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Abstract

Background: RNA-seq has revolutionized our ability to survey the cellular transcriptome in great detail. However,
while several approaches have been developed, the problem of assembling the short reads into full-length
transcripts remains challenging.

Results: We developed a novel algorithm and software tool, CLASS (Constraint-based Local Assembly and Selection of
Splice variants), for accurately assembling splice variants using local read coverage patterns of RNA-seq reads, contiguity
constraints from read pairs and spliced reads, and optionally information about gene structure extracted from cDNA
sequence databases. The algorithmic underpinnings of CLASS are: i) a linear program to infer exons, ii) a compact splice
graph representation of a gene and its splice variants, and iii) a transcript selection scheme that takes into account
contiguity constraints and, where available, knowledge about gene structure.

Conclusion: In comparisons against leading transcript assembly programs, CLASS is more accurate on both
simulated and real reads and produces results that are easier to interpret when applied to large scale real data,
and therefore is a promising analysis tool for next generation sequencing data.

Availability: CLASS is available from http://sourceforge.net/projects/splicebox.

Introduction
Gene annotation is the first and most important step in
analyzing a genome. More than 90% of human genes [1,2]
are alternatively spliced to produce multiple mRNA tran-
scripts involving different combinations of exons. The
number of splice variants of a gene varies, from two to
possibly thousands [3]. Recently, the RNA-seq technology
has made it possible to survey the cellular transcriptome
at unprecedented depth, within days and at a fraction of
the cost of traditional methods. However, assembling the
short reads into full-length transcripts is a difficult pro-
blem, complicated by artifacts in sample preparation,
sequencing and read alignment.
Programs that assemble transcripts from short RNA-

seq reads aligned to a reference genome largely follow
two approaches [4]. In the first approach, programs such

as Cufflinks [5] and Scripture [6] use read alignments to
predict the exon-intron structure of transcripts, then
employ statistical models of fragment distributions to
quantify their expression levels. To predict transcript
models, Cufflinks represents all fragments at a locus as
an overlap graph in which two reads are connected if
they overlap and have compatible splice patterns, and
then traverses the graph to produce the minimum num-
ber of transcripts that can explain all the input fragments.
This minimization approach may result in under-predic-
tion. In contrast, Scripture enumerates combinations of
exons from spliced reads within windows of the gene,
and then assembles them into whole transcripts. Thus,
Scripture may produce many more isoforms than present
in the sample. In the second approach, programs such as
IsoLasso [7] and its recent implementation IsoCEM per-
form simultaneous assembly and quantification of tran-
scripts, jointly modeling the two problems into a
quadratic or an estimation maximization program.
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There are several drawbacks to these approaches.
First, programs that simultaneously predict transcript
structure and estimate their abundance typically make
unrealistic assumptions about the uniformity of read
coverage along the length of the gene, which can lead to
incorrect transcript models. Second, by reconstructing
transcripts from RNA-seq data alone, programs overlook
existing knowledge about the gene structure that can be
used to more accurately infer isoforms [8].
We describe a novel algorithm, called CLASS

(Constraint-based Local Assembly and Selection of Splice
variants), for transcript reconstruction from RNA-seq
data, which takes advantage of local read coverage patterns
and known transcript substructures from existing annota-
tions. CLASS employs a linear program to locally recon-
struct combinations of exons represented in the RNA-seq
data, then connects the exons into a splice graph [9]. A
splice graph is a directed acyclic graph in which exons
represent the nodes, introns derived from splice read align-
ments represent edges, and candidate transcripts are maxi-
mal paths in the graph [10]. CLASS then selects a subset
of transcripts that parsimoniously explain all contiguity
constraints derived from mate pairs and optionally incor-
porates gene structure knowledge from existing databases.
This step is modeled as a SET_COVER problem. CLASS
does not estimate transcript abundance; rather, once a set
of transcripts is produced, any of a number of programs
(e.g., cuffdiff2 [11] and RSEM [12]) can be used to rigor-
ously quantify them.
We tested CLASS and three other popular programs,

