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Abstract

Background: Somatically-acquired translocations may serve as important markers for assessing the cause and
nature of diseases like cancer. Algorithms to locate translocations may use next-generation sequencing (NGS)
platform data. However, paired-end strategies do not accurately predict precise translocation breakpoints, and
“split-read” methods may lose sensitivity if a translocation boundary is not captured by many sequenced reads. To
address these challenges, we have developed “Bellerophon”, a method that uses discordant read pairs to identify
potential translocations, and subsequently uses “soft-clipped” reads to predict the location of the precise
breakpoints. Furthermore, for each chimeric breakpoint, our method attempts to classify it as a participant in an
unbalanced translocation, balanced translocation, or interchromosomal insertion.

Results: We compared Bellerophon to four previously published algorithms for detecting structural variation (SV).
Using two simulated datasets and two prostate cancer datasets, Bellerophon had overall better performance than
the other methods. Furthermore, our method accurately predicted the presence of the interchromosomal
insertions placed in our simulated dataset, which is an ability that the other SV prediction programs lack.

Conclusions: The combined use of paired reads and soft-clipped reads allows Bellerophon to detect
interchromosomal breakpoints with high sensitivity, while also mitigating losses in specificity. This trend is seen
across all datasets examined. Because it does not perform assembly on soft-clipped subreads, Bellerophon may be
limited in experiments where sequence read lengths are short.

Availability: The program can be downloaded from http://cbc.case.edu/Bellerophon

Background

Genomic structural variants (SV) are widespread, and
along with single nucleotide polymorphisms (SNPs), are
believed to contribute to phenotypic variation within
populations. Many structural variants are inherited. How-
ever, somatically-acquired variants could play an impor-
tant role in the onset and progression of diseases such as
cancer [1,2]. Among the classes of structural variants are
interchromosomal translocations, which are caused by the
fusion of two non-homologous chromosomes. A translo-
cation can disrupt gene function (e.g. a tumor suppressing
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gene), or it could create a fusion gene that codes for a pro-
tein with deleterious functions [3,4]. An example of such a
fusion is the Philadelphia chromosome, which is highly
associated with chronic myelogenous leukemia [5]. The
presence of a somatically-acquired translocation could
indicate susceptibility to a particular type of cancer, or it
could indicate that the disease has progressed to a certain
point [6]. Translocations can thus serve as important clini-
cal markers for determining the cause and nature of cer-
tain cancers. It is therefore important to develop efficient
methods for locating these variants.

Next-generation sequencing (NGS) allows for the paral-
lel sequencing of entire genomes faster and cheaper than
traditional methods for sequencing [7,8]. This has led to
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the development of several algorithms for detecting struc-
tural variation using NGS platforms. Among the methods
used for SV detection are BreakdancerMax [9], GASV
[10], SVDetect [11], and CREST [12]. SVDetect divides the
genome into overlapping windows and predicts structural
variants by assessing windows that are linked by anoma-
lously mapped paired reads. BreakdancerMax identifies
potential variants by locating regions that contain more
abnormally mapped read pairs than is expected. It then
uses a Poisson model to calculate a confidence score for
each candidate variant. GASV presents a geometric
approach to SV detection. This algorithm identifies
regions of breakpoint uncertainty and constructs polygons
representing these regions. It then finds structural variants
by computing the number of intersecting polygons for a
given region. The CREST algorithm differs from the pre-
vious methods because it does not use abnormally mapped
read pairs to find structural variants. Instead, it only uses
single reads that contain soft-clipped alignments. Soft-
clipped reads contain a contiguous match to the refer-
ence, but another contiguous part of the read may be
mappable elsewhere. CREST uses these soft-clipped reads
to find putative variant breakpoints, and it is thus more
effective at finding precise SV boundaries than paired-
end approaches.

