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Abstract

Background: The key idea of DNA barcode initiative is to identify, for each group of species belonging to different
kingdoms of life, a short DNA sequence that can act as a true taxon barcode. DNA barcode represents a valuable
type of information that can be integrated with ecological, genetic, and morphological data in order to obtain a
more consistent taxonomy. Recent studies have shown that, for the animal kingdom, the mitochondrial gene
cytochrome c oxidase I (COI), about 650 bp long, can be used as a barcode sequence for identification and
taxonomic purposes of animals. In the present work we aims at introducing the use of an alignment-free approach
in order to make taxonomic analysis of barcode sequences. Our approach is based on the use of two
compression-based versions of non-computable Universal Similarity Metric (USM) class of distances. Our purpose is
to justify the employ of USM also for the analysis of short DNA barcode sequences, showing how USM is able to
correctly extract taxonomic information among those kind of sequences.

Results: We downloaded from Barcode of Life Data System (BOLD) database 30 datasets of barcode sequences
belonging to different animal species. We built phylogenetic trees of every dataset, according to compression-based
and classic evolutionary methods, and compared them in terms of topology preservation. In the experimental tests, we
obtained scores with a percentage of similarity between evolutionary and compression-based trees between 80% and
100% for the most of datasets (94%). Moreover we carried out experimental tests using simulated barcode datasets
composed of 100, 150, 200 and 500 sequences, each simulation replicated 25-fold. In this case, mean similarity scores
between evolutionary and compression-based trees span between 83% and 99% for all simulated datasets.

Conclusions: In the present work we aims at introducing the use of an alignment-free approach in order to make
taxonomic analysis of barcode sequences. Our approach is based on the use of two compression-based versions of
non-computable Universal Similarity Metric (USM) class of distances. This way we demonstrate the reliability of
compression-based methods even for the analysis of short barcode sequences. Compression-based methods, with
their strong theoretical assumptions, may then represent a valid alignment-free and parameter-free approach for
barcode studies.

Background
The use of DNA sequences in order to integrate ecologi-
cal, morphological and genetic information to improve
taxonomic studies of biological species [1] has been car-
ried out since 2003 by Herbert et al. [2]. The authors
introduced and discussed the need of having DNA
sequences as taxon “barcodes”. The main purpose was to

identify, for each kingdom of life (animals, plants, fungi,
and so on) a short DNA fragment that could exploit bio-
diversity among different species. This way taxonomists
can focus above all on discovering new species and
describing and fixing existing taxa, leaving identification
issues to barcode-based tools [3].
A 648-bp region of the cytochrome c oxidase I (COI)

gene has been identified as a DNA barcode sequence for
the animal kingdom [4]. DNA barcode approach has
proven to be useful for the study of biodiversity of very
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different species, including fishes [5,6], birds [7], bugs
[8-10].
The analysis of DNA barcode sequences is usually

done by means of clustering methods, like for instance
Neighbor Joining (NJ) method [11], that allow to obtain
phylogenetic trees (dendograms) of input sequences.
Taxonomic studies with DNA barcoding data relies on
traditional approaches, that consist of evaluating genetic
distances among species in order to perform distance-
based clustering analysis [12]. Moreover genetic dis-
tances computation needs a preprocessing step, that is
sequence alignment, in order to compare corresponding
loci. Genetic distances, also called evolutionary dis-
tances, are stochastic estimates and they do not define a
distance metric [13].
In this work we propose a novel alignment-free

approach, for the analysis of DNA barcode data based on
information theory concepts. Our aim is to employ Uni-
versal Similarity Metric (USM) [14] in order to compute
genetic distances among biological species described by
DNA barcode sequences. USM represents a class of dis-
tance measures based on Kolmogorov complexity [15] and
that defines, under some assumptions, a distance metric.
USM is said to be universal because it can be applied for

