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Abstract

Environmental shotgun sequencing (ESS) has potential to give greater insight into microbial communities than
targeted sequencing of 16S regions, but requires much higher sequence coverage. The advent of next-generation
sequencing has made it feasible for the Human Microbiome Project and other initiatives to generate ESS data on a
large scale, but computationally efficient methods for analysing such data sets are needed.
Here we present metaBEETL, a fast taxonomic classifier for environmental shotgun sequences. It uses a Burrows-
Wheeler Transform (BWT) index of the sequencing reads and an indexed database of microbial reference
sequences. Unlike other BWT-based tools, our method has no upper limit on the number or the total size of the
reference sequences in its database. By capturing sequence relationships between strains, our reference index also
allows us to classify reads which are not unique to an individual strain but are nevertheless specific to some higher
phylogenetic order.
Tested on datasets with known taxonomic composition, metaBEETL gave results that are competitive with existing
similarity-based tools: due to normalization steps which other classifiers lack, the taxonomic profile computed by
metaBEETL closely matched the true environmental profile. At the same time, its moderate running time and low
memory footprint allow metaBEETL to scale well to large data sets.
Code to construct the BWT indexed database and for the taxonomic classification is part of the BEETL library,
available as a github repository at git@github.com:BEETL/BEETL.git.

Background
Isolating and culturing individual members of a microbial
population gives little insight into their relative abun-
dances in the community and excludes entirely the major-
ity of microorganisms that are difficult or impossible to
culture. Metagenomic studies therefore seek to describe a
microbial ecosystem in its full complexity by sampling its
DNA directly. Early work targeted 16S and other riboso-
mal RNA genes for sequencing, since they are widely pre-
sent across species but with a sequence diversity sufficient
to serve as a marker for the presence of a given species.
This is still a popular experimental design: extensive

databases of species-specific 16S sequences are available
[1] and mature tools exist for the analysis of such data [2].
However primer design issues, copy-number variation of
the 16S gene and chimera formation can all confound the
generation of accurate taxonomic profiles from 16S data
[3,4]. Most seriously, 16S sequencing is blind to any
genetic variation that lies outside the 16S region.
Such considerations motivate an interest in environmen-

tal shotgun sequencing (ESS), where each read can poten-
tially come from anywhere in the genomes of the sampled
microbes. Early ESS studies used de novo assembly to
characterize the bacterial population in poorly-understood
environments such as the Sargasso Sea [5] but large-scale
initiatives such as the Human Microbiome Project [6],
facilitated by a precipitous drop in the cost of DNA
sequencing, have since made it reasonable to assume, in
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many cases of interest, that the sample we wish to analyze
is a mixture of well-characterized strains for which we
have reasonably complete genome sequences.
Nevertheless, the analysis of such data sets remains chal-

lenging. The most widely-used comparison-based taxo-
nomic classifiers [7,8] rely on a version of BLAST [9] to
align reads to a set of references, which is often a prohibi-
tive computational overhead for the large ESS data sets
generated by ‘next-generation sequencing’ (NGS) plat-
forms. A similar bottleneck arises when NGS data sets are
aligned to a reference genome sequence and has been met
by a new generation of alignment tools, many of which
achieve their efficiency by converting the reference gen-
ome to an index data structure based on the Burrows-
Wheeler Transform (BWT). The tool Genometa [10]
leverages these advances by first using either Bowtie [11]
or BWA [12] to align ESS reads to a set of bacterial gen-
ome sequences and then post-processing the resulting
alignments into taxonomic assignments.
In this paper we present metaBEETL, an algorithm for

the taxonomic classification of ESS data that uses BWT
indexing in a different way. First, we build an augmented
index of the bacterial genomes that enables us to classify
a read even if it cannot be unambiguously matched to an
individual strain, by simply moving up in the Tree of Life
until we arrive at a taxonomic level where the match is
unambiguous. Second, we also index the reads them-
selves. This enables us to exploit redundancy present in
the reads since any k-mers occurring in multiple reads
are only compared once to the reference genome, so we
see a sublinear gain in processing time as the number of
reads we match increases.
To test the accuracy of metaBEETL we simulated an

artificial metagenome and classified its reads using meta-
BEETL, comparing the results against classifications from
CARMA3 [8], MEGAN [7] and Genometa [10].

