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Abstract

domains.

metagenomic gene finders.

Background: Metagenomic sequencing is becoming a powerful technology for exploring micro-ogranisms from
various environments, such as human body, without isolation and cultivation. Accurately identifying genes from
metagenomic fragments is one of the most fundamental issues.

Results: In this article, we present a novel gene prediction method named MetaGUN for metagenomic fragments
based on a machine learning approach of SVM. It implements in a three-stage strategy to predict genes. Firstly, it
classifies input fragments into phylogenetic groups by a k-mer based sequence binning method. Then, protein-
coding sequences are identified for each group independently with SVM classifiers that integrate entropy density
profiles (EDP) of codon usage, translation initiation site (TIS) scores and open reading frame (ORF) length as input
patterns. Finally, the TISs are adjusted by employing a modified version of MetaTISA. To identify protein-coding
sequences, MetaGun builds the universal module and the novel module. The former is based on a set of
representative species, while the latter is designed to find potential functionary DNA sequences with conserved

Conclusions: Comparisons on artificial shotgun fragments with multiple current metagenomic gene finders show
that MetaGUN predicts better results on both 3" and 5 ends of genes with fragments of various lengths. Especially,
it makes the most reliable predictions among these methods. As an application, MetaGUN was used to predict
genes for two samples of human gut microbiome. It identifies thousands of additional genes with significant
evidences. Further analysis indicates that MetaGUN tends to predict more potential novel genes than other current

Background

Thousands of prokaryotes have been cultivated and
sequenced to explore the extent of biological diversity of
the microbial world [1]. However, studies based on 16S
ribosomal RNA approaches estimate that only a small
fraction of the living microbes can be easily isolated and
cultivated in laboratory conditions, thus single genome
sequencing is not applicable for the majority of micro-
bial species [2,3]. It means that the current knowledge
of genomic data is highly biased and do not represent
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the true picture of the microbial species [4]. In addition,
single genome sequencing ignores the interactions such
as coevolution and competition between organisms liv-
ing in the same habitats, which fail to reveal the real
state of microbial organisms in nature.

These limitations can be circumvented by metage-
nomics, a methodology for studying microbial commun-
ties by directly sampling and sequencing shotgun DNA
fragments from their natural environments without
prior cultivation [5]. It is becoming a powerful method
to reveal genomic sequences from organisms in natural
environments, especially for communities resided in or
on human bodies that are closely related to human
health. With the evolutionary development of sequen-
cing technologies, DNA sequences can be produced at
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much higher throughput with much lower prices than
before. So far, hundreds of samples from various envir-
onments, such as, acid mine drainage [6], Sargasso sea
[7], Minnesota soil [8] and human gut microbiome
[9-11] have been sequenced by traditional Sanger
sequencing and the next-generation sequencing (NGS)
technologies like Roche454 and Illumina.

Accurate gene prediction is one of the fundamental
steps in all metagenomic sequencing projects. However,
it is more complicated in metagenomes than in isolated
genomes. Firstly, most fragments are very short. Many
sequences in metagenomic sequencing projects remain
as unassembled singleton reads or short-length contigs.
Therefore, lots of genes are incomplete with one or two
ends exceed the fragments, which is not a problem in
complete genomes. Also, a single fragment usually con-
tains only one or two genes, non-supervised methods
for single genomes which require an adequate number
of genes for model training are inapplicable for this
situation [12]. Secondly, the anonymous sequence pro-
blem, which means the source genomes of the frag-
ments are always unknown or totally new [13,14], brings
challenge on statistical model construction and feature
selection.

Two types of approaches are commonly used for pre-
dicting genes from metagenomic DNA fragments. One
is the evidence-based method that relies on homology
searches. It includes comparisons against known protein
databases by BLAST packages, CRITICA [15] and
Orpheus [16]. Usually, it is able to infer functionalities
and metabolic pathways of the predicted genes via sig-
nificant targets with a high specificity if the threshold is
stringent. However, only the genes with previously
known homologs can be predicted by this means, while
the novel genes, which are very important to metage-
nomic studies, will be overlooked. Therefore, ab initio
algorithms that can present much higher sensitivity
along with sufficient high specificity are indispensible.

Despite the anonymous and short fragmentary nature
of sequences, several ab initio methods have been spe-
cially designed for metagenomic fragments in recent
years [12-14,17-20], reporting that the performance on
3" end of genes is comparable with it on single genomes.
Most of these previous methods based on modeling
sequences in a Markov architecture of various orders.
For example, MetaGeneMark incorporates a hidden
Markov model to depict the dependencies between the
frequencies of oligonucleotides with different length and
the GC% of a nucleotide sequence by using direct poly-
nomial and logistic approximations. It is found that the
fifth-order Markov model obtained by logistic regression
of hexamer frequencies performs the best [19]. Glimmer-
MG was developed based on the Glimmer framework,
which uses the interpolated Markov models with variable-
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order for capturing sequence compositions of protein-
coding genes [14]. Orphelia is a recently proposed metage-
nomic gene finder based on the machine learning
approach that by pass the Markov model [18]. It integrates
mono-codon and di-codon usage, sequence patterns
around T1ISs, ORF length and GC content into an artificial
neural network to estimate the probability of an ORF to
be protein-coding.