the analysis of data belonging to very different domains: it,
in fact, has been used in the field of text and language ana-
lysis, image and sound processing [16]. As said earlier,
USM is based on Kolmogorov complexity which is, unfor-
tunately, not computable. For this reason, USM needs to
be approximated. One of USM’s approximation, called
Normalized Compression Distance (NCD), has been
adopted for the first time for the analysis of biological
sequences in [16], where it has been built a coherent phy-
logenetic tree of 24 species belonging to Eutherian orders
considering complete mammalian mtDNA sequences.
Another compression-based approximation, the Informa-
tion-Based Distance (IBD) [17], was applied for the study
of whole mitochondrial genome phylogeny. USM and its
compression-based approximations have also been used
for the analysis of different biological datasets in [18],
including protein and genomic (complete mithocondrial
genome) sequences. The authors compared phylogenetic
trees obtained through USM with gold standard trees
using F-measure [19] and Robinson metric [20], obtaining
encouraging results about USM use in bioinformatics.
NCD has also been adopted for clustering of bacteria con-
sidering 16S rRNA gene sequences and topographic repre-
sentations obtained by means of Self-Organizing Map
algorithm [21,22].
Our proposed approach, then, wants to demonstrate

that it is possible to apply information theory techniques
to the study of short biological sequences for taxonomic
and phylogenetic purposes. Genetic distances, obtained
through USM’s approximations, will be used in order to

compute phylogenetic trees of 30 barcode sequence data-
sets and then those trees will be compared with the ones
obtained using traditional bioinformatics approaches
depending on sequence-alignment and evolutionary dis-
tances computation. The presented results, showing a
trees’ similarity between 80% and 100%, demonstrates our
approach can be adopted for the afore mentioned analysis.
In order to further validate our results, we also made
experimental tests with simulated barcode datasets, com-
posed of 100, 150, 200 and 500 sequences. For each data-
set composition, we considered 25 different barcode
datasets, for a total of 100 experiments. The presented
results, showing a trees’ similarity between 83% and 99%
for all simulations, strenghten our findings with real bar-
code datasets.
In this work, we use USM’s compression-based approxi-

mations for a deep study and analysis of short DNA bar-
code sequences. Preliminary results about this topic were
presented in [23].

Methods
The study of application of USM’s compression-based
approximations to barcode sequences data has been
carried out considering both Normalized Compression
Distance (NCD) and Information-Based Distance (IBD).
Those two distances have been used to compute dissimila-
rities among species belonging to different kingdoms
of life. DNA barcode datasets have been downloaded
from Barcode of Life Data System (BOLD) [24], which
represents the best source and repository for barcode
sequences. In our work we considered 30 datasets of dif-
ferent size and species composition. Using NCD and IBD
dissimilarity matrices, we built phylogenetic trees of each
of the thirty datasets through two state-of-the-art phyloge-
netic algorithms, Neighbor Joining and Unweighted Pair
Group Method with Arithmetic Mean. Those trees were
compared with the ones obtained from five different kinds
of evolutionary distances (see next Sections). Figure 1
shows the flowchart of the experimental setup.
In the following subsections a brief explanation of all the

employed techniques and algorithms will be provided.

USM and compression-based distances
Universal Similarity Metric is a class of distance mea-
sures defined in terms of Kolmogorov complexity. The
Kolmogorov complexity K(x) of a string x is the length
of the shortest binary program x* to compute x on a
universal Turing machine [14,15]. K(x|y) represents the
conditional Kolmogorov complexity of two strings,
x and y, and it is defined as the length of the shortest
binary program that produces x as output, given the
input y [14,15]. In other terms, K(x|y) is the amount of
minimal information needed to generate x when y is
given as input.
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The Information Distance (ID) [25] between two
objects is then defined as:

ID(x, y) = max {K(x|y), K(y|x)} (1)

It has been shown [25] that ID represents a metric,
that means it satisfies the following conditions:
1. ID(x, y) ≥ 0 (separation axiom);
2. ID(x, y) = 0 if and only if x = y (identity axiom);
3. ID(x, y) = ID(y, x) (symmetry);
4. ID(x, z) ≤ ID(x, y) + ID(y, z) (triangle inequality).