Methods
The Burrows-Wheeler Transform (BWT) [13,14] per-
mutes the characters of a piece of text into a new string
that not only tends to be more compressible than the ori-
ginal text but is also reversible, in that the original text
can be deduced solely from its BWT. The combination of
these two properties is remarkable and has made the
BWT a core concept in data compression - in particular,
it is at the heart of compressed index data structures such
as the FM-index [15] which store text in a compressed
form that also permits rapid searching for query strings
within the data.
Each symbol in a BWT has an associated suffix in the

string it was created from, such that the i-th character of
the BWT is associated with the suffix of the string that is
i-th smallest, if all its suffixes are placed in lexicographic
order. The symbols whose associated suffixes start with

some string Q form a single contiguous substring of the
BWT that we call the Q-interval and express as a pair of
coordinates [bQ, eQ] denoting the first and last character
of the substring.

Reference database
To index a collection of genomes we must first generalize
the concept of the BWT from a single string to a collec-
tion of n texts. A straightforward way to do this is to ima-
gine each member of the collection is terminated by a
distinct member of a set of special characters that satisfy
$1 <... <$n and are lexicographically less than all symbols
of the ‘regular’ alphabet that the rest of the text is drawn
from. We build such a generalized BWT for the collec-
tion G comprising a set of microbial reference genome
sequences {g1, ... gm} together with their reverse comple-
ments {gr1, ..., g

r
m}. This is a ‘one-time’ procedure that only

needs to be repeated when genomes are added to (or
removed from) the collection so our approach prioritises
simplicity over efficiency: first we build the suffix arrays
for all members of G (which can be done in parallel),
then we merge them by reading the suffix arrays ele-
ment-by-element from disk into a Fibonacci queue.
Using copies of the sequences held in RAM, we deter-
mine the relative ordering between suffixes from different
members of the collection. This enables us to build not
only the generalized BWT but also arrays A and C such
that the suffix at position A[i] of member C[i] of G is the
i-th smallest suffix in the collection. Together, A and C
form a generalized suffix array of G.
The elements of C are used as keys into an array T of 8-

vectors such that T[i] = {superkingdom, phylum, class,
order, family, genus, species, strain} describes the classifica-
tion of the i-th member of G according to the NCBI tax-
onomy [16], each member of the 8-vector being an integer
that in turn points to an entry in an array of names for the
relevant taxa.

Taxonomic classification
BWT-based aligners such as Bowtie and BWA facilitate
rapid matching of a set of sequences to a reference gen-
ome by converting the genome to a compressed index
and using error-tolerant modifications of the basic ‘back-
ward search’ strategy to check for matches to individual
query sequences. Each search requires essentially random
access to the index files, which must therefore be held in
RAM. In [17] it was shown that all queries can be
searched for simultaneously within an index by building
a separate index of the query sequences themselves then
making a series of sequential passes through the two
indexes. Accessing the indexes in a sequential way is
cache-efficient if one or both of the indexes do fit in
RAM, but importantly also makes it feasible to compare
them while they are both held on disk, thus preventing
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available RAM from constraining the sizes of the indexes
that can be compared. Moreover, indexing the query
sequences exploits redundancy within them since each
distinct k-mer is compared with the reference index
exactly once, even if it has multiple occurrences among
the queries. Efficient algorithms suitable for indexing the
large numbers of short sequences in a typical NGS data
set are given in [18].
The comparison of a set of reads R against a collection