To overcome the anonymous sequence problem, Meta-
Gene and MetaGeneMark train separate models for
Archaea and Bacteria as studies have shown that the
dependency patterns of oligonucleotides from GC content
are different in the two domains of life [12,19]. An incom-
ing fragment will be predicted by both models and the one
with the higher score is chosen. In MetaProdigal, current
complete genomes are firstly classified into 50 clusters
according to the gene prediction similarity of Prodigal
training files. Then, these clusters are used for learning
another 50 training files for gene prediction in metage-
nomic fragments. A given fragment will be scored by the
training files within a range of its GC content [13]. Glim-
mer-MG reported that the integration of sophisticated
classification and clustering schemes based on interpolated
Markov models to parameterized gene prediction models
produces much better results than using GC-content [14].
In one of our previous works, MetaTISA introduced a
k-mer method for binning sequences before TIS relocat-
ing. It also works well to achieve substantial improvement
for TIS prediction [21]. In this article, we present a novel
gene prediction method MetaGUN for metagenomic frag-
ments based on a machine learning approach of support
vector machine (SVM). Three sets of statistics are inte-
grated to depict the coding potential for a candidate ORF,
the EDP of codon usage, the TIS scores and the ORF
length. The triplet nucleotides pattern is one of the most
important statistic properties for discriminating protein-
coding sequences from non-coding DNA. Different from
most of the current metagenomic gene finders, MetaGUN
describes the codon usage of ORFs by using an EDP
model instead of the Markov model. The EDP model was
used to measure the coding potential of ORFs based on
the amino acids usage for single genomes in our previous
works [22,23]. To be more sophisticated, the EDP model
is extended to base on the codon usage for metagenomic
fragments. Sequence patterns around TISs are also impor-
tant signatures that can improve gene prediction perfor-
mance [13,18,23]. In this work, we implement a TIS
scoring strategy based on hundreds of precomputed TIS
parameters trained by the TriTISA program to get the TIS
scores for a given ORF [24]. The length of an OREF is the
third integrated feature that has been reported to be
another important measure for distinguishing genes from
random OREFs in both isolated and metagenomic genomes
[12]. Recently, special efforts have been made in predicting
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correct TISs by some current metagenomic gene finders
with substantial achievements [13,14]. In MetaGUN, an
upgraded version of MetaTISA is employed for adjusting
the TISs for predicted genes. To identify protein-coding
sequences, MetaGun builds two gene prediction modules,
the universal module and the novel module. The former is
based on 261 prokaryotic genomes representatively cover-
ing a wide range of phylogenetic clades, genomic GC con-
tent and varied living environments. The latter is designed
to find potential functionary DNA sequences with con-
served domains.

MetaGUN is freely available as open-source software
from http://bioinfo.ctb.pku.edu.cn/MetaGUN/ under the
GNU GPL Licenses.

Materials and methods

Data sets

Genomic data and annotations of 261 complete gen-
omes (229 bacteria and 32 archaea) are obtained from
NCBI RefSeq database for training the supervised SVM
classifiers and the fragments classification model. 12
species (9 bacteria and 3 archaea) used in previous
methods are also chosen for evaluating the prediction
performance here [12,18]. Since the genomes of the 12
species are included in the training set, it is worth not-
ing that we excluded them from the training data when
assessing the performance on these genomes. The 6
genomes with experimentally characterized gene starts
are used for evaluating TISs accuracy [21]. Two samples
of human gut microbiome are used for investigating
novel gene discovery ability of current methods [9].
Genomic sequences and corresponding annotations of
them are obtained from IMG/M website.

Architecture of MetaGUN algorithm

To predict genes, MetaGUN runs in three stages. Firstly, a
k-mer based naive Bayesian sequence binning method is
employed to assign all incoming fragments into phyloge-
netic groups just like in our previous work MetaTISA
[21]. In MetaGUN, it is worth noting that fragments are
assigned into both the genus level and the domain level
(Archaea and Bacteria). The former is used for supervised
TIS scoring parameters selection and TIS prediction, and
the latter is applied to determine the SVM classifiers for
gene prediction. Secondly, all possible ORFs (complete
and incomplete) are extracted from the fragments and
scored by their feature vectors with SVM classifiers of
supervised universal prediction module and sample speci-
fic novel prediction module for each domain indepen-
dently. That is, a regressive probability is assigned to an
ORF depending on its distance from the separating hyper-
plane in the feature space of the SVM classifier [25]. The
OREF with a probability larger than the given threshold is
regarded as protein-coding. Finally, a modified version of
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MetaTISA is used to relocate the TISs of all predicted
genes to obtain high quality TIS annotations.

Fragment classification

Since fragments in metagenomes can originate from
diverse species, one of the most challenges is how to
train statistical models that can properly capture fea-
tures of sequences from different source genomes.
Moreover, the short nature of metagenomic fragments
further complicates this problem. Most published gene
finders for metagenomes incorporate a sequence classifi-
cation procedure implicitly or explicitly. For example,
MetaGene and MetaGeneMark train separate models
for two domains. Since they are based on the Markov
model, input sequences are assigned to the domain
whose model gives a higher score implicitly while pre-
dicting [12,19].

We employ a k-mer method based on a naive Bayesian
classifier for sequence binning before gene prediction [26].
The binning model is trained on complete sequences of
the selected 261 genomes by calculating the frequencies of
k-mer oligonucleotides for each of them. For a given frag-
ment s with the length of # bases, the probability of find-
ing it in one of the 261 genomes can be calculated
according to the overlapping (n-k+1) oligonucleotides by
using Bayesian classification. Then, the fragment s is
regarded as originating from the genome with the highest
poster probability (details see Additional file 1: Fragment
classification strategy). It has been successfully implemen-
ted in our previous work MetaTISA [21]. To predict
genes, we follow the strategy to train separate gene predic-
tion models for Archaea and Bacteria that MetaGene and
MetaGeneMark have applied. Therefore, the fragments
will be also clustered into two different domains according
to the phylogenetic relationships of the assigned genomes,
and predicted by corresponding gene prediction models
independently.