The aforementioned algorithms can detect several
types of structural variants. However, like many paired-
end strategies, BreakdancerMax, GASV, and SVDetect
cannot determine the precise boundaries of structural
variants. Identifying the precise location of variant
boundaries is of clinical importance, as the boundaries
could provide therapeutic targets in a medical setting.
The CREST algorithm can identify precise breakpoints,
but since it only depends on the presence of soft-clipped
reads to find variants, it could lose sensitivity if SV
breakpoints are spanned by only a few soft-clipped
reads. To address these issues, we have developed Bel-
lerophon, which predicts interchromosomal transloca-
tions by combining paired-end SV detection with
breakpoint resolution using clipped alignments. The use
of combined SV signatures has been demonstrated by
two very recent studies [13,14]. The RetroSeq algorithm
uses the combined approach to find genomic transposon
insertions, while DELLY predicts deletions, transloca-
tions, inversions, and tandem repeats. DELLY was devel-
oped independently of Bellerophon, and although we did
not compare the two methods directly, DELLY cannot
predict interchromosomal insertions.

In addition to breakpoint prediction, our method can
also predict the precise nature of a chimeric breakpoint;
it attempts to classify each prediction as a 1) balanced
translocation, 2) unbalanced translocation, or an 3) inter-
chromosomal insertion. Using simulated datasets and
two prostate cancer datasets, we compared Bellerophon
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to the four aforementioned strategies to assess its ability
to predict and locate precise translocation breakpoints.
We also created in our simulated data two interchromo-
somal insertions (where one chromosome “donates” a
contiguous segment of genetic material to another chro-
mosome). For both the real and simulated datasets, the
alignment results were under-sampled at different rates
to assess the performance of each method on varying
levels of coverage. For both datasets, Bellerophon had
better sensitivity than CREST and similar breakpoint pre-
diction accuracy. Compared to the three paired-end
methods, Bellerophon had better breakpoint prediction
accuracy and better specificity on the cancer datasets,
while having similar sensitivity and specificity on the can-
cer and simulated datasets respectively.

Methods

Bellerophon takes as input an alignment file in SAM
format [15] generated by a short read aligner. Several
algorithms are equipped to align a collection of short
sequence fragments to a reference genome. In our
experiments, we used the BWA program [16]. When
provided a SAM file that is sorted by chromosome and
genomic coordinates, Bellerophon then proceeds to the
clustering phase.

Clustering phase

Necessary criteria for a candidate variant

To identify a candidate interchromosomal variant, Bellero-
phon first looks for clusters of chimeric read pairs, which
are read pairs whose mates are aligned to different chro-
mosomes. Consider a translocation between chromosomes
i and j. The pairs that form the cluster supporting the
event must satisfy the following criteria:

1. There must be a collection of reads R(i) that map
to chromosome i.

2. There must be a collection of reads R(j) that map
to chromosome j, where the reads of R(j) are the
mates of the reads in R(i).

3. All reads in R(i) must be mapped closely together
and to the same strand.

4. All reads in R(j) must be mapped closely together
and to the same strand.

Criteria 1 and 2 are straightforward because a true var-
iant results in the fusion of two nonhomologous chromo-
somes. Mate pairs in the cluster must span the chimeric
breakpoint, which results in a group of reads mapping to
chromosome i, and their mates mapping to chromosome
j. To understand criterion 3, consider the first chimeric
pair that spans a particular breakpoint. Let’s call this pair
p- When p is mapped to the reference, there is no mapped
distance information between its reads since they map to
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different chromosomes. After mapping, however, we
expect that the distance between the first read of p and
the translocation breakpoint will be within L base pairs,
where L = mean + k*stdev, and mean is the average
separation distance between mapped read pairs in the
dataset, stdev is the standard deviation of mapped dis-
tances, and k is some constant, which for Bellerophon is a
user defined value. Figure 1 illustrates a chimeric cluster
that implies a true translocation. Since the first encoun-
tered read in the cluster is within L base pairs of the
breakpoint, then subsequent chimeric read pairs must also
map within L base pairs of the breakpoint. It follows from
this observation that all reads in R(i) will map within L
base pairs of each other. This also holds the for the reads
in R(j). Furthermore, all the reads in a set must map to a
common strand, because if the cluster implies a true trans-
location, then one of the three scenarios must have
occurred.