of genomes G makes at most n passes through BWT(R)
and BWT(G), where n is the length of the longest read in
R (our implementation assumes all reads are the same
length, although this is not a prerequisite of the method).
At stage k, the Q-intervals of all k-mers Q that are present
in either or both of BWT(R) and BWT(G) are considered
in lexicographic order. During this traversal, a lexicogra-
phically ordered list of the Q-intervals of all (k + 1)-mers
in R and G is computed and stored in files ready for the
next iteration, as described in [17, Figure 2].
For each k-mer Q that is present in both R and G, we

extract from C the subarray C[bQ], C[bQ + 1], ... , C[eQ]
whose elements encode the provenance of the symbols
in the Q-interval [bQ, eQ] of BWT(G). The k-mer Q is
classified at the highest taxonomic level l for which T[C
[bQ]][l] = T [C[bQ + 1]][l] = ... = T[C[eQ]][l]. Turning to
BWT(R), the size e′Q − b′

Q + 1 of the Q-interval [b′
Q,e

′
Q]

gives the number of occurrences of Q in the reads.
At the end of stage k, therefore, we have computed

the abundance and taxonomic classification of all k-
mers that are present in the reads. To convert these
individual data points into a taxonomic profile that
reflects the correct microbial composition of the sample,
two sources of potential bias are considered. First, copy
number changes can lead to over- or underestimation of
certain taxa in a taxonomic profile [19]. We reduce such
effects by considering only k-mers that occur no more
than once in any genome in R. Second, per-read statis-
tics such as these must be normalized by genome size
to obtain a statistic that reflects the relative abundance
of microbial cells [20]. To achieve this, the occurrences
of all k-mers specific to a given taxon are aggregated
and then divided by the mean lengths of the genomes
within that taxon.
The optimal k for a given experiment is determined

empirically and depends on the accuracy and length of
its reads: the greater specificity of longer k-mers is
weighed against the fact that sequencing errors and
genomic variations cause fewer reads to be classified as
k becomes close to the read length.

Results
Reference database
We downloaded the set of all NCBI RefSeq microbial
sequences [21] and the associated NCBI taxonomy [16]

on October 2nd 2012. This comprised 2097 genomes
from bacteria, viruses and archaea, from which plasmid
sequences were excluded to reduce the possibility of
wrong taxonomic profiles through bacterial conjugation
and copy number variation of plasmids in different
microbes. The BWT and generalized suffix array of the
remaining 2020 sequences and their reverse comple-
ments were generated as described in Methods.

Accuracy test on a simulated metagenome
We simulated a metagenome containing equal propor-
tions of microbes from fifteen organisms whose gen-
omes are present in the NCBI Nucleotide database
(Table 1), having genome sizes ranging from 0.2Mbp to
11Mbp with an average of 3.3Mbp. MetaSim [20] was
used to simulate 100000 Illumina read pairs of length
80bp. The simulated dataset is small but its size was
chosen to allow the BLASTX alignments needed by
MEGAN and CARMA3 to finish in reasonable time on
the hardware available to us.
Comparison of computational costs
Aligning the reads to a set of reference sequences domi-
nates the computational cost of MEGAN and CARMA3.
Of the configurations tested in [8], aligning the reads to
the NCBI NR database with BLASTX maximised the
number of reads correctly classified by both programs,
so we did the same with our data. These alignments
were done on a cluster of 100 nodes, each node having
at least 124GB memory available. The number of cores
per node varied between 2 to 48, each having a clock
speed of 2.0GHz.
Genometa and metaBEETL both ran on a single CPU