Feature selection for SVM

The support vector machine approach has been widely
used in solving prediction problems in bioinformatics that
can be represented in the form of a binary classification,
such as gene identification, protein-protein interaction
prediction and horizontally transferred gene detection
[27-29]. It can learn more accurate classifiers for patterns
that cannot be easily separated in the input space by trans-
forming the input patterns into a feature space using a sui-
table kernel function (details see Additional file 1: SVM
algorithm in MetaGUN). Selecting relevant features for
machine learning approaches is important for a number of
reasons such as generalization performance, running effi-
ciency and feature interpretation. The support vector
machine method makes no exception. In this work, we
utilize three sets of statistics to elucidate the coding
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potential, the EDP description of codon usage, the TISs
scores and the ORF length.
EDP description of codon usage
The difference of sequence composition is the primary
feature for discriminating protein-coding genes from non-
coding sequences. This statistical property has been fre-
quently used for gene prediction of prokaryotic genomes
for a long history including both the isolated genomes and
the metagenomes [12-14,18-20,23,30,31]. In our previous
works of gene prediction in complete genomes, the EDP
model was used to describe the global properties of ORFs
for calculating the coding potential on the basis of the
amino acid usage [22,23]. Its success validates the hypoth-
esis that the protein-coding genes distribute separately
from the non-coding ORFs in the EDP phase space, which
may be caused by different selection pressures during the
evolution [23]. To be more sophisticated, the EDP model
was extended to be based on the 61-dimension codon
usage and was found to be more accurate. So that the
EDP {s;} of an ORF in this article is defined as:
! 1
Si = —Hcilogci 1)

where ¢i is the abundance of the ith codon obtained
by counting the number of it in the sequence divided by
the total number of codons, i = 1, 2, ..., 61 represents
the index of the 61 codons (excluding 3 stop codons),

61
and H = — E . cilogc; is the Shannon entropy.
i=

Translation initiation site scores

The common motifs and surrounding sequences around
the TISs are also important signatures of protein-coding
genes [13,18,23]. To integrate this feature into Meta-
GUN, we implement the MetaTISA algorithm in a
supervised manner to get the TIS scores. For each can-
didate TIS in an OREF, the probabilities to be the true
TIS (P;), to be the start codon from non-coding region
(Pye) and to be the start codon from coding region (P)
are estimated by MetaTISA according to the precom-
puted TIS parameters of the 261 training genomes. The
choice of the TIS parameters are determined by the
fragment classification results of the genus level. The
one with the highest P, will be regraded as the predicted
TIS in this stage, and the three probabilities of this TIS
are treated as the TIS scores of the ORF. Figure 1
shows the distinguished distributions of the three TIS
scores in protein-coding genes and non-coding
sequences of artificial fragments sampled from Escherich
coli K12. However, note that many ORFs in metage-
nomic fragments are incomplete with no leftmost candi-
date starts or even no candidate starts for the short
lengths. To avoid complicating the problem by estimat-
ing whether the true TISs run off the edges of the frag-
ments or not, we simply construct separate models for
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these two types of ORFs. That is, the TIS scores are
ignored for the ORFs with incomplete 5’ ends. Actually,
the true TISs of genes with missed 5" ends are not
included in the fragments in most cases because TIS
prefers to be the leftmost of a gene [23,24].

The length of ORFs

The ORF length is another useful feature that has been
frequently used for the discrimination of protein-coding
and non-coding ORFs [12,14,18,31]. It is reported that
the average length of genes in complete genomes is
about 950 bp, which is much longer than random ORFs
[12]. In some current methods, a log-odds score or log-
likelihood ratio is assigned to a given ORF according to
the distributions of protein-coding genes and non-coding
ORFs that are trained on complete genomes [12,14].
However, the difficulty in integrating the ORF length fea-
ture is that a lager number of ORFs are incomplete for
the short nature of metagenomic fragments [12,14]. This
phenomenon indicates that the complete and the incom-
plete ORFs should be treated separately. Since MetaGUN
is built on a machine learning approach of the SVM, it is
very convenient to accomplish the complete and incom-
plete issues in ORF length for they can be treated as two
separate features. Hence, two values are assigned as ORF
lengths, one for complete and the other for incomplete.
For a specific ORF, the value of the corresponding type is
set as the actual ORF length, while the other value is set
to zero.

The composition patters of sequences from archaeal
and bacterial genomes have been reported to be differ-
ent, and tests have shown that the prediction scores will
be degraded if models from the wrong domain are
employed for scoring [12,19]. Therefore, separate SVM
classifiers for Achaea and Bacteria are trained on corre-
sponding training genomes to server as gene prediction
models in MetaGUN.