1. p-arm to g-arm fusion
2. p-arm to p-arm fusion
3. g-arm to g-arm fusion

The mapping orientation of the read pairs depends
on which chromosomal arms formed the translocation.
Figure 2 illustrates this. Lastly, there is criterion 4, but
the requirements are the same as that of criterion 3.
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The clustering algorithm

To predict likely translocations, Bellerophon must first
find the clusters of chimeric read pairs. It does so by find-
ing collections of chimeric reads that satisfy the four pre-
viously mentioned criteria. Essentially, the algorithm
collects all chimeric read pairs that map closely together
on both ends. The pairs must also share the same two
participating chromosomes. If such a collection of read
pairs is found, then it possibly denotes a true chromoso-
mal fusion. After a cluster is found by the algorithm, it
must then determine which chromosomal arms create
the fusion. It does so by examining the orientation of the
aligned reads in a cluster, as shown in Figure 2.
Breakpoint resolution

After finding clusters that could imply a translocation,
Bellerophon performs its breakpoint resolution step. In
this step, the program will attempt to find the precise
location on the genome where the chromosomal fusion
occurred. This is an improvement over methods that
only used paired-end reads, as such methods cannot
accurately predict the true breakpoints.

To understand this step of the program, consider a clus-
ter of chimeric pairs K which was produced by the cluster-
ing algorithm referenced in the previous section, and
which has participating chromosomes i and j. Because of
criteria 3 and 4 of the clustering step, we expect that all
chromosome i reads of K will map to within L base pairs

Reference chromosome |

Figure 1 Translocation captured by a cluster of three chimeric read pairs. The first set of reads map to the forward strand of chromosome
i, and the second set map to reverse strand of chromosome j. The distance between the outermost reads to the breakpoint are D1 and D2, for
chromosomes i and j respectively. These distances must be less than or equal to mean + k*stdev.

Reference chromosome j
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Figure 2 The three types of translocations and the mapping orientations that result when a pair spans the breakpoint. These
orientations assume that lllumina technologies were used in sequencing. Bellerophon deduces the type of fusion based on the mapping
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of the true chromosome i breakpoint. Similarly, the chro-
mosome j reads will map to within L base pairs of the true
chromosome j breakpoint.

Mapping the breakpoints works as follows: let clip(x,y)
be a soft clipped read where the aligned portion maps
to chromosome x, and the clipped portion maps to
chromosome y. Assuming the method is analyzing chro-
mosome i alignments, then once the clusters are
formed, Bellerophon extends a window W from the out-
ermost read in R(i) to the direction nearest the break-
point. The size of this window is L, and the direction of
the window extension depends on the type of chromo-
some fusion that the method is searching for. The
method then performs the same step for chromosome j;
it extends a window X from the outermost read in R(j)
to the direction nearest the breakpoint. The size of X is
also L. Within windows W and X, Bellerophon then
searches for soft-clipped reads, because if there exists a
true chimeric breakpoint b, then there should be reads
at b that partially align to both chromosomes i and j.
Specifically, we should have a collection of both clip(i,j )
and clip(j,i) reads at b. Figure 3 illustrates how soft-
clipped reads are formed, and how they align to both
sides of the variant boundary.

Now that the program has the clipped reads, it con-
tinues to the realignment step. The mapped location of
the clipped portion of the read is unknown. In other
words, once the breakpoint is encountered from both
sides, we have clip(i,x) and clip(jx) reads, where x is an
unknown chromosome. In this step, the algorithm
determines the precise location of the clipped subreads
so that it can determine x and the read’s coordinates
too. For each soft-clipped read within windows W and

X, if the size of the clipped portion is at least 20 base
pairs, then this portion is aligned to the human refer-
ence genome using BLAT. We required a threshold of
20 bp because BLAT is best suited to align sequences
that are at least 20 base pairs in length [17].

