adja-
cent CpGs (with a coverage >= 10X) across the genome
from Sample 1 of our AML dataset. After a log2 transfor-
mation, we observed a bimodal distribution with a spike at
log2 distance = 0 (Additional file 1: Figure S1). This spike
represents the reverse complement of CpGs (GpCs) on the
other strand, which has a distance of 1 bp (log2 (1) = 0).
Disregarding the strand of CpGs, the base pair distance is
counted as 1 bp (log2 (1) = 0). Because we expect the
threshold of gap between adjacent methylated regions will
be much greater than 1 bp, the frequency for this portion
does not contribute to our decision process for DMR
determination. After removing the first spike at 0 log2 dis-
tance, we then used this dataset with the application of the
expectation maximization (EM) algorithm to fit to a bimo-
dal normal distribution [20].
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F(x) =
2∑

i=1

λiPi(X ≤ x)

Where x is the log2 distance of two nearest CpGs, F is
the probability density function (P.D.F) for the mixed
normal distribution to which we are trying to fit, and
we have i = {1,2} as the first/second normal distribution

from the bimodal distribution for regional/boundary
CpGs. Here

∑2
i=1 λi = 1, stands for the two mixing pro-

portions of the two populations.
We then sought to determine the best separation point

between the two normal distributions, which will help
determine the cutoff of log2 distances between the near-
est two CpGs at DMR boundaries. Since the distributions

Figure 1 Workflow of DMR analysis. Objects and data frames from the R-package methylKit (top, grey), or other DNA methylation base-pair
data outputs, can immediately be utilized in all the functions in eDMR (white, below).
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overlap in ERRBS data, we risked mislabeling compo-
nents from one population to another. However, ERRBS
is an enrichment assay, and, as such, the detected CpGs
were not evenly distributed along the genome. Instead,
the CpGs formed in clusters. This contributed to the
imbalance of the two populations (regional CpGs’ dis-
tance distribution and boundary CpGs’ distance distribu-
tion). To account for this difference, we used a
weighted, combined probability function C(x) to evalu-
ate and characterize the cumulative cost of any given
separation point x.

C(x) = λ1P1(X ≥ x) + λ2P2(X ≤ x)

In order to minimize the error rate from both popula-
tions, we used this weighted combined probability func-
tion C(x) to evaluate and optimize the separation of the
two populations (Figure 2B). Because the majority of the
distances fell into the first normal distribution for regio-
nal CpGs (Figure 2A), the weighted model imposed a
greater penalty for the probability of mislabeling the
CpGs from the first distribution, thus ensuring that we
evenly penalized the number of mislabeled CpGs from
both distributions, using:

x̂ = argminx{λ1P1(X ≥ x) + λ2P2(X ≤ x)}
Where P1 is the fitted P.D.F. of the first normal distri-

bution for regional CpGs, and P2 is the fitted P.D.F. of
the second normal distribution for boundary CpGs,
where

∑2
i=1 λi = 1, stands for the mixing proportions for

the two populations. We then used the successive para-
bolic interpolation from R stats package to search the
interval from the lowest log2 distance to the maximum
log2 distance to obtain the minimum of the weighted
sum of the cost function C (red line in Figure 2B). The
corresponding log2 distance was used for raw region
determination.
2. Empirical regions filtering and characterization
Once the regional boundaries for CpG distances (D) were
determined from the cost function, we examined all dis-
tances of the nearest CpGs along the same chromosome.
If any distance was greater than D, then we called the two
CpGs associated with this distance as the boundaries of
two regions. We then further refined our distance based
on the following independent (and adjustable) filters to
increase the power of DMR detection:

1) At least 1 DMC in the region, as determined
using, for example, methylKit [17]
2) At least 3 CpGs included in the region, and
3) Absolute mean methylation difference greater
than 20%.

3. Statistical significance calculation for DMRs
In order to perform a dependency adjusted significance
test, we first examined the spatial auto correlation of