USM has been presented in [14] and defined as:

USM =
ID(x, y)

max {K(x), K(y)} =
max {K(x|y), K(y|x)}
max {K(x), K(y)} (2)

It has been demonstrated [14] that USM is a metric, is
normalized (it ranges between 0 an 1) and is universal.
In order to adopt USM as a distance measure, it needs

to be approximated since Kolmogorov complexity is not
computable. In our work we considered two USM approx-
imations based on data compression: Normalized Com-
pression Distance (NCD) and the Information-Based
Distance (IBD) defined in [17]. We chose NCD and IBD
because they have been successfully used for the analysis
of biological data [16-18,21,22].
NCD and IBD are respectively defined as:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)} (3)

IBD(x, y) = 1− C(x)− C(x|y)
C(xy)

(4)

In Eq. (3) and (4), C(x) is the size, in byte, of the com-
pression version of string x; C(xy) is the size of the com-
pressed version of the concatenation of string x and y;
C(x|y) is the size of the conditional compression of string
x given string y. The basic idea of a string compression
algorithm is to find portions of input string that are
repeated and to substitute them with a shorter reference.
The set of repeated string portions is indicated as “diction-
ary”. Compressing a string x given a string y means that
the compression algorithm builds the dictionary using the
string y and makes the references on string x using that
dictionary. This gives a measure of the similarity between
the two strings. Both NCD and IBD give better USM
approximations if the string are compressed with opti-
mized compression-ratios.
In our experiments, it has been used GenCompress

[26] compressor in order to compute both NCD and
IBD. GenCompress, in fact, is a Lempel and Ziv diction-
ary based compressor [27] optimized to work with DNA
sequences. If GenCompress is used with generic text
strings, as input, it works as a generic ascii-text com-
pressor, without any optimization property.

Evolutionary distances and phylogenetic trees
Evolutionary distances are distance measures used in order
to compute the dissimilarity among genetic sequences
[13]. Evolutionary distances are estimates obtained
through stochastic methods that take into account many
biological phenomena such as convergent substitutions,

Figure 1 General flowchart of the proposed comparison
approach for real barcode datasets. Global flowchart of the
proposed approach showing all the phases of our experimental
setup with real barcode datasets.

La Rosa et al. BMC Bioinformatics 2013, 14(Suppl 7):S4
http://www.biomedcentral.com/1471-2105/14/S7/S4

Page 3 of 15



multiple substitutions per site or retro-mutations. There
exist several kinds of evolutionary distance according to
the prior assumptions of the stochastic model adopted
and their related complexity. The more complex the
model, the more accurate and computational expensive
the resulting evolutionary distance. In our work, we used
five different evolutionary distances, sorted by complexity
level, in order to compute phylogenetic trees: Kimura 2-
parameter [28], Tajima-Nei [29], Tamura 3-parameter [30]
Tamura-Nei [31] and Maximum Composite Likelihood
(MCL) [32]. Kimura 2-parameter distance model corrects
for multiple hits, taking into account transitional and
transversional substitution rates, while assuming that the
four nucleotide frequencies are the same and that rates of
substitution do not vary among sites. Tajima-Nei distance
model derives from the simpler Jukes-Cantor distance [33]
and it gives a better estimate of the number of nucleotide
substitutions. Tajima-Nei model assumes an equality of
substitution rates among sites and between transitional
and transversional substitutions. Tamura 3-parameter
model corrects for multiple hits, taking into account the
differences in transitional and transversional rates and the
G+C-content bias. The Tamura-Nei distance with the
gamma model corrects for multiple hits, taking into
account the different rates of substitution between nucleo-
tides and the inequality of nucleotide frequencies. As for
MCL model, a composite likelihood is defined as a sum of
log-likelihoods for related estimates. In [32] it is showed
that pairwise evolutionary distances and the related para-
meters are accurately estimated by maximizing the com-
posite likelihood. It is also stated that a complex model
had virtually no disadvantage in the composite likelihood
method for phylogenetic analyses. In our case, the maxi-
mum composite likelihood method is used for describing
the sum of log-likelihoods for all pairwise distances esti-
mated by using the Tamura-Nei model. Evolutionary dis-
tances were computed using MEGA 5 software [34].
Phylogenetic relationships among biological species are

usually inferred by means of phylogenetic trees [35]. In
our work we considered the two most popular distance-
based algorithms to build phylogenetic trees: Neighbor
Joining (NJ) [11] and Unweighted Pair Group Method
with Arithmetic Mean (UPGMA) [36]. NJ and UPGMA
are said “distance-based” because they need as input a
dissimilarity (distance) matrix among elements. Our goal
is not to compare the two tree construction methods, but
to build and to compare two trees, one with evolutionary
distance and the other with compression distance, first
using NJ and after using UPGMA.