Cufflinks, Scripture and IsoCEM, an expectation-maximi-
zation variant of IsoLasso. CLASS was both more sensitive
and more precise on simulated data. On a large real data
set, namely the adrenal sample from Illumina’s Human
Body Map Project, CLASS had higher accuracy as mea-
sured by the F-value and produced results that were easier
to interpret.
CLASS also has several ancillary advantages over cur-

rent approaches, in particular single-stage transcript pre-
diction and quantification methods such as those
implemented in IsoLasso and SLIDE [8]. When linear
programming is applied to a portion of the gene, to find
exons rather than full transcripts, it leads to smaller sys-
tems that can be solved more easily and more accurately.
Lastly, by decoupling the exon prediction, transcript
selection and transcript quantification stages, CLASS
allows for a modular design where each step can be per-
formed by a variety of methods, including approaches
developed elsewere.
The rest of the material is organized as follows. Section

2 introduces the linear program model for predicting
exons from RNA-seq data. Section 3 describes the splice
graph construction, and the subsequent enumeration and

selection of candidate transcripts. Lastly, section 4 pre-
sents the results of evaluating CLASS and other pro-
grams on simulated and real data.

Constraint-based local assembly of exons
We assume read coverage levels to be relatively uni-
form locally, and use this property to infer combina-
tions of exons. We start by determining regions of the
genome that are covered by reads and therefore repre-
sent exons or combinations of exons. We use the
splice sites in each region to split the region into non-
overlapping intervals, each belonging to one or possi-
bly several exons. For instance, the region in Figure 1
has six possible exons (only four are shown, 1, 2, 3, 4)
and can be split into five intervals a, b, c, d and e.
Each interval can belong to more than one exon. We
will refer to the portion of an exon corresponding to
an interval as a subexon, for example 1, a or 4, c. We
enumerate all possible combinations (subsets) of exons
by pairing 5’ splice sites with 3’ splice sites ends, sepa-
rately for the forward and the reverse strand, and
score each combination using a linear optimization
program. The best scoring combination of exons is
chosen in the end.
Each feasible combination of candidate exons must

satisfy the constraints:

1. Each 5’ and 3’ splice site must appear in at least one
candidate exon.
2. Every read must be compatible with the exons in
the current combination. For unspliced reads, the
read must be included in some exon, whereas spliced
reads must have splice junctions compatible with the
group of exons.
3. For paired-end reads, the inner endpoints of the
reads in a pair must either belong to the same exon, or
must be connected by a path of non-overlapping
exons from the current subset (i.e., the two mates
must have compatible alignments).

For each combination that satisfies the conditions, we
build a linear programming system. Denote ci,j the average
coverage of exon i on interval j, defined as the average
number of reads per base of subexon i, j. Let C̄j be the
average coverage on interval j. We define four types of
constraints, and suppose we are processing the candidate
exon subset 1, 2, 3, 4:

1. Additivity: The average coverage in each interval
should be roughly equal to the sum of average cover-
age values for all subexons within that interval, e.g.:

|c1,a + c4,a − C̄a| ≤ εa
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2. Continuity: The average coverage of adjacent sub-
exons of the same exon should be approximately
equal, e.g.:

|c4,a − c4,b | ≤ ε4

3. Conservation: The total coverage of all subexons
should be approximately equal to the total coverage
of the region:

4∑

i=1

e∑

j=a

ci,jli,j =
e∑

j=a

C̄jLj,

where li,j is the length of subexon i, j and Lj is the
length of interval j (in practice, li,j = Lj).

4. Non-negativity: The average read coverage for
each subexon should be no less than 1, e.g.:

c1,a ≥ 1

The objective function is to minimize
∑

εn. Using this
value, we calculate a final score for the exon combination.
For single-end read data, the objective value is also the
final score, whereas for paired-end data we add a penalty
that takes into account whether the current exon subset
satisfies the fragment length constraint:

5. Read pair feasibility: Suppose there are N read
pairs, and ni,j read pairs where the left read starts in
interval i and the right read ends in interval j. Assum-
ing the average length of a fragment is fl and the stan-
dard deviation is fs, we compute the minimal and
maximal distance between interval i and interval j
given the current exon subset. If the range of feasible
distances is outside of the interval fl ± 2fs, then we add
to the score ni,j

N , or the proportion of unsatisfied pairs.

We solve the problem for ci,j and εn. Quantities C̄jand Lj
are known or can be calculated from the input alignments.
Finally, we choose the combination with the minimal

score as the set of exons for the region. If there are multi-
ple such combinations, we select the one with the smallest
number of exons. Note that the additivity condition is
similar to those used by IsoLasso and SLIDE, albeit formu-
lated in terms of exons rather than transcripts, whereas
the rest of the conditions are specific to our method.