Gene prediction model training

To identify protein-coding genes, MetaGUN comprises
two gene prediction modules namely the universal mod-
ule and the novel module. SVM classifiers of the univer-
sal gene prediction module are trained based on
complete genomes with the purpose of capturing the uni-
versal features of current known genes. In this work, to
build the universal prediction module, 261 species are
selected from NCBI RefSeq database release 45 (the latest
release version at the time we started to design Meta-
GUN algorithm) according to the ‘one species per genus’
rule [12]. The selected 261 species cover a wide range of
phylogenetic clades, GC content and are isolated from
varied environmental conditions, which can serve as
good representatives for sequenced microbes. The
amount of sequenced complete microbial genomes is
growing dramatically with the revolutionary development
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Figure 1 The distributions of TIS scores of protein-coding genes (the upper one) and non-coding ORFs (the lower one). We simulated
shotgun sequences by randomly sampling DNA fragments from E. coli K12 genomic sequence with fixed-length of 870 bp. Upfalse, True and
Downfalse are stand for the probabilities of a TIS to be the candidate TIS from non-coding region, to be the true TIS and to be the candidate
TIS from coding region, respectively.

of sequencing technology, however, we have found that
our method based on these training genomes performs
good results (see Results and discussions), which indi-
cates that the selection of training genomes do capture
the universal features of current known genomes. More-
over, many metagenomic sequencing projects aim to
study the unculturable microorganisms, whose complete
genomic sequences are currently unavailable. In these
studies, the discovery of new genes with novel functional-
ity is one of the principle objectives [32]. Methods have
been developed for the detection of the novel genes
based on searching for conserved domains against known
databases [32,33]. The domain-based searches have been
reported to be more sensitive to target genes than
sequence similarity based methods like BLASTP because
conserved domains other than the whole sequences are
compared [27,34]. For instance, Bork et al. applied the
conserved domain analysis to RcaE proteins, and pre-
dicted 16 novel domain architectures that may have
potential novel functionalities in habitats with little or no
light [32]. In our work, in an effort to address the novel

gene prediction issue, a sample specific novel prediction
module based on domain searches is incorporated.
Universal prediction module

To train SVM classifiers of the universal gene prediction
module, artificial shotgun fragments are randomly
sampled from the complete genomic sequences for each
of the 261 training genomes by MetaSim to form 3x
coverages [35]. We generate fragments with lengths ran-
ging from 60 bp to 1500 bp in order to simulate DNA
sequences from different sequencing technologies. Then,
all complete and incomplete ORFs are extracted from
these fragments and represented as input feature vectors
for training SVM classifiers. Those can originate from
the annotated genes are used as training instances of
protein-coding class, whereas others are treated as items
of non-coding class. ORFs less than 60 bp are ignored,
for they are too short to provide useful information.
The training data of Bacteria and Achaea are con-
structed by mixing together the feature vectors of ORFs
from the same domains, and SVM classifiers are then
trained independently. Different types of discriminatory
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functions can be learned by the SVM algorithm with the
combination of a number of kernel functions, such as
linear kernel, polynomial kernel and Gaussian kernel.
Meanwhile, the performance usually gets better if more
training items are included, however, the training time
grows exponentially along with the size of training data.
Since the amount of training items in each domain is
large, especially for Bacteria because hundreds of species
are involved, we need to learn sufficient good classifiers
with proper training size, as well as finding the most
suitable kernel function for metagenomic gene predic-
tion. Hence, experiments are carried out to evaluate the
prediction accuracies on simulated fragments of the 12
testing genomes, with SVM classifiers trained on differ-
ent kernel functions and various training data size. The
results (see Additional file 1: Supplementary Table 1)
show that the non-linear kernels (polynomial and Gaus-
sian) behavior much better than the linear kernel, and
between non-linear kernels, the performance on Gaus-
sian kernels are slightly better. Meanwhile, we find that
1.6 M is a proper training size of both sufficient and
efficient since the observed accuracy improvements
brought by larger training size are marginal. Therefore,
in this stage, a subsets of training data is randomly
sampled into 1.6 M for each domain to train SVM clas-
sifier with Gaussian kernel function separately.

Novel prediction module

In the purpose of predicting genes that might be difficultly
recognized by the universal gene prediction module, the
sample specific novel module is then incorporated into
MetaGUN based on the domain search approaches.
Firstly, the extracted ORFs are translated into amino acid
sequences and searched for conserved domains against
the Conserved Domain Database (CDD) database. Those
carrying detected domain motifs with significant e-values
(< 10) are treated as training data of genes. To obtain
the training instances of non-coding ORFs, we follow
GISMO to implement the ‘shadow’ rule [33]. That is, an
OREF overlapping more than 90 bp with a targeted gene in
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another reading frame is regarded as a non-coding ORF.
Then, the training data is clustered into two phylogenetic
groups of Archaea and Bacteria according to the frag-
ments classification results, and is employed as input fea-
ture vectors for training SVM classifiers for each domain
independently. If the size of training items is larger than
1.6 M, a subset of 1.6 M will be randomly sampled for
training SVM classifier according to the experience in the
universal prediction module; otherwise, the whole training
set will be used.

LibSVM package is employed in our work to train the
SVM classifiers with Gaussian kernel function for both
the universal prediction module and the novel prediction
module [25]. In each training procedure, a grid search of
feature space is firstly implemented to find the most sui-
table Gaussian kernel parameter y and SVM parameter C
(details see Additional file 1: SVM algorithm in Meta-
GUN). Then all items in the training set of both the pro-
tein-coding and non-coding classes are implicitly
mapped from the input space to the feature space that is
determined by the Gaussian kernel under the learned
best y and C. Finally, a hyperplane (the SVM classifier) is
learned by the SVM training program that optimally
separates all training protein-coding and non-coding
items.