methylation data. We created an adjustable spatial para-
meter (default = 100 base pairs) that binned the data
into segments and then calculated the auto correlation
based on both the methylation changes and the p-values
for each bin [22]. Based on the refined regions, we cal-
culated the significance of the regions by combining the
p-values of DMCs within that region. We used the
dependence adjustment of the Stouffer-Liptak test to
combine p-values [22,23]. Unlike the adjustment for the
Fisher’s combined probability test, the Stouffer-Liptak
joint p-value does not depend on the assumption that
the p-values are normally distributed, and thus can be
applied for nonparametric data. A FDR (False Discovery
Rate) correction was also applied to correct for multiple
hypothesis testing for the combined p-values [24,25].
4. Whole methylome DMR characterization: descriptive
statistics and sample clustering
While raw output from filtered DMRs are useful, algo-
rithms that contextualize and categorize changes from
genomics assays help subsequent analysis. To aid in
such global examinations, we also provide convenient
functions to examine the DMRs for a given dataset,
including data about the distribution of the length of
DMRs, overall methylation difference distribution, and
the number of DMCs in each DMR for all the samples.
These tools give users an easy means to examine broad
questions about genome biology and DMR localization
for a given set of samples, or to find outlier samples
from experimental datasets.
5. DMR annotation with gene models and CpG island
Lastly, we provide a comprehensive gene annotation set
which can be used with the coordinates of the DMRs to
provide information about gene models, but also charac-
terize DMR changes for different parts of the gene body,
separated into: coding sequence, introns, promoters, 5’
UTR and 3’ UTR. We also allow users to compare to
CpG islands, shores, and other user supplied epigenetic
loci, such as ENCODE enhancers.

Results and discussion
eDMR definition
To determine DMRs, we sought to determine the opti-
mal parameters for regional analysis. ERRBS and other
enriched bisulfate conversion sequencing techniques are
designed to cover cytosines in CpG-enriched regions,
such as CpG islands and regions surrounding digestion
sites from restriction enzymes. To accurately define the
distinct genomic regions of DNA methylation, we first
examined the distribution of the genomic distance
between adjacent CpGs covered in the ERRBS data
(Additional file 1: Figure S1). Since ERRBS uses the
MspI restriction enzyme to fragment DNA, we detected
CpGs clustered in CpG-rich regions, which were in
close proximity to each other.
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These CpG distances established a range of CpGs in
close spatial proximity, and the distance cutoff was next
determined by eDMR. If two CpGs were far away from
each other, then we defined them as coming from differ-
ent methylated regions (boundary CpGs); on the other
hand, if two CpGs were close to each other, then we
defined them as coming from the same region (regional
CpGs). The eDMR algorithm optimized the threshold
for calling methylated regions and performed statistical
tests on the methylated regions. A nonparametric

density plot of the distribution of the log2 distance of
the nearest CpGs showed compelling evidence for a
bimodal distribution (Figure 2A and Additional file 1:
Figure S1, dashed line). We assumed that the first mode
was composed of regional CpGs and that the second
mode was composed of boundary CpGs, for the follow-
ing reasons: (1) the mean of the first mode was less
than the mean of the second mode, and (2) the first
mode of the bimodal distribution had a larger mixing
proportion than the second mode (Figure 2A).

Figure 2 Identification of the optimal cutoff for calling a gap between two DMRs. (A) Histogram of the log2 distance of the nearest CpGs
in Sample 1. A spike at zero log2 base pairs distance represents the reverse complement of CpGs (GpC) on the other strand. (B) Bimodal normal
distribution fitting on the log2 distance of adjacent CpGs genome-wide in AML sample 1. Two distributions (red, and green) are shown that
account for two separate data densities (dotted line). (C) Weighted sum of penalty changes (blue line) over log2 distances. The red line is the
optimized log2 DMR distance with the lowest weighted penalty from the cost function
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To determine the optimum cutoff of two adjacent
CpGs for calling a DMR boundary, we then sought to
determine the best separation point between the two
normal distributions. We used this weighted combined
probability function C(x) to evaluate and optimize the
separation of the two populations (Figure 2B). We then
determined the minimum of the weighted sum of the
cost function at the red line in Figure 2B.
This information was used in our eDMR algorithm to

identify the optimum cutoff for calling a gap between
two DMRs. This approach was tested on an additional
set of 14 ERRBS samples (9 acute myeloid leukemia
(AML) and 5 normal bone marrow controls), which
revealed similar bimodal distributions (Additional file 1:
Figure S2). The mean optimum distance cutoff for all 10
comparisons is 183.50 with standard error of the mean
5.08 (183.50 ± 5.08). After determining the statistically
significant DMRs between two samples or groups, the
regions were filtered further based on the number of
DMCs (minimum of one) and CpGs (minimum of three)
within the area, as well as the mean methylation differ-
ence (greater than 20%). eDMR can utilize data from
methylKit and other DNA methylation pipeline outputs
for analysis as well as usersupplied coordinate files for
annotation (See Figure 1 for a workflow of the eDMR
analysis).