Phylogenetic trees comparison algorithms
It is possible to obtain different phylogenetic trees, for
the same input dataset, according to the adopted distance
measure and/or the used algorithm. That’s the reason

why there are methods to compute similarity between
trees, so that it is possible to understand the shared infor-
mation content among them. One of the most popular
similarity measures between phylogenetic trees is the
symmetric distance introduced by Robinson and Foulds
[20]. Robinson’s metric considers as tree distance the
number of “shifts”, i.e. edit operations, required to obtain
the second tree from the first one (and vice-versa). This
approach makes the symmetric distance a “local” similar-
ity algorithm, because it penalizes, in the same way, all
the mis-pairings without considering the global cluster-
ing results and the tree’s topology representing the actual
phylogenetic relationships.
For this reason, in our work, we adopted one more

recent algorithm for trees’ comparison: the PhyloCore
algorithm developed by Nye et al. [37], that has a different
approach from Robinson’s one. PhyloCore, in fact, builds
an alignment between trees by matching corresponding
branches that share the same leaf elements. Each edge
(branch) in a phylogenetic tree divides the tree into two
subtrees, creating this way a partition of the leaf nodes
into two subsets. Each pair of edges between two trees is
given a score by comparing the two corresponding parti-
tion of leaf elements. Trees partitions with the same leaf
nodes represent corresponding clusters and then a similar-
ity in terms of topology and phylogenetic preservation.
PhyloCore gives the percentage of topology similarity
between trees.

Results and discussion
In order to extensively test the proposed compression-
based approach we used both real and synthetic datasets
and compared the results with the ones obtained using the
evolutionary distances. In the following subsections we
will describe the proposed methodologies and we will dis-
cuss the comparison between the two approaches.

Barcode datasets
We performed our experiments considering real barcode
datasets all taken from Barcode Of Life Database (BOLD).
Since our purpose was to test the reliability of compres-
sion-based distance models, we considered a subset of the
whole database. We selected 30 datasets that differ each
other on the basis of the type of species (birds, fish, and so
on), the number of species, the number of barcode
sequences per species (specimens), the sequence length
and the sequence quality, expressed in terms of the per-
centage of sequences with undefined nucleotides, marked
with the “N” character. We did not consider all BOLD
database because we had no interest in obtaining a phylo-
genetic tree for all available datasets. It is very important
to consider the percentage of sequences containing unde-
fined bases because, as highlighted in Section “Methods”,
Gen-Compress works as an optimized compressor for
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DNA sequences only when dealing with string having the
four letters A,C,G,T. In all other situations, GenCompress
works as a generic ascii text compressor. That means Gen-
Compress will give bad compression ratios for those
sequences, and as a consequence NCD and IBD distance
(see Eq. (3) and (4)) will not properly approximate USM.
Since typical sequence length of COI barcode gene is
about 650 bp [4], longer sequences contain information
content related to other genes; whereas shorter sequences
have incomplete information content. In our study, we
then considered as “good” those datasets having a low per-
centage of sequences with undefined bases and sequences
of about the same length (the 650 bp length of typical COI
barcode sequence).
The complete list of the barcode datasets of our

experiments is summarized in Table 1 and Table 2.

Data simulation
In order to test our approach even in case of synthetic
data, we simulated some barcode datasets obtained using a
generation strategy similar to the one reported in [38,39].
First of all we started by simulating a random ultrametric
species tree with Mesquite software (version 2.75, build
564) [40] using the Yule model [41]. We generated four
different simulated species trees considering respectively
10, 15, 20 and 50 species, with a total tree depth of 1 mil-
lion generations. Gene trees were then simulated on the
species trees, using the Coalescent package of Mesquite,
considering 10 individuals (specimens) per species, obtain-
ing this way gene trees with, respectively, 100, 150, 200
and 500 individuals. Gene trees were simulated using an
effective population size of 10000 elements. We finally
added noise to the gene trees in order to produce non-

Table 1 Barcode datasets.