In this step, we attempt to find the precise transloca-
tion breakpoints on both sides of the fusion. On the
chromosome i side of the boundary, the aligned portion
of the clipped reads obviously map to chromosome i,
but the clipped portion of the read should map to chro-
mosome j. Similarly for the chromosome j side of the
boundary, the clipped subreads will map to chromosome
i, whereas the aligned part of the read will map to chro-
mosome j. As a result, we have the following four sets
of subreads: Align(i), Align(j), Clipped(i), Clipped(j). The
Align(i) set contains the subreads whose alignment is to
chromosome i. Align(j) set is similarly defined for chro-
mosome j. The Clipped(i) and Clipped(j ) sets contain
the clipped subreads that align to chromosomes i and j,
respectively.

To predict the breakpoint location for chromosome i,
we calculate the mode of the aligned coordinates of
reads in the set S = {Clipped(i) U Align(i)}. The subreads
in S may not necessarily align to the same location (due
to small indels or mutations), so we assume that the
true breakpoint will be the coordinate with the most
subreads aligned to it. This step is also performed on
the set T = {Clipped(j) U Align(j)} to predict the precise
breakpoint on the chromosome j side of the variant.

We use clipped alignment information from both sides
of the breakpoint because it is possible that a true
breakpoint will be without a sufficient number of
clipped reads on either side of the boundary. By using
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Figure 3 The formation of soft-clipped reads. Soft-clipped reads span the translocation boundary between chromosomes i and j. As a result,
these reads may align partially to chromosome i and partially to chromosome j.

Chromosome j

clipped reads from each side, we increase the chances that
it is accurately captured from both sides. To call a candi-
date variant as a predicted interchromosomal variant,
there must exist at least one soft-clipped read that realigns
to the window W, or at least one soft-clipped read that
realigns to window X. Given the large size of the genome,
the probability that even a single clipped sub-read remaps
to the windows X and W is presumably small if no struc-
tural variation has occurred. A flowchart of the prediction
algorithm is provided in Additional file 1, figure S1.
Chimeric breakpoint classification

It may be desirable to not only find chromosomal fusion
boundaries, but to also determine the precise nature of the
fusion; does it imply a balanced translocation, unbalanced
translocation, or interchromosomal insertion? Most meth-
ods for finding chimeric breakpoints do not attempt to
answer this question; they are focused on finding the
boundaries instead of resolving their exact nature (Addi-
tional file 1 figure S4). In some experiments, a researcher
may want to determine exactly how a chimeric fusion
occurred. If it is caused by an interchromosomal insertion
(Additional file 1, figure S5), then a chromosome i donated
a contiguous segment to a non-homologous chromosome
j, and two chimeric breakpoints are formed from this
transfer of material. It is also possible that during the
exchange, the orientation of the inserted segment might be
inverted with respect to the centromere. This is known as
an inverted insertion, whereas in the case of no inversion, it

is a direct insertion [18]. Bellerophon accounts for both
cases. The classification algorithm is provided in the Fig-
ures S2 and S3. Since interchromosomal insertions can
also create fusion genes [19], it may be useful to predict
their existence for some experiments.

Results and discussion

Variant prediction on two simulated datasets

In our first experiment, we used two simulated datasets
to test our program’s ability to 1) detect translocation
breakpoints and to 2) accurately predict the location of
the translocation breakpoints. For the first dataset, we
created a simulated test genome by inserting into the
human reference genome the variants listed in Table 1.
Since balanced translocations are not always entirely reci-
procal, we added a 1000 bp duplication to the p-arm of
chromosome 6. Duplications and deletions at reciprocal
translocation breakpoints occur in some cancers [20], so
Bellerophon allows for reciprocal translocation break-
points to overlap by at most 1 Mb, or to be separated by
at most 1 Mb (by default). For the second dataset, we
inserted into the reference genome the variants listed in
Table 2.