eDMRs can accurately discern leukemia tumor
sub-types
We next used a set of previously published leukemia
ERRBS data [12] that demonstrated distinct epigenetic
tumor sub-types when examined at the level of DMCs.
The CpG genomic distribution in these samples also
had a bimodal distribution (Figure 3A and 3B). We
used eDMR to calculate the number of DMRs between
the two tumor sub-types (IDH and MLL) and the nor-
mal controls. Similar to previous findings using DMCs
alone, unique patterns of DMRs were detected in the
two leukemia sample subtypes (Figure 3C). Specifically,
IDH AMLs had more hypermethylated DMRs while
MLL AMLs had more hypomethylated DMRs. Notably,
eDMR revealed that the two tumor sub-types also
showed differing DMR lengths (Figure 3D; p = 2.2 ×
10-16, Kolmogorov-Smirnov test), which showed that
our method can replicate previous results and also pro-
vide further insight into the epigenomic landscape of
these two AML subtypes.
We then examined the spatial changes of the DMRs

relative to other genome features. It has been reported
that DNA methylation of different parts of the gene
body may exert alternate effects on gene expression.
Indeed, methylation on promoter regions of the gene
tends to have inverse association with gene expression,

while genic methylation changes have a more positive
correlation [26]. Thus, we sought to curate DMRs with
a detailed annotation map, and eDMR functions were
created to accomplish this task. We annotated the
DMRs identified in the AML samples using Refseq gene
models, separated into coding sequence, introns, promo-
ters, 5’ UTR and 3’ UTR (Figure 3E). We also annotated
DMRs with CpG islands and shores (Figure 3F). These
separate gene and genomic geographies allow a more
granular examination of the underlying methylation
changes in a dataset that may have a regulatory impact
on gene transcription.

Conclusion
Profiling DNA methylation changes is a broadly stu-
died topic for basic research across many laboratories.
These data are being generated in several large-scale
projects, including the Encyclopedia of DNA Elements
(ENCODE) Consortium (http://genome.ucsc.edu/
ENCODE/), Epigenomics RoadMap (http://www.road-
mapepigenomics.org/), and the EU’s Blueprint Project
(http://www.blueprint-epigenome.eu/). All of these
projects provide an abundance of DNA methylation
and epigenetic data using DNA methylation sequen-
cing methods like ERRBS, as well as other per-base
epigenetic information. Having the ability to dissect
the patterns of DNA methylation changes from a
regional perspective, rather than at a per-base level, is
important for researchers to more completely under-
stand the effects DNA methylation changes have in
normal and diseased samples.
Here, we described eDMR - a set of convenient tools

for regional analysis of methylation with optimization
algorithms. These independent tools can also be utilized
in concert with an existing, open-source R-package that
automates other aspects of ERRBS analysis (methylKit)
such as data processing and DMC analysis. As such,
these methods are suitable for any base-level dataset of
reduced representation or other base-level DNA modifi-
cation data sets. These methods are efficient with exist-
ing datasets, recapitulate the characterized tumor-
subtypes from a positive control data set, and find new
aspects of the tumor biology that can only be discovered
using a regional analysis. Also, we note that we have
used these tools on 15 samples and found the methods
to be robust on ERRBS data from both different sample
types and at a variety of sequencing depths. All together,
these results support the utility of eDMR as a broadly
relevant method for DMR characterization, which can
be used to further discoveries of epigenetic and regula-
tory changes and help discern the relevance of DMRs to
disease biology in conjunction with other molecular
profiling data types.
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Figure 3 DMR analysis and output of eDMR for leukemia samples. (A) Fitting of the bimodal normal distribution to CpGs common to the
IDH AML and normal bone marrow control samples. (B) Fitting of the bimodal normal distribution to CpGs common to the MLL AML and
normal bone marrow control samples. Both data have similar distributions. (C) The number of hypermethylated (red) and hypomethylated (blue)
DMRs identified in each leukemia subtype. (D) Boxplots of the DMR length distributions in both leukemia subtypes. (E) Gene body distributions
for CDS (red), introns (mustard), promoters (green), 3’UTRs (blue), and 5’UTRs (purple). (F) CpG island (red) and shore (blue) DMR count
distribution in the IDH and MLL AML tumor-types.
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Additional material

Additional file 1: Figure S1. Histogram of the log2 distance of the
nearest CpGs in Sample 1. A spike at zero log2 base pairs distance
represents the reverse complement of CpGs (GpC) on the other strand.
Figure S2. Consistent distribution shapes across samples. Samples 2-10
are shown from different sequencing depths and samples. (A-I) Red line:
First model for regional CpGs; green line: fitted second model for
boundary CpGs; Dashed line: density plot of the log2 distances of the
nearest CpGs.

List of abbreviations used
AML: Acute Myeloid Leukemia; DMC: differentially methylated cytosine; DMR:
differentially methylated region; eDMR: empirically-based differentially
methylated regions; ERRBS: Enhanced Reduced Representation Bisulfite
sequencing; FDR: False Discovery Rate; RRBS: Reduced Representation
Bisulfite sequencing; P.D.F: probability density function; UTR: Untranslated
region.
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