Dataset Description Project Code Taxonomic Description

Small mammal survey in Bakhuis reference sequences ABSMC Eutheria

Amazon Fishes AECI Actinopterygii

Annotated Genbank Fishes AGF 2006 AGFDO Perciformes

Annotated Genbank Fishes AGF 2008 AGFSU Siluriformes

Selected GenBank Bird AGB 2009 AGLUO Passeriformes

Selected GenBank Bird AGB 2005 AGWEB Piciformes

Arctiidae - Neotropical fauna PUBLIC records ARCPU Lepidoptera

Barcode Accumulation Curves Churchill Parasitoid BAC II BACX Hymenoptera

ROM-Bats of Panama BCUB Chiroptera

BioLep Sphingidae 1 BLSPA Lepidoptera

Phaeophyceae Brown Barcode Protocol Proj BRBP Phaeophyceae

AMNH Bushmeat Barcoding BSHMT Mammalia, Reptilia

Larvae of Chinese Hydropsychidae Part I CNLVA Trichoptera

Tetrahymenine Barcoding Project DLTC Hymenostomatida

Alaska Crabs DSALA Decapoda

Betta of Thailand DSANA Perciformes

Actinopterygii of Churchill DSFCH Actinopterygii

Fauna Germanica - Lepidoptera Geometridae Others FBLGO Lepidoptera

Fauna Germanica - Lepidoptera Macro-Microleps FBLOT Lepidoptera

Genbank Fungi - Ascomycota GBFBA Ascomycota

Lepidoptera - South American Ennominae Public GZPSE Lepidoptera

Ant Diversity in Northern Madagascar JDWAM Hymenoptera

JEMU Tephritidae JTB Diptera

Trichoptera of Churchill 2005 MHTRI Trichoptera

Southern New England Leps MJMSL Lepidoptera

Onychophora Onychophora Onychophora

Plocamium in northern Europe PLOCE Plocamiales

Mysids of the Holarctic RDMYS Mysida

Birds of Hawaii SIBHI Aves

DNA barcodes of marine fishes from the northeast Pacific Ocean and Bering Sea WXYZ Actinopterygii

The 30 barcode datasets used in our experimental tests taken from BOLD database
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ultrametric trees. We considered normally distributed
noise with a variance of 0.7 times the original branch
length, ad done in [38].
Sequences barcode datasets were simulated, from the

gene trees, using the Seq-gen software (version 1.3.3) [42].
We adopted the HKY model of evolution [43], with a tran-
sition/transversion ratio of 3, nucleotide frequencies of 0.3
(A), 0.2 (C), 0.2 (G), 0.3 (T), and sequence length of 650
bp, representing the typical COI gene length. For each
gene tree, we obtained 25 barcode datasets, resulting in a
total of 100 simulated datasets.

Experimental results
The purpose of the proposed experimental tests is to
demonstrate that compression-based distances represent
a valid alignment-free approach for the analysis of

phylogenetic relationships among short barcode
sequences. In Tables 3, 4, 5, 6, 7 there are summarized
the similarity scores, obtained using PhyloCore score,
among evolutionary based trees and compression based
trees of real barcode datasets. More in detail, for every
pair of compression-based distances (NCD and IBD) and
for every pair of phylogenetic tree inference algorithms
(NJ and UPGMA), each table gives the similarity scores
according to a reference evolutionary distance model
(Kimura 2-parameter, Tamura-Nei and so on).
Since, in our experiments, we use two kinds of com-

pression-based distances, NCD and IBD, and two differ-
ent phylogenetic tree inference algorithms, NJ and
UPGMA, we are interested in the specific behavior of
each distance measure and algorithm. In Figure 2(a) we
show the curve trends, related to NCD and IBD methods,

Table 2 Barcode datasets description.