Translation initiation site prediction

Accurate gene starts prediction is also a very important
issue in metagenomic sequencing projects which is indis-
pensable for experimental characterization of novel
genes, however, has not been studied much in the litera-
ture [13,21]. TIS prediction for complete genomes has a
long history and a number of tools have been developed
[24,36-41]. The difficulty of TIS prediction in prokaryotic
genomes is the divergency of the regulatory signals which
indicate divergent translation initiation mechanisms.
Studies have revealed that in the upstream of the TISs
there are SD motifs for leadered genes and Non-SD sig-
nals for leaderless genes [41-43]. However, the short and

Table 1 Gene prediction performance on simulated shotgun sequences.

Methods 1200 bp 870 bp 535 bp 120 bp
Sn(%)  Sp(%) Hm(%) Sn(%)  Sp(%) Hm(%) Sn(%)  Sp(%) Hm(%) Sn(%)  Sp(%) Hm(%)

MG 97.7 94.8 96.3 974 95.2 96.3 96.9 95.4 96.1 932 89.6 914
MGC 98.0 95.2 96.6 97.7 95.5 96.6 97.2 95.7 96.4 933 90.0 91.6
MP 97.5 936 95.5 97.2 935 953 96.8 929 94.8 920 85.5 88.7
GLM 98.1 933 95.6 97.9 933 95.6 97.7 93.1 953 94.7 88.7 91.6
MGM 975 927 95.1 97.1 929 94.9 9.7 928 94.7 90.1 89.1 89.6
MGA 974 91.7 944 97.2 914 94.2 96.8 90.5 935 913 83.7 874
FGS 95.7 873 913 95.5 88.0 916 95.2 884 916 904 82.1 86.1
Net 94.6 94.7 94.6 94.1 94.7 94.4 933 94.6 939 820 764 79.1

The gene prediction methods are denoted by abbreviations. MG: MetaGUN, MGC: complete version of MetaGUN that trained on all 261 training genomes, MP:
MetaProdigal, GLM: Glimmer-MG, MGM: MetaGeneMark, FGS: FragGeneScan, MGA: MetaGeneAnnotator, Net: Orphelia.
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anonymous nature of metagenomic fragments present
more challenges.

In one of our previous works, MetaTISA has been built
to accomplish this problem and has greatly improved the
TIS annotations for MetaGeneAnnotator [21]. Recently,
two works have paid special attentions to the TIS predic-
tion and have achieved substantial progresses [13,14].
For example, MetaProdigal follows the same strategy as
Prodigal, its version for isolated genomes, to use a TIS
scoring system that integrates default scoring bins based
on prior RBS motifs and rigorous searches for alternative
motifs if no SD motifs appears [13]. It also reported that
the published MetaTISA tends to predict starts to down-
stream start codons for the genes whose true TISs are
close to or run off the edge of the fragments [13].

According to exhaustive analysis, we modify MetaTISA
by amending two settings and the supervised TIS para-
meters when dealing with incomplete genes. In previous
MetaTISA, the distribution of P, is used for estimating
whether the 5" most candidate TIS is from coding regions
or not for genes incomplete in their 5" ends [21]. However,
it is too stringent to set the confidence level at 99%. Many
candidate TISs actually locate in coding region are
regarded as upstream candidates, and then the algorithm

Page 7 of 12

runs to find the false TISs downstream in the coding area.
Tests on simulated sequences from E. coli K12 show that
the threshold should be loosen to the confidence level at
95% to achieve the best results. Another practical problem
for some genes is the insufficiency of upstream bases for
TIS scoring. The published MetaTISA requires 50 bp
upstream sequences of a candidate TIS to calculate the
three poster probabilities. As a result, TIS candidates not
satisfying this requirement will be overlooked. Experi-
ments are performed to obtain the optimal value of the
minimal requisition of upstream bases (Figure 2). More-
over, various orders of Markov models and the supervised
TIS parameters that trained on different annotations
(RefSeq and TriTISA) are investigated. Based on the per-
formance shown in Figure 2, we determine to set the mini-
mal requisite length of upstream sequence as 10 bp, the
maximum order of Markov model to be 2 and all precom-
puted TIS parameters are trained on TriTISA annotated
genes.

Results and discussion

Due to the lacking of experimentally characterized genes
and translation initiation sites in metagenomic sequen-
cing projects, the performance of current methods are all

a0
BB S I
._.;t,_’,_g_gm/ —

96 - —0—0-0—0—0—0—0—0_g 90, ¢—0—
D Pyl P, y o 0—9—9—0—0—0—9—9—g—9—
\— D=L et » f\,-.g—e—e:n,_n.—f—\-Aﬂ_g_,-‘\—A_A..Z_2_3_2,_5_3:2:533:3—,
1 = i o ’ —r—> Ll S .
o4 K K= e ey o @ H—g—VmgmPumei A A
(— o — A A —a—y Ay
i A—a—t— =y T A —1—¢ d—t—q—q q——d—y
h -O=—O=g—0—0=0—g—0=0~g—0-T~0~g—0, —— ‘ A —q——1—
g—o-0—o—0—0— = ~O~0=0wg—0-0-0. g—-0—0-0-0
92 o~ —S=g=f—g—0-0—0 ~0=0—0—g—0—0—0

,l:g;.;ozgzﬁ;':S:!;?:!:i.— —

v —8=0-0-0-0-0-0-0-9_qo_a_a_0-2

=

ranging from 0-order to 4th-order.