Intel Xeon machine having eight 3.0GHz cores and
64Gb of shared RAM, to which we had sole access for
our tests. metaBEETL needed only 200Mb of RAM but
its index of reference genomes and its temporary files
were stored on an attached solid-state hard drive to
facililate the large amount of disk I/O that metaBEETL
needs to do. Timings for the four methods are given in
Table 4: the very different computational requirements
of the BLAST-based and BWT-based tools make a like-
for-like comparison difficult, but the advantage of the
BWT-based methods is clear: metaBEETL finishes an
order of magnitude more quickly on a single CPU than
the BLAST-based methods do on a 100 node cluster.
Genometa, whose compute time is predominantly

taken up by BWA alignments, is in turn an order of
magnitude faster than metaBEETL, but our prototype
implementation has considerable scope for optimization.
At the moment, the reference BWT string is stored as
ASCII, whereas a compressed format would greatly
reduce the I/O that dominates metaBEETL’s runtime.
Moreover, it is likely that any given sample will only
contain a small proportion of the 2020 genomes that are
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present in the database. Therefore, indexing the BWT
string of the reference database should reduce I/O still
further by allowing metaBEETL to jump directly to the
relevant areas of the BWT instead of reading the entire
string on every pass.
Comparison of correctly classified reads
CARMA3, MEGAN and Genometa were run with default
parameters and metaBEETL was run with a k-mer length
of 50. Table 2 shows reads correctly and incorrectly clas-
sified by the four tools at all taxonomic levels. The smal-
ler number of reads classified by metaBEETL compared
with CARMA and MEGAN3 is likely explained by meta-
BEETL’s discarding of k-mers occurring multiple times
in a single genome and by the fact that metaBEETL’s
database is a subset of the NCBI NR database used by the
other two tools. Genometa requires a curated database
(only one reference per genus, for instance) and we thus
had to use the database available for download from the
Genometa webpage. We manually checked that all the
genomes used in the simulated sample were contained in

this database. Importantly, metaBEETL is the best of the
four tools in correctly classifying reads at the species
level and misclassifies the fewest reads at all taxonomic
levels.
Comparison of taxonomic profiles
An obvious way to assess the performance of a metage-
nomic classifier is simply to count the number of correctly
classified reads, but we have already observed that copy
number changes and different genome sizes can prevent
the relative read counts from correctly reflecting the rela-
tive abundances of the microbes they are sequenced from.
For this reason we decided not to perform comparisons
solely based on the number of classified reads but also
based on the expected taxonomic profile. We used the

Euclidean distance
√∑n

i=1
(qi − pi)

2 to compute the dis-

tance between computed and simulated taxonomic profile
and the results can be found in Table 3. We can see that
metaBEETL produces a taxonomic profile which is much
closer to the simulated ground truth than the other

Table 1 Composition of simulated metagenomic dataset having an even distribution of microbes.

Name Taxonomic id Size Fraction in simulation Read count

Blattabacterium sp. str. BPLAN 600809 0.64 Mb 6.67% 2372

Borrelia hermsii DAH chromosome 314723 0.92 Mb 6.67% 3616

Candidatus Blochmannia pen. str. BPEN 291272 0.79 Mb 6.67% 3122

Candidatus Sulcia muelleri DMIN 641892 0.24 Mb 6.67% 3122

Candidatus Zinderia insecticola CARI 871271 0.21 Mb 6.67% 816

Catenulispora acidiphila DSM 44928 479433 10.47 Mb 6.67% 41950

Chloroflexus aggregans DSM 9485 326427 4.68 Mb 6.67% 18684

Clostridium sp. BNL1100 755731 4.61 Mb 6.67% 18248

Deinococcus radiodurans R1 243230 3.06 Mb 6.67% 12066

Escherichia coli DH1 536056 4.63 Mb 6.67% 18400

Fluviicola taffensis DSM 16823 755732 4.63 Mb 6.67% 18258

Frankia sp. CcI3 106370 5.43 Mb 6.67% 21282

Geobacter bemidjiensis Bem 404380 4.61 Mb 6.67% 18344

Mycoplasma pneumoniae M129 272634 0.82 Mb 6.67% 3286

Yersinia enterocolitica subsp. e. 8081 150052 4.62 Mb 6.67% 18548

Table 2 Comparison of the correctly classified (true positive - TP) and not correct classified (false positive - FP) reads
of the simulated metagenome between the classifiers, metaBEETL, CARMA3, MEGAN and Genometa.