DATASET # Species # Specimens % Sequences with undefined bases Sequence Length

ABSMC 46 72 1.3% 650-657

AECI 30 30 0.0% 605-679

AGFDO 22 22 0.0% 901

AGFSU 42 48 2.0% 633-639

AGLUO 38 46 2.1% 630

AGWEB 33 33 87.0% 900

ARCPU 28 52 5.0% 625-658

BACX 74 119 2.5% 616-657

BCUB 30 108 0.9% 657

BLSPA 86 86 4.0% 604-658

BRBP 17 106 0.0% 658

BSHMT 22 141 5.6% 645

CNLVA 33 73 5.0% 625-658

DLTC 40 67 1.5% 689-1821

DSALA 12 44 11.0% 649-651

DSANA 14 274 0.0% 652

DSFCH 17 173 3.4% 620-650

FBLGO 44 122 2.4% 580-658

FBLOT 34 64 3.0% 419-658

GBFBA 27 27 7.0% 669

GZPSE 23 78 7.7% 601-658

JDWAM 103 226 8.8% 620-650

JTB 53 225 0.4% 658-899

MHTRI 13 108 3.7% 620-650

MJMSL 76 198 4.5% 559-658

Onychophora 52 210 0.9% 451-884

PLOCE 33 102 0.0% 620-660

RDMYS 6 37 32.0% 636

SIBHI 38 85 0.0% 650-694

WXYZ 9 34 3.0% 650-680

The main features of the 30 barcode datasets used in our experimental tests
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representing the PhyloCore similarity mean scores, con-
sidering every evolutionary distance model, for the input
datasets. The two curves have a similar trend, that is
NCD and IBD give very close similarity scores, except for
AGWEB, CLNVA, DSFCH and RDMYS datasets. That
chart does not give enough information about which
compression-based distance produces the most regular
results in terms of topology similarity. Our next step was
then to check, separately, the similarity scores obtained
using the NJ and UPGMA algorithms. In Figure 2(b)

and 2(c) we show the trend curves of, respectively, the
PhyloCore similarity mean scores, considering every evo-
lutionary distance model and only the NJ algorithm; and
the PhyloCore similarity mean scores, considering every
evolutionary distance model and only the UPGMA algo-
rithm. From those charts we can state NCD and IBD dis-
tance models give quite identical similarity scores in
trees’ comparison when using UPGMA algorithm for
tree inference. Using NJ algorithm, otherwise, we obtain
a very unstable trend, with similarity scores generally

Table 3 Tree similarity score among compression-based
trees and evolutionary trees obtained with Kimura
2-parameter distance.

Dataset PhyloCore

NCD IBD

NJ UPGMA NJ UPGMA

ABSMC 0.61 0.75 0.59 0.85

AECI 0.79 0.86 0.77 0.84

AGFDO 0.77 0.89 0.81 0.92

AGFSU 0.76 0.73 0.89 0.77

AGLUO 0.72 0.80 0.72 0.82

AGWEB 0.86 0.84 0.85 0.85

ARCPU 0.60 0.78 0.87 0.81

BACX 0.76 0.79 0.79 0.80

BCUB 0.87 0.92 0.87 0.93

BLSPA 0.94 0.87 0.87 0.87

BRBP 0.89 0.99 0.82 0.99

BSHMT 0.81 0.88 0.74 0.90

CNLVA 0.81 0.91 0.88 0.94

DLTC 0.88 0.92 0.88 0.92

DSALA 0.82 0.89 0.82 0.90

DSANA 0.72 0.91 0.63 0.91

DSFCH 0.68 0.84 0.54 0.81

FBLGO 0.85 0.88 0.85 0.88

FBLOT 0.90 0.92 0.90 0.94

GBFBA 0.82 0.88 0.79 0.85

GZPSE 0.93 0.97 0.95 0.92

JDWAM 0.81 0.88 0.80 0.87

JTB 0.84 0.84 0.85 0.89

MHTRI 0.59 0.90 0.60 0.89

MJMSL 0.90 0.97 0.90 0.98

Onychophora 0.88 0.91 0.88 0.91

PLOCE 0.93 0.95 0.91 0.94

RDMYS 0.81 0.89 0.82 0.90

SIBHI 0.82 0.88 0.79 0.88

WXYZ 0.79 0.92 0.76 0.95

PhyloCore similarity scores of the 30 barcode datasets. The score are obtained
comparing compression-based trees, using both NCD and IBD, with
evolutionary-based trees, using Kimura 2-parameter distance. The trees were
generated through NJ and UPGMA algorithm.

Table 4 Tree similarity score among compression-based
trees and evolutionary trees obtained with Tajima-Nei
distance.