For the first dataset, we created simulated paired-end
sequence reads from this synthetic data using wgsim.
We generated the dataset with 40X sequence read cov-
erage and 100 base pair (bp) reads. It also had a 400 bp
average insert size with a standard deviation of 80. The
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Table 1 Structural variants inserted into the first
simulated dataset

Chr1 Bkpt1 Strand1 Chr2 Bkpt2 Strand2 Type
9 73,000,000 + 11 63,000,000 + u
5 40,000,000 + 2 140,000,000 + u
7 11,000,000 + 12 45,000,000 - u
10 5,000,000 - 20 15,000,000 + u
16 6,000,000 - 18 12,000,000 + u
4 9,000,000 + 17 17,000,000 + u
3 35,000,000 + 6 14,000,000 + B
6 14,001,000 + 3 35,000,001 + B
13 45,000,000 + 14 30,000,000 + Il
14 30,200,000 + 13 45,000,001 + Il
1 105,000,000 - 22 25,000,000 + Il
22 25,000,001 + 1 105,600,000 - I

Structural variants inserted into the simulated dataset. U = unbalanced
translocation, Il = interchromosomal insertion, and B = balanced translocation.
For the “Il” and “B” variants, the partner breakpoints are listed consecutively.
For “IlI” variants, the donor chromosome and its breakpoint are bolded. Note
that the chr3 and chr6 balanced translocation contains a 1000-bp duplication,
so it is not entirely reciprocal.

mutation rate was set at 0.001, and among the muta-
tions, the fraction of indels was set to 0.15. The second
dataset used the same experimental setup, except for
this dataset, we used 75 bp read lengths.

After creating the sequence reads, we aligned them to
the human reference genome (NCBI 36) using BWA.
After acquiring the alignment results, we created four
more datasets by randomly “down sampling” the original
alignments at the following rates: 75%, 50%, 25%, and 10%.
Each rate is the probability that an aligned mate pair (or
single anchoring read) from the original SAM file would
be included in the new sampled SAM file. Thus, the result-
ing files had average coverage of approximately 30X, 20X,
10X, and 4X. After this step, the five datasets were ana-
lyzed with the following programs: Bellerophon, GASYV,
Breakdancer, SVDetect, and CREST. We did not use
GASVPro since it is not equipped to handle translocations.

Table 2 Structural variants inserted into the second
simulated dataset

Chr1 Bkpt1 Strand1  Chr2 Bkpt2 Strand2 Type
15 41,000,000 + 18 50,000,000 + U
13 31,000,000 + 20 43,000,000 + u
9 21,000,000 - 17 60,000,000 + u
21 30,000,000 + 2 35,000,000 - U
11 11,000,000 + 12 67,000,000 + U
16 23,000,000 + 7 44,000,001 + B
7 44,000,000 + 16 23,000,001 + B
6 92,000,000 - 10 65,000,000 + U
19 35,000,000 + 14 55,000,000 - U
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On these datasets, we compared each program’s ability to
predict breakpoints by measuring sensitivity, specificity,
and average breakpoint error. For a given SV prediction,
the breakpoint error is defined as the difference in base
pairs between the true variant boundary and the predicted
variant boundary. After identifying the individual break-
points, we applied the classification algorithm to the pre-
diction results from the 40X coverage alignments.

Performance on two primary prostate cancer datasets

In our second experiment, we investigated Bellerophon’s
ability to predict translocations in two prostate cancer
datasets PR-0508 and PR-1783 (Berger et al,, 2011).
These datasets were sequenced using the Illumina GA II
sequencer at 30X haploid coverage. The insert sizes were
approximately 400 bp and the read lengths were 101 bp.
After removing replicate artifacts using the Picard suite,
we aligned the sequence reads to the human reference
genome. We then applied the same experimental design
to the cancer data that was applied to the simulated data
described in the previous section. Thus, the resulting
sampled alignment files had read depth of approximately
22.5X, 15X, 7.5X, and 3X for the 75%, 50%, 25%, and 10%
sampling rates respectively. The list of interchromosomal
breakpoints for each dataset is provided in the original
study [21].