) —o— RefSeq.0th
£ —o—RefSeq.1th
8 —»— RefSeq.2th
; —v— RefSeq.3th
= —o— RefSeq.4th
= —«—TriTISA.Oth
1 —»—TriTISA.1th
82+ —e«—TriTISA.2th
80 ] —»—TriTISA.3th
i —+—TriTISA.4th
78 y T T T Y T 1 T T T
0 10 20 30 40 50

Upstream Minimum Length

Figure 2 TIS prediction experiments by modified MetaTISA on simulated shotgun DNA fragments. The artificial shotgun sequences are
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evaluated on simulated fragments [12-14,18-21]. How-
ever, two significant drawbacks of this methodology
should be noted. Firstly, most annotated genes in NCBI
RefSeq and GenBank database have not been verified by
experiments. Annotation errors have been reported in
some species, especially for the genomes with high GC-
content [44,45]. So, in recent studies of metagenomic
gene finders, annotated hypothetical genes are removed
from the benchmarks for reliable assessment [13,14,19].
Secondly, the reliability of TIS annotations in public
databases is also suspicious. Large scale computational
evaluation has been reported that RefSeq’s TIS annota-
tions biased to over-annotate the leftmost start codons
and under-annotate the ATG start codons [46]. Here, in
the performance comparison of gene prediction, we fol-
low MetaGene and Orphelia to choose the 12 genomes
which have a good coverage of Archaea and Bacteria, as
well as varied levels of GC content. Considering the men-
tioned problems in RefSeq annotations, we follow the
same strategy as MetaGeneMark to discard the fragments
containing any annotated hypothetical genes [19]. More-
over, the TIS prediction accuracy are not evaluated on
these genomes for the unreliability of TIS annotations.
Instead, we use the 6 genomes where experimentally
characterized gene starts are available for TIS prediction
assessment [21].

Gene prediction performance on artificial shotgun
sequences
We compare the prediction performance of MetaGUN on
3" end of genes with 6 current metagenomic gene finders
in this section. Artificial shotgun fragments with 3x cover-
age are simulated for each of the 12 testing genomes. To
demonstrate sequences produced by different sequencing
technologies, three kinds of simulation are created with
different sequence lengths (870 bp, 535 bp and 120 bp)
according to the settings in Glimmer-MG [14]. In addi-
tion, fragments with length of 1200 bp are also simulated
in order to investigate the performance on assembled con-
tigs of larger size. Predictions with exactly matched 3’ ends
or matched reading frame if 3’ ends are missed are
regarded as correctly predicted genes, that is, the true
positives. The sensitivity (Sn) and the specificity (Sp) are
defined as the true positives in all annotated genes and in
all predicted genes, respectively. We also use the harmonic
mean value as a composite measure of sensitivity and spe-
cificity, which is defined as 2 SnSp/(Sn+Sp). Note that
unlike the comparisons in Glimmer-MG, simulated frag-
ments overlapping annotated hypothetical genes are
excluded from the testing sets in this work, hence the
benchmarks are complete and the measures of sensitivity
and specificity are both meaningful.

The predictions of other methods are obtained by local
running. The ‘complete’ model parameter trained for
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error-free sequences is set to run FragGeneScan [20], and
both the ‘Net700” and ‘Net300" model are used for run-
ning Orphelia and the better result is chosen for compar-
ison [18]. Others are implemented by default settings.
For comprehensive investigation, we run two versions of
MetaGUN, one is trained on all 261 training genomes
which denotes as ‘MGC’ in Table 1; the other is trained
on genomes excluding 12 testing genomes which denotes
as ‘MG’. The comparisons with other methods is based
on the ‘MG’ version. In addition, since most metage-
nomic gene finders overlook genes less than 60 bp, we
only evaluated genes with length more than that.

The accuracies are shown in Table 1. For fragments of
longer length, that is 1200 bp, 870 bp and 535 bp, Meta-
GUN outperforms other gene finders in harmonica mean
with values over 96%. While for shorter fragments of 120
bp, performance falls severely for all methods, especially
Orphelia. This illustrates one of the challenges for pre-
dicting genes on short sequences is the uninformative
incomplete ORFs. At this length, MetaGUN and Glim-
mer-MG achieves comparable performance with more
than 91% in harmonic mean, which is much better than
other methods. It is worth noting that MetaGUN always
makes the best specificities among all simulations with
different fragment lengths, which means its prediction is
the most reliable. The Orphelia method, the other one
based on the machine learning approach, also exhibits
good results in specificity in longer fragments. However,
its sensitivities are usually lower than others. The com-
parison on the results of 3’ ends indicates that MetaGUN
makes better predictions among existed algorithms for
longer fragments that are produced under Sanger and
Roche454 sequencing platforms, as well as longer contigs
after assembly. Despite the performance is not superior
to Glimmer-MG on the shorter fragments corresponds
to Illumina sequencing platform, it is still much better
than others. Moreover, with the aid of deep sequencing
and effective assembly, the length of contigs will get
longer. In a recent study on human gut microbiome with
deep sequencing, Qin et al. reported that as much as
42.7% of the Illumina GA reads have been assembled to
contigs longer than 500 bp, with an N50 length of 2.2 kb
[11]. Meanwhile, the sequencing technologies are devel-
oping to produce longer reads in which MetaGUN can
perform better than others.