Candidate transcript enumeration and selection
Once the set of exons is identified, we generate a splice
graph by connecting the exons (nodes) via introns
(edges) extracted from spliced read alignments [9]. Can-
didate transcripts are encoded in the graph as maximal
paths from a node with no incoming edges (source) to a
node with no outgoing edges (sink). However, not all var-
iants encoded in the graph will be real, and therefore we
use the following SET_COVER formulation to select a
high-confidence set of candidate transcripts.
For clarity, we first describe a bipartite graph model for

selecting transcripts and then show how to transform it
into an instance of SET_COVER. Reads and read pairs
introduce constraints on the sets of exons that can be
assembled into transcripts, including fragment length
constraints as defined earlier and constraints related to
the co-inclusion of subexons. We represent each con-
straint derived from a read, or pair of reads, as the set of
intervals that overlap the read(s); multiple reads or read
pairs may then produce the same constraint. We con-
sider a bipartite graph (C ∪ T , ε), where C is the set of
constraints as defined above and T is the set of candidate
transcripts, and we establish an edge (c, t) ∈ ε if tran-
script t satisfies constraint c. One example of constraint
graph for four read pairs c1, c2, c3, c4 and three transcripts
t1, t2, t3 is shown in Figure 2. Constraints that are not
satisfied by any transcript, which are likely to represent
artifacts, are removed. The solution to the transcript
selection problem can then be formulated as the smallest
set of transcripts that collectively satisfy all reachable
constraints.
It is easy to see how this can be formulated as an

instance of the SET_COVER problem: each candidate

Figure 1 Region, intervals, exons and subexons.
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transcript t corresponds to the set of constraints C ⊆ C
it satisfies. We solve using the following ln(|C|/OPT)
greedy approximation algorithm [13]:
Set Cover (C,T )

1. S ¬ ∅
2. While C contains elements not covered by S:

(a) Find transcript t containing the largest num-
ber of constraints not satisfied by transcripts in S
(b) Add t to S

Incorporating gene structure knowledge into transcript
selection. The above criterion simply minimizes the num-
ber of selected transcripts. However, the modular organi-
zation of biological sequences into protein domains and
regulatory blocks implies that local exon-intron substruc-
tures are likely to recur among isoforms. We formulate
the weighted SET_COVER problem for transcript selection
by assigning a weight (cost) to each transcript and then
solving with a similar greedy approximation algorithm
[13]. We implemented a simple weight function that first
determines the number of pairs of consecutive introns in
the candidate transcript that can be found in cDNA
sequences [14], then assigns a weight to the transcript pro-
portional to its fraction of intron pairs not covered by the
measure. We are exploring more sophisticated weight
functions that combine several evidence-based criteria,
similar to those we used in [9], for future implementations.
We call the weighted version of the program CLASS, and
the unweighted version CLASS0.

Comparative evaluation
Evaluation against a gold reference
We evaluated our methods and three other leading tran-
script assemblers (Cufflinks [5], IsoCEM [7] and Scripture
[6]) on simulated data, which allows us to precisely assess

their accuracy relative to a gold reference. We used default
values for IsoCEM (version 0.9) and Scripture (version
beta-2), and option ’-F 0.01’ for Cufflinks (version 2.0.2),
since it was significantly more sensitive than the default
version in previous testing [15]. Using the program Flux-
Simulator [16], we generated 140 million 75 bp paired-end
reads and, separately, 140 million 75 bp single-end reads,
using the ENSEMBL 61 annotation as model (120,221
reference transcripts). FluxSimulator first assigns an
expression level (possibly 0) to each transcript in the anno-
tation, and then simulates all steps in the library prepara-
tion process in a typical RNA-seq experiment. Fragments
generated are then sequenced in silico from one or both
ends to generate single-end and paired-end reads, respec-
tively. No sequencing errors were introduced, but reads
were then mapped to the human genome hg19 using
Tophat [17], a spliced read mapper, which can introduce
mismapping artifacts in the assembly process.
For simplicity, we restricted our analysis to chromosome

12, which left 3,281,440 paired-end reads and 3,400,225
single-end reads. Reads were assembled with each of the
four programs. Running times were roughly comparable
among programs (paired-end reads: 1m45s IsoCEM,
9m14s Cufflinks, 1m17s Scripture, 2m24s CLASS and
2m10s CLASS0; single-end reads: 1m25s IsoCEM, 9m13s
Cufflinks, 1m6s Scripture, 2m32s CLASS, 2m47s
CLASS0), and therefore will not be discussed further.
We compared the results of each program against the

gold reference at exon and transcript levels, using the fol-
lowing criteria. To assess the accuracy of exon recon-
struction, we consider a match if: i) an internal predicted
exon matches an internal exon in the annotation precisely
at both ends; ii) a terminal predicted exon matches an
annotation exon at the splice site end, and is included in
the reference exon; and iii) an exon not bounded by
splice sites is included in an annotation exon.