Results on simulated data

The results of each method on the simulated datasets are
provided in Tables 3 and 4. For the simulated data, all of
the methods performed well with regards to specificity.
However, Bellerophon had the highest total sensitivity
across all datasets. As expected, CREST did not perform
well on the 10% dataset. For this low-coverage dataset,
the variant breakpoints were spanned by few individual
reads. Because CREST only relies on the presence of soft
clipped reads, it is susceptible to losses in sensitivity in
such data, especially since it requires several soft clipped
reads to trigger the assembly portion of its algorithm.
Because Bellerophon uses paired reads in addition to
soft-clipped reads, it does not require that many indivi-
dual reads span a variant boundary. For Bellerophon, we
required at least one soft-clipped read from either side of
the breakpoint and at most five soft-clipped reads from
both sides of the breakpoint. This second requirement is
for efficiency.

The paired-end methods performed well on the lower
coverage datasets. However, as expected, they are unable
to accurately call precise breakpoints. Tables 3 and 4 high-
light the advantage of using a method like Bellerophon
that uses both paired end and split read strategies for SV
detection. Bellerophon’s breakpoint estimation perfor-
mance was similar to that of CREST, but it was more resi-
lient to decreasing levels of read depth. This is likely due
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Table 3 Simulated dataset 1 results (100 bp reads)
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40X 30X 20X 10X 4X
Method SE SP ABE SE SP ABE SE SP ABE SE SP ABE SE SP ABE
B-phon  12/12 12/12 0.96 12/12 1212 1.0 12/12 1212 0.96 11/12 1/ 1.36 5/12 5/5 0.5
SVvD A2 nmAr 2747 0 11120 1111 48405 1112 1111 74-389 11712 11/11 147-370  8/12 8/9 29-336
BD 12/12 16/16 185.3 12/12 16/16 189.1 1112 1414 1713 10/12 15/15 1376 4/12 4/4 153
GASV 12/12 12712 100-226  12/12 12/12  103-245 12/12  12/12 106-257 12/12  12/12  114-270 10/12 10/10 129-315
CREST 12712 25/25 1.2 12/12 23/23 1.2 11121515 0.9 912 11/11 08 5/12 5/5 1.1

Sensitivity, specificity, and breakpoint error of interchromosomal breakpoint calls across all five coverage levels for all five programs. SE = sensitivity (true events
captured/ # true events), SP = specificity (# predictions that capture true events/ # predictions), ABE = average breakpoint error. Since SVDetect and GASV predict
a range of breakpoints, we reported their average breakpoint errors as ranges. BreakDancer and CREST tended to have redundant predictions, but we did not
count this against specificity since redundant predictions typically supported a single common event. These redundancies could easily be merged into a single
prediction. The CREST package includes a program to remove redundancies, but BreakDancer does not address these redundant predictions.

to CREST’s dependence on several sequence reads con-
taining the variant breakpoint, whereas Bellerophon only
requires at least one such read. Because the cluster region
is very small compared to the size of the genome, it is
unlikely that even a single soft-clipped subread will remap
to this region by chance.

Bellerophon correctly classified all of the interchromoso-
mal events created in our simulated data. For the events
with partner predictions (i.e. “B” and “II” events), the part-
ner breakpoints were correctly identified in all cases. As
stated beforehand, Bellerophon can predict the presence
of balanced translocations and complex interchromosomal
insertions. GASV and SVDetect can predict balanced
translocations, but for the 100 bp simulated data, they did
not identify the chr3/chr6 reciprocal exchange. This was
possibly due to the 1000 bp duplication at the chr6 break-
point. However, GASV did correctly identify the reciprocal
translocation in the 75 bp dataset.