A practical problem of metagenomic fragments is the
sequencing errors. The error rates of raw data are reported
to range from 0.001% to 1% for Sanger sequencing, and
from 0.5% to 2.8% for pyrosequencing [47]. Prior work has
shown that sequencing errors present severe impact on
gene prediction, especially the frame shifts [47]. Two of
previously mentioned metagenomic gene finders, Frag-
GeneScan and Glimmer-MG, have specially designed
models to address this issue and have achieved better
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accuracies than other methods when running on error-
prone fragments [14,20]. However, in this work, we con-
centrate on predicting genes on error-free fragments for
following reasons. Firstly, most low-quality nucleotides
locate around the ends of the reads, and can be cut out by
quality trimming and vector screening, or can be corrected
by sequence assembly [47]. Secondly, separate software
has been developed for identifying frame shifts for metage-
nomic fragments. It can be implemented prior to gene
prediction to reduce the influences of sequencing errors
[48]. Moreover, it is promising that frame shift can be
greatly decrease with the aid of deeper sequencing, effec-
tive assembly and future improvements of sequencing
technologies.

TIS prediction performance on experimental data

Since many environmental sequencing projects are aiming
at studying gene functions by experimentally characteriza-
tion, accurate prediction of TISs is very important for cor-
rect TISs is indispensable for expressing genes [18,21]. To
investigate the TIS prediction performance, we implement
almost the same strategy applied in MetaTISA with two
adjustments. Firstly, we follow Hyatt et al. [13] to assess
the TIS accuracy on both the internal TISs and the exter-
nal TISs. An internal TIS is a TIS locates inside a frag-
ment, and an external TIS is that exceeds the edge of a
fragment. Secondly, the simulated fragment lengths are
870 bp and 535 bp. Shorter fragment is not considered in
TIS assessment as it is too short that the true TIS exceeds
the fragment in most cases.

The performance of TIS prediction is shown in Table 2,
in which the accuracy is the ratio of correctly predicted
TISs from successfully identified genes. Based on the
results, MetaGUN achieves to correctly predict 96.1% of
the TISs for both simulations, which is the best perfor-
mance among current metagenomic gene finders. Meta-
Prodigal and Glimmer-MG also predict TISs in a high

Table 2 TIS prediction performance on experimentally
characterized gene starts.

Methods 870 bp 535 bp
Total Internal External Total Internal External

MG 96.1% 93.5% 98.5% 96.1% 91.2% 98.8%
MP 95.1%  90.1% 99.8%  956%  88.1% 99.7%
GLM 95.0% 91.2% 98.7% 95.4% 89.2% 98.8%
MGM 92.1% 84.3% 99.4% 93.4% 82.5% 99.4%
MGA 90.9% 82.3% 98.9% 92.4% 81.1% 98.6%
FGS 86.2% 72.8% 98.8% 89.4% 72.2% 98.9%
Net 843%  786% 89.8%  880%  724% 96.4%

The abbreviations of gene prediction methods are the same as in Table 1. We
follow Hyatt et al. [13] to assess the TIS accuracy on both the internal TISs and
the external TISs. An internal TIS is a TIS locates inside a fragment, and an
external TIS is that exceeds the edge of a fragment. The total means the
overall accuracy of both the internal and the external TISs.
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accuracy at over 95%, due to the integration of TIS scoring
module. In detail, MetaProdigal always shows the best
results for external TISs; while MetaGUN has the highest
accuracy for internal TISs which is much higher than
others, and shows an average performance for external
TISs. Since experimental characterization and sequence
analysis around TIS for studying translation initiation
mechanisms rely more on accurate position of internal
TISs than invisible external TISs, the superiority of inter-
nal TISs by MetaGUN might have more biological
significance.

Application to human gut microbiome

In order to investigate the application on real environ-
mental sequencing projects, two samples of human gut
microbiome from two healthy humans are selected for
analysis [8]. Each sample consists of around ten thousand
contigs with an average length of about 950 bp. Gene
annotations are obtained from the IMG/M website. The
annotated genes are identified by both the automatic ab
inito gene finding softwares such as fgenesb, Glimmer
and GeneMark, and similarity comparison approaches
like BLASTx running against known protein databases
[30,36]. MetaGUN and 6 other gene finders are then
applied to predict genes for both samples. Table 3 shows
the analysis results. In both samples, most of the anno-
tated genes are successfully predicted, with comparable
coverages among different methods. Meanwhile, thou-
sands of additional genes are predicted in each sample
when compared to the annotations. To examine the relia-
bility of the additional genes, similarity search by
BLASTP are then carried out against NCBI non-redun-
dant database. Genes with significant hits (e-value <107)
are regarded as ‘annotated missed genes’. Results show
that MetaGUN and Orphlia predict less additional genes
than other methods. However, on the aspect of the per-
centages of the annotated missed genes among all addi-
tional predicted genes, the results of MetaGUN are
higher than others in both samples. It indicates that
MetaGUN tends to produce more reliable predictions
which are consistent with the assessments on simulated
fragments. One of the principle objectives for metage-
nomic sequencing projects is the discovery of novel
genes. However, due to the lacking of experimentally ver-
ified genes in real samples, it is a difficult task to obtain
an comprehensive evaluation like assessments of the
gene and the TIS predictions in previous sections. In this
section, we are trying to provide a clue on novel gene dis-
covery ability with the aid of domain-based searches. The
domains are functional units within proteins, which are
usually conserved as building blocks during molecular
evolution. Sometimes, the arrangement of domains varies
to form proteins of different functions [49]. Therefore,
domain-based searches are more sensitive for catching
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Table 3 Application to 2 human gut microbiome samples.
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Samples Size(M) Contigs Annotated Methods Predicted Additional Potential novel
MG 21524 (94.8%) 2101 (58.1%) 32
MP 22056 (96.3%) 2332 (54.1%) 5
GLM 22116 (96.4%) 2361 (54.5%) 5