Taxonomic Level metaBEETL CARMA3 MEGAN Genometa

TP FP TP FP TP FP TP FP

Superkingdom 129,290 0 161,162 153 178,712 5 118,340 0

Phylum 129,280 10 158,904 395 176,604 31 113,138 5,202

Class 129,279 11 157,545 395 175,718 42 113,138 5,202

Order 129,279 11 155,625 220 174,737 47 113,138 5,202

Family 129,278 11 151,684 363 171,227 103 113,125 5,208

Genus 129,262 28 132,251 513 151,292 649 109,884 8,435

Species 129,242 48 51,920 232 110,728 1,196 109,444 8,896
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classifiers. For Genometa, we could only generate the
taxonomic profiles at the genus and species level, because
Genometa does not produce higher level taxonomic classi-
fications. The taxonomic profiles for the levels superking-
dom to species can be found in the additional files 1, 2, 3,
4, 5, 6.
It can be seen that metaBEETL gives a taxonomic pro-

file which is closer to the true taxonomic profile than
the ones from CARMA3, MEGAN and Genometa. The
difference in the classification originates from under- as
well as overestimation of different taxa from CARMA3,
MEGAN and Genometa. For CARMA3 and MEGAN
the differences in classification cannot be explained by
the difference in the comparison databases, because the
NCBI NR database includes the reference sequences
used by metaBEETL. On the other hand the difference
in database may be the cause for the higher distance
from the true profile to the one produced by Genometa.
By using a curated database with a limited size, Geno-
meta loses the advantage of having a broader spectra of
references. Therefore even though Genometa was much
faster in the analysis of the simulated metagenome, the
resulting taxonomic profile shows the most differences
to the simulated profile. We could compare those pro-
files only at the genus and species level, because Geno-
meta does not provide higher taxonomic classifications.
metaBEETL performed much faster than CARMA and
MEGAN, while using less memory, which makes it

possible to analyze large ESS data sets. That metaBEETL
is nearer to the true taxonomic profile shows that the
bias reduction through removing sequences which occur
more than once in the genome and the normalization
gives metaBEETL an advantage over other classifiers.

Accuracy testing of metaBEETL on a modified database
A key challenge of metagenomic studies is that the
majority of microbes cannot be grown as a single culture
and so are likely to be absent from our database of refer-
ence genomes. To test metaBEETL’s ability to classify
reads from genomes that are missing from its database,
we masked all microbial reference sequences in the data-
base that share the same species as the microbes in our
simulated metagenome. A correct classification at species
or strain level clearly becomes impossible, but we would
still like to see good concordance with the expected pro-
file at higher taxonomic levels. We found metaBEETL
produced taxonomic profiles with Euclidean distances
that ranged between 28 and 47 of the expected profile,
and the concordance improved with higher numbers of
simulated reads.

Evaluation on real data
We downloaded sample SRS013948 from the Human
Microbiome project, which comprises 31,107,576 reads
from the throat of a male participant. Some reads had
been quality trimmed and were padded with Ns to
achieve a uniform read length of 100bp across the data-
set. Building a BWT of the padded reads using our
approach in [18] took around 4 hours, which could be
reduced further if a solid-state drive had been used
instead of shared disk storage. RAM usage was
negligible.
Using a k-mer length of 75, metaBEETL took 42 hours

to classify the reads, and the results are given in Figure 1.
It can be seen that the taxonomic profile of this sample is
highly uneven, with a few species dominating the envir-
onment. The most common assignment of the reads was
to Prevotella melaninogenica, which is an oral opportu-
nistic pathogen. Other highly abundant species are also
known as pathogens occurring in lung, throat and mouth
of humans. This could point to an infection of the
human male from which the sample was taken.