Figure 2 Constraint graph for four read pairs c1, c2, c3, c4 and three predicted transcripts t1, t2, t3.
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Similarly, a predicted transcript is said to match a refer-
ence isoform if all of its internal introns appear consecu-
tively in the reference. Because transcripts may be only
partially sampled and/or reconstructed, we also calculate
an effective coverage value for both reference and pre-
dicted transcripts, defined as the fraction of the reference
transcript’s exons in the longest match for the transcript
being assessed.
With these definitions, we use the conventional recall

(sensitivity) and precision indicators to assess the accu-
racy of assemblies:

Recall =
K

M
(1)

Precision =
K ′

N
(2)

if K out of M reference transcripts match K’ out of N
candidate transcripts, as defined in [7]. Since programs
may produce partial isoforms, we use precision and recall
curves to plot these values as we vary the effective cover-
age cutoff, as defined above.
The results of the comparison for the two simulated

data sets are shown in Table 1. CLASS and CLASS0,
implementing the weighted and the unweighted version of
SET_COVER, clearly outperform the other programs
tested in both sensitivity (0.2-20% higher than its competi-
tors) and precision (7-31% higher) at transcript level, and
similarly at exon level. (Several examples illustrating sce-
narios where CLASS outperforms other methods are pre-
sented in Figure 3.) Moreover, they are comparable or
better for any any coverage cutoff (Figure 4). We note that
CLASS0 edges out CLASS in overall performance, how-
ever this is an artifact of producing a slightly smaller

number of transcripts, which increased its precision
despite having fewer transcripts matched to the reference.
While the analysis above captures the performance of

CLASS in predicting exons, we further sought to sepa-
rately assess the contribution of its transcript selection
process to the overall program performance. We applied
the CLASS transcript selection algorithm to the exon sets
produced by each of the other three programs (Table 2
and comparison with Table 1). Sensitivity and precision
values varied slightly, within two percentage points, for
Cufflinks and IsoCEM, suggesting that exon prediction is
primarily responsible for CLASS performing better. For
Scripture, however, precision was significantly improved
for a very slight loss in sensitivity, indicating that the parsi-
monius approach taken by CLASS is better suited than
Scripture’s combinatorial approach for these data sets.

Evaluation on real data
To assess the practicality of using the program in large
RNA-seq applications, we applied CLASS to the 160 mil-
lion 50 bp paired-end reads from Illumina’s Human Body
Map adrenal tissue sample. Again, we restricted our ana-
lysis to chromosome 12, with 3,280 spliced genes.
Because the ENSEMBL annotation is inherently incom-
plete and may also include genes and isoforms not pre-
sent in adrenal tissue, it is not possible to determine the
programs’ true sensitivity and precision. Nevertheless,
consistency with the reference annotation, in particular
sensitivity, provides a good indication of a program’s per-
formance. Because now both the reference and the
reconstructed transcripts may be incomplete, we relax
the definition of a match to include all pairs of reference
and candidate transcripts with compatible intron pat-
terns, using the effective coverage defined above to more

Table 1 Accuracy evaluation on simulated data.