Results on prostate cancer datasets across varying levels
of coverage

The results on the prostate cancer datasets are provided
in Tables 5 and 6. For the PR-0508 dataset, Bellerophon’s
maximum sensitivity is 6/8, but one of the true events
presented no signal for SV detection, so it was unde-
tected by all five methods. Another event was captured
by discordant read pairs, but its breakpoints were not
spanned by soft-clipped reads. Thus, Bellerophon and
CREST did not capture this event either. Overall, Bellero-
phon’s breakpoint accuracy was slightly less than CREST,

Table 4 Simulated dataset 2 results (75 bp reads)

but its sensitivity was greater in all cases. Many false
positives were predicted by all the methods, which were
largely due to repeating elements and sequences that
were homologous to true cluster regions. From our own
results, we noticed that many of our false positives
involved breakpoint regions that were found in the cen-
tromere or in repeat-rich regions. They were also caused
by highly polymorphic regions among non-homologous
chromosomes, leading to the formation of “false” chi-
meric clusters. Despite this, the CREST program reported
far fewer false positives than the other methods because
unlike the other methods, CREST exclusively uses soft-
clipped reads to make its predictions. However, for
breakpoints spanned by few soft-clipped reads, CREST
will not perform well. In contrast, Bellerophon is less
conservative in its calls since it requires fewer such reads.
Thus, its false positive predictions are higher. However,
by combining the paired-read and single-read signatures,
Bellerophon achieved higher sensitivity than CREST, but
a lower false positive rate compared to the paired-read
methods. Essentially, the combined strategy maximizes
sensitivity while mitigating the loss of specificity.

After running the classification step on the predictions
from the prostate cancer datasets, we found 40 and 14
interchromosomal insertions in the PR-1783 and the PR-
0508 datasets, respectively. However, these events involved
at least one breakpoint that was located in the centro-
meres of their respective chromosomes, so we did not
regard them as high confidence predictions. The PR-0508
dataset contained two apparent balanced translocations,

40X 30X 20X 10X 4X
Method SE SP ABE SE SP ABE SE SP ABE SE SP ABE SE SP ABE
B-phon 9/9 9/9 35 9/9 9/9 34 8/9 8/8 1.6 9/9 9/9 06 4/9  4/4 0.5
SvD 8/9 8/9 87-451 8/9 8/9 72-436  8/9 8/9 84-422  8/9 8/9 86-416  6/9  6/6 88-344
BD 9/9 14/14 169.7 9/9 14/14 170.8 9/9 13/13 155.5 7/9 10/10 129.7 1/9 11 199.2
GASV 9/9 9/9 73177 9/9 9/9 75-189  9/9 9/9 75-201 8/9 8/8 81212 7/9  7/7 101-285
CREST 9/9 15/15 1.2 9/9 14/14 1.1 8/9 8/8 0.8 7/9 7/7 1.1 1/9 11 15
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Table 5 Results on the PR-0508 dataset
30X 22.5X 15X 7.5X 3X
Method  SE SP ABE SE SP ABE SE SP ABE SE SP ABE SE SP ABE
B-phon 6/8  6/246 15 6/8  6/180 4.2 6/8  6/132 6.0 4/8 4/63 325 1/8 1/16 45
SvD 7/8  7/738 7.6-293 7/8  7/544  124-282  7/8  7/367 27-265 4/8  4/169  353-247  2/8  2/49  30.3-275
BD 7/8  9/490 1412 7/8  8/343 165.1 5/8  5/233 131 2/8  2/112 161 0/8 N/A N/A
GASV 7/8 7/538  106-393  7/8  7/392 111-402 7/8  7/270 126418  4/8  4/133 135-439  2/8  2/43 130-425
CREST 5/8 5/55 1.1 5/8 5/43 1.1 3/8 3/37 1.0 2/8 2/17 0.5 0/8 N/A N/A