Conclusion
We presented metaBEETL, an algorithm for the taxo-
nomic classification of sequencing reads from metage-
nomic shotgun experiments. metaBEETL uses indexed
representations of both the input reads and the refer-
ence genomes they are compared against. We demon-
strated on real and simulated data that its performance
is competitive to BLAST-based metagenomic classifiers
such as CARMA3 and MEGAN, while scaling better to

Table 3 Comparison of the simulated taxonomic profile
of an artificial metagenome and the predicted profiles
from metaBEETL, CARMA3, MEGAN and Genometa.

Taxonomic Level metaBEETL CARMA3 MEGAN Genometa

Superkingdom 1 1 1 -

Phylum 7.47 22.44 22.89 -

Class 7.48 25.70 23.84 -

Order 9.45 24.26 24.23 -

Family 9.39 22.15 19.60 -

Genus 10.85 26.22 21.56 38.82

Species 10.59 19.02 22.44 38.16

We compared profiles using the Euclidean distance to the simulated profile.
Results from Genometa were only available at level genus and species.

Table 4 Running time and memory requirements of the
tested classifiers on the simulated data set.

metaBEETL CARMA3 MEGAN Genometa

Memory 1 GB 13 GB 13 GB 3 GB

Time 46 m 18 h 35 m 14 h 58 m 2 min

CARMA3 and MEGAN were run on a compute cluster, using 100 nodes.
metaBEETL was run on an SSD drive. Memory consumption was taken at peak
memory usage for one thread. All times are taken as wall clock times. For
CARMA3 and MEGAN the time for the longest running time of the 100
threads was taken, the average time for MEGAN was 12 h 15 m and for
CARMA 12 h 30 m.
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the large data sets generated by next-generation sequen-
cing technologies.
Like Genometa, metaBEETL relies on BWT-based text

indexing, but there are fundamental differences in the two
approaches. Genometa uses standard read mapping tools
to perform its alignments, meaning its overall runtime is
faster. However, the BWA and Bowtie aligners both have
upper limits of around 3Gb on the total volume of refer-
ence sequence that they can index, which will become an
issue as the number of available bacterial genome
sequences increases. Moreover, this reliance also means its
ability to handle ambiguous matches is limited: a strain

from each species must be hand-chosen to be added to
the index as an exemplar of that species. In contrast, the
bespoke nature of our BWT index allows us to distinguish
between different strains and to assign reads to a higher
phylogenetic order when a strain-specific match is not
possible.
In many ways, our current implementation does not

fully exploit the information present in the indexes.
Instead of relying on an empirically chosen k-mer size, a
future version could aggregate information from multiple
values of k to continue to extend only those sequences
that are not yet long enough to be specific at the strain

Figure 1 Species-level classification computed by metaBEETL for sample SRS013948 from the Human Microbiome Project.
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level. Moreover, k-mers that are specific to a given strain
can be used to identify novel variants within that strain.
Indeed, Simpson and Durbin [22,23] have shown that
BWT indexes of reads facilitate fast and practical de
novo assembly and a tool that combines reference-based
classification with de novo assembly of unclassified reads
is an intriguing future possibility.
The source code of metaBEETL is freely available

from github as part of the BEETL software library.

Additional material

Additional File 1: Phylum-level composition of simulated data
compared with classifications produced by metaBEETL, CARMA3
and MEGAN.

Additional File 2: Class-level composition of simulated data
compared with classifications produced by metaBEETL, CARMA3
and MEGAN.

Additional File 3: Order-level composition of simulated data
compared with classifications produced by metaBEETL, CARMA3
and MEGAN.

Additional File 4: Family-level composition of simulated data
compared with classifications produced by metaBEETL, CARMA3
and MEGAN.

Additional File 5: Genus-level composition of simulated data
compared with classifications produced by metaBEETL, CARMA3
and MEGAN.

Additional File 6: Species-level composition of simulated data
compared with classifications produced by metaBEETL, CARMA3
and MEGAN.
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