Set Exons Transcripts

Total Match_ref Match_pred R P Total Match_ref Match_pred R P

ENSEMBL 4401 - - - - 559 - - - -

Paired-end reads

IsoCEM 3070 2231 2230 0.507 0.726 562 284 299 0.508 0.532

Cufflinks 3680 2515 2522 0.571 0.685 738 351 391 0.628 0.530

Scripture 3347 2385 2394 0.542 0.715 954 307 337 0.549 0.353

CLASS 3639 2685 2707 0.610 0.744 748 394 493 0.705 0.659

CLASS0 3639 2685 2707 0.610 0.744 735 389 489 0.696 0.665

Single-end reads

IsoCEM 3114 2242 2247 0.509 0.722 633 292 317 0.522 0.501

Cufflinks 3423 2539 2593 0.577 0.746 666 372 445 0.665 0.668

Scripture 3156 2374 2401 0.539 0.761 658 317 377 0.567 0.573

CLASS 3466 2668 2683 0.606 0.774 635 370 467 0.662 0.735

CLASS0 3466 2668 2683 0.606 0.774 629 373 464 0.667 0.738

Abbreviations: Match_ref = reference transcripts (exons) that match predictions; Match_pred = predicted transcripts (exons) that match the reference; R = recall;
P = precision.
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Figure 3 Examples of CLASS predictions outperforming other programs’ on the simulated single-end read data. (a) Cufflinks fails to
predict a transcript at the DDX12P gene locus, whereas CLASS predicts the full transcript. (b) CLASS finds more of the splice forms, including
alternative 5’ and 3’ terminal exons, for the C1S gene. (c) Cufflinks produces spurious isoforms, including a short single-exon transcript and a
5 bp variation on exon 22, for the DDX11 gene. The reference ENSEMBL transcripts sampled by the reads are shown in the top panels.

Figure 4 Performance curves of four programs on simulated reads: paired-end (top) and single end (bottom).
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finely explore the extent of their agreement. In addition,
we allow for a small margin of error at exon boundaries
(V = 10) to account for potential inaccuracies in the
reference annotation.
Both Cufflinks and IsoCEM predicted a very large num-

ber of transcripts (Table 3), which dramatically reduced
their precision. Cufflinks found the most reference tran-
scripts, however, we correctly hypothesized that many of
these were due to single exon assemblies. Because most of
single exon assemblies are biological or computational
artifacts which are usually filtered out during transcrip-
tome analysis, we removed them from all data sets. This
significantly improved IsoCEM, Cufflinks and Scripture’s

precision, while values for CLASS and CLASS0 were
robust. Moreover, both before and after filtering, CLASS
and CLASS0 achieve the highest overall accuracy as mea-
sured by the F-value (Table 3):

F = 2 ∗ Recall ∗ Precision/(Recall + Precision)

To draw a more detailed picture of programs’ accuracy,
we plotted the recall and precision when varying the cov-
erage cutoff. As Figure 5 shows, CLASS and CLASS0
consistently achieve the highest sensitivity, by finding
more of the reference transcripts. In contrast, IsoCEM is
more precise than any of its competitors at almost any

Table 2 Performance of CLASS with alternate exon data.

Set Transcripts Match_ref Match_pred Recall Precision

Paired-end reads

CLASS_IsoCEM 541 279 293 0.499 0.542

CLASS_Cufflinks 744 343 389 0.614 0.523

CLASS_Scripture 622 297 325 0.531 0.523

Single-end reads

CLASS_IsoCEM 614 286 311 0.512 0.507

CLASS_Cufflinks 666 366 436 0.655 0.655

CLASS_Scripture 568 303 361 0.542 0.636

Table 3 Performance of four programs on the adrenal data set

All Multi-exon only

Set Transcripts Recall Precision F-value Transcripts Recall Precision F-value

ENSEMBL 3280 - - - 3280 - - -

IsoCEM 21339 0.696 0.137 0.229 1951 0.535 0.765 0.630

Cufflinks 13073 0.798 0.318 0.455 3316 0.637 0.729 0.680

Scripture 11553 0.638 0.472 0.543 7573 0.539 0.561 0.550

CLASS 7394 0.745 0.800 0.772 5117 0.704 0.795 0.747

CLASS0 7062 0.744 0.786 0.764 4785 0.703 0.775 0.737

Figure 5 Performance curves of four programs on the adrenal data set, on multi-exon transcripts only.
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coverage cutoff, but its sensitivity, or the actual number
of reference transcripts found, is small (e.g., 1,756 com-
pared to 2,310 for CLASS).

Conclusions
We present a novel algorithm and computer program for
assembling transcripts from RNA-seq data, combining a
linear program to infer exons with a transcript selection
scheme that determines the final set of transcripts based
on contiguity constraints derived from spliced and paired
reads and on gene structure knowledge available from
cDNA sequence databases. CLASS outperformed Cufflinks,
IsoCEM and Scripture, three of the leading transcript
assembly programs, in overall accuracy on both simulated
and real data and, unlike other programs that report signif-
icant amounts of ‘noise’, it provided a robust and easy to
interpret set of transcripts. Further improvements in the
algorithm and implementation, including more sophisti-
cated weight functions, will increase the program’s accu-
racy and speed, and implicitly its usefulness for annotation.
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