and both were correctly identified by our method. The PR-
1783 dataset contained one apparent balanced transloca-
tion that was also correctly identified. For the two datasets
used in our experiments, the original studies did not state
exactly how the interchromosomal breakpoints were
formed, so we did not have “ground truth” information on
which to compare our classification results. This is less
problematic for balanced translocations, because their
existence can be inferred by observing the breakpoint
data. Bellerophon is better suited to locate large interchro-
mosomal insertions (as seen with the simulated data).
Regarding insertions, the lack of high quality predictions
in the real data could indicate that many true events could
be smaller in size, and thus the program would be less
sensitive to their presence.

As stated beforehand, the combined strategy of Bel-
lerophon is advantageous because it combines the
strengths of paired-read and split read methods. More-
over, the weaknesses of both approaches are mitigated
by the simultaneous use of both signals. In particular,
for predicting precise breakpoints, Bellerophon only
needs one soft-clipped read on each side of a fusion
boundary. The CREST method performs best when
many such reads are present. Compared to the other
paired-end methods, Bellerophon had better specificity
and near equal sensitivity, while having superior break-
point accuracy. Given this, Bellerophon would perform
well in both low and high coverage datasets. For the
cancer datasets, some of the interchromosomal break-
points identified by our method were involved in gene
fusions as specified in the original study. Thus, Bellero-
phon is a useful tool for discovering and characterizing

Table 6 Results on the PR-1783 dataset

gene fusions caused by interchromosomal structural
variants.

Conclusions
We have presented Bellerophon, which can be used to
perform paired-end screening of translocation variants,
and it can be used to find the precise boundaries that
define the variants as well. Our approach seeks to address
the limitations inherent in methods that only consider
paired reads, such as their inability to precisely call var-
iant breakpoints. It also addresses the limitations of SV
algorithms that only consider single reads, which is pro-
blematic when very few reads span a variant breakpoint.
By combining the strategies of paired-read and single-
read approaches to this problem, Bellerophon provides a
versatile method to locate interchromosomal variants.
Bellerophon is limited in that it requires reads of suffi-
cient length in order to trigger breakpoint resolution. This
is less of a problem with methods like CREST, since it per-
forms DNA assembly on the clipped portions of reads.
Although experiments with longer reads are becoming the
norm, it may still be desirable in some settings to use data-
sets with shorter reads. Our future work will seek to
address this issue. Also, since Bellerophon does not per-
form assembly of clipped sequences, the breakpoint accu-
racy may be slightly worse than methods like CREST that
form large assembled contigs from soft-clipped reads.
Furthermore, the other methods used in this study can
detect a wider range of structural variants than Bellero-
phon. However, our lab has also produced a program
called SVMiner which can identify deletions and inversions
in NGS data, and this framework can be easily applied to

30X 22.5X 15X 7.5X 3X
Method  SE SP ABE SE SP ABE SE SP ABE SE SP ABE SE SP ABE
B-phon 9/9 9/290 7.7 9/9  9/212 8.3 7/9  7/156 26 5/9  5/86 3.7 179 1/39 0
SVD 9/9  9/936 19-301 9/9  9/651 24-293  8/9 8/413 274276 5/9 5/193 315281 1/9 1/80  43-273
BD 9/9  12/408 171.0 8/9  8/305 180 6/9  6/210 167 2/9  2/114 137 09  N/A N/A
GASV 9/9 9/450 114-278 9/9  9/331  120-285 8/9 8/226 127-303 5/9 5/107  128-291 179 1/29  142-331
CREST 5/9 5/60 32 5/9  5/49 32 3/9 3/38 2.2 1/9 1/15 1.5 0/9 N/A N/A
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that program to improve its breakpoint prediction ability
[22]. Furthermore, we will also consider adding the ability
to filter out germline variants. Lastly, we will consider
extending the method to incorporate the read depth signal
during the classification step.
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