Sub. 7 158 10411 20487 MGM 22200 (96.8%) 2365 (56.7%) 5
MGA 22102 (96.3%) 2377 (57.2%) 3
FGS 23215 (95.6%) 3634 (34.9%) 4
Net 21421 (94.5%) 2067 (48.7%) 3
MG 26881 (95.0%) 2241 (64.5%) 12
MP 27737 (97.0%) 2589 (61.6%) 5
GLM 28127 (97.1%) 2931 (58.2%) 5

Sub. 8 205 12020 25943 MGM 27931 (97.1%) 2728 (63.7%) 4
MGA 27627 (96. 2%) 2666 (63.1%) 4
FGS 29462 (96.5%) 4433 (36.0%) 4
Net 26780 (95.0%) 2126 (58.0%) 4

In this experiment, Orphelia runs used ‘Net700" parameter and FragGeneScan runs used ‘complete’ mode for sequences in these samples are highly assembled.
Others run under default settings. Percentages in the column ‘Predicted genes’ are ratios of successfully predicted genes to annotated genes; and percentages in
the column ‘Additional genes’ are the ration of annotated missed genes to additional genes.

novel genes than protein sequences based searches
[27,34]. We define ‘potential novel genes’ as follows.
Firstly, all possible ORF are extracted and translated into
amino acid sequences for domain searching against
CDD, those with targeted domain motifs with an e value
less than 107 are denoted as potential functional genes.
The IMG/M annotated genes and the genes with targets
in the NR database are treated as known genes. Then, a
potential functional gene which is not a known gene is
regarded as a potential novel gene. From Table 3, we can
see that MetaGUN predicts the largest amount of poten-
tial novel genes in both samples benefit from the integra-
tion of novel prediction module. Further analysis are
then carried out to infer probable functionality for poten-
tial novel genes predicted by our method according to
the targeted domains. We find that most targeted
domains originate from proteins in bacterial genomes.
Such as, infB, corresponds to the translation initiation
factor IF-2, which is different from the similar proteins in
the Archaea and Eukaryotes and acts in delivering the
initiator tRNA to the ribosome; PRK12678, corresponds
to the transcriptional terminator factor Rho; as well as
several domains from DNA polymerase like PRK05182,
PRK12323. It seemed that these potential genes should
be identified by most gene finders and the sequence
based similarity searches since they are essential for the
survival of bacteria. However, they are categorized as
potential novel genes for two possible reasons. In one
situation, the targeted domain belongs to a actual novel
protein which also consists of multiple unknown
domains with novel functionality. In the other situation,
the targeted domain belongs to a known protein which is
truncated and too short for the identification by other
methods.

It is widely accepted that microorganisms in human gut
microbiome can contribute certain vitamins to the host
[11]. We have found an interesting case that can provide a
clue. A domain named cobN, which usually exists in cobN
genes that involved in cobalt transport or B12 biosynthesis
in a number of species like actinobacteria, cyanobacteria,
betaproteobacteria and pseudomonads. Moreover,
domains involved in short-chain dehydrogenase are also
detected in some genes, which is reported to be used by
gut bacteria for fermentation to generate energy and con-
verting sugars [11]. Similar to the phylogenetic distribution
of genes analysis on IMG/M website, domains originated
from Eukaryotes and Viruses are also detected, like
ATGI13 (from Autophagy-related protein 13), danK (from
heat shock protein) and PAT1 (from Topoisomerase II-
associated protein).

Conclusion

In this article, we present a novel method for identifying
genes in metagenomic fragments. It comprises three
steps for gene prediction by firstly classifying input
sequences into different phylogenetic groups, then identi-
fying genes for each group independently with both uni-
versal prediction module and novel prediction module
and finally relocating TISs employing a modified version
of MetaTISA. We compared the prediction results with 6
current metagenomic gene finders. For the performance
on 3’ end of genes, MetaGUN are better than other
methods on longer fragments and are comparable with
Glimmer-MG which are much better than others on
shorter fragments. A notable advantage is that MetaGUN
always makes the best reliable predictions. For the assess-
ments of 5" end of genes, MetaGUN outperforms others
on the overall TISs and especially predicts much more
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correct internal TISs. The application to 2 samples from
human gut microbiome also shows that MetaGUN
predict more reliable results. Furthermore, we have
attempted to investigate the novel gene discovery ability
on these 2 real samples. With the effective integration of
the novel prediction module, MetaGUN can find more
potential novel genes than others. Detailed analysis of the
discovered potential novel genes shows that there exists a
number of biological meaningful cases. Overall, Meta-
GUN makes substantial advances for gene prediction in
metagenomic fragments with three notable contributions:
the improvements for both the protein-coding sequences
and the translation initiation sites, and the greater ability
for novel gene discovery. We believe that MetaGUN will
serve as a useful tool for both bioinformatics and experi-
mental researches.

Additional material

Additional file 1: MetaGUN additional file. This addition file consists of
3 parts. The first is the fragment classification strategy, which describes
the detailed strategy of the Bayesian methodology based on a k-mer
method. The second is the SVM algorithm in MetaGUN, which describes
the SVM algorithm, its integration into metagenomic gene prediction
and the training procedure of SYM classifier in our work. The third is
supplementary table 1 which illustrates the performance of universal
module with SVM classifiers trained on various training size and
difference types of kernel functions.
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