Dataset PhyloCore

NCD IBD

NJ UPGMA NJ UPGMA

ABSMC 0.93 0.95 0.95 0.93

AECI 0.81 0.87 0.82 0.87

AGFDO 0.88 0.92 0.88 0.92

AGFSU 0.87 0.83 0.85 0.88

AGLUO 0.90 0.97 0.90 0.98

AGWEB 0.76 0.73 0.89 0.77

ARCPU 0.94 0.87 0.87 0.87

BACX 0.76 0.80 0.79 0.80

BCUB 0.87 0.89 0.87 0.90

BLSPA 0.82 0.88 0.78 0.85

BRBP 0.89 1,00 0.82 1,00

BSHMT 0.80 0.87 0.74 0.90

CNLVA 0.81 0.91 0.87 0.94

DLTC 0.78 0.86 0.76 0.85

DSALA 0.87 0.91 0.87 0.91

DSANA 0.72 0.91 0.63 0.91

DSFCH 0.68 0.84 0.54 0.80

FBLGO 0.85 0.87 0.84 0.87

FBLOT 0.82 0.89 0.83 0.90

GBFBA 0.80 0.86 0.85 0.87

GZPSE 0.86 0.84 0.85 0.85

JDWAM 0.81 0.87 0.80 0.87

JTB 0.61 0.75 0.59 0.84

MHTRI 0.59 0.89 0.59 0.88

MJMSL 0.82 0.88 0.79 0.88

Onychophora 0.77 0.89 0.81 0.92

PLOCE 0.93 0.95 0.91 0.94

RDMYS 0.60 0.72 0.87 0.76

SIBHI 0.90 0.93 0.92 0.95

WXYZ 0.79 0.89 0.76 0.89

PhyloCore similarity scores of the 30 barcode datasets. The score are obtained
comparing compression-based trees, using both NCD and IBD, with
evolutionary-based trees, using Tajima-Nei distance. The trees were generated
through NJ and UPGMA algorithm.
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below than the corresponding scores obtained through
UPGMA algorithm. Moreover, in Figure 3 we show in an
histogram the highest similarity values, considering all
the evolutionary distance models and input datasets,
obtained using NJ and UPGMA algorithm. From that
chart, we can see that in 90% (27/30) of cases, the best
similarity scores from comparison among evolutionary
based trees and compression based trees are obtained
using UPGMA. That means UPGMA algorithm is the best
tree inference algorithm when adopting a compression-

based distance models. Looking again at Figure 2(c), the
lesser scores, below 80% of similarity, are obtained for
AGWEB, JTB, and RDMYS datasets. According to Table
2, AGWEB and RDMYS are the datases with the highest
percentage of sequences with undefined bases, respectively
87% and 32%. These low similarity results are then justi-
fied by considering the low quality of input datasets, that
gave bad compression ratios using GenCompress that in
turn produced a bad estimate of NCD and ICD and conse-
quently a wrong phylogenetic tree. As for JTB, its low

Table 5 Tree similarity score among compression-based
trees and evolutionary trees obtained with Tamura 3-
parameter distance.

Dataset PhyloCore

NCD IBD

NJ UPGMA NJ UPGMA

ABSMC 0.93 0.97 0.95 0.92

AECI 0.81 0.89 0.82 0.90

AGFDO 0.88 0.92 0.88 0.92

AGFSU 0.87 0.83 0.85 0.88

AGLUO 0.90 0.97 0.90 0.98

AGWEB 0.76 0.73 0.89 0.77

ARCPU 0.94 0.87 0.87 0.87

BACX 0.76 0.79 0.79 0.80

BCUB 0.87 0.91 0.87 0.93

BLSPA 0.82 0.88 0.79 0.85

BRBP 0.89 0.99 0.82 0.99

BSHMT 0.80 0.87 0.74 0.90

CNLVA 0.81 0.91 0.88 0.94

DLTC 0.81 0.76 0.81 0.74

DSALA 0.88 0.91 0.88 0.91

DSANA 0.72 0.91 0.63 0.91

DSFCH 0.68 0.84 0.54 0.81

FBLGO 0.85 0.87 0.85 0.86

FBLOT 0.81 0.89 0.82 0.90

GBFBA 0.80 0.80 0.85 0.82

GZPSE 0.86 0.84 0.85 0.85

JDWAM 0.81 0.88 0.80 0.87

JTB 0.61 0.74 0.59 0.84

MHTRI 0.59 0.89 0.60 0.88

MJMSL 0.82 0.88 0.79 0.88

Onychophora 0.77 0.89 0.81 0.92

PLOCE 0.93 0.95 0.91 0.94

RDMYS 0.60 0.74 0.87 0.77

SIBHI 0.90 0.92 0.90 0.94

WXYZ 0.79 0.78 0.76 0.78

PhyloCore similarity scores of the 30 barcode datasets. The score are obtained
comparing compression-based trees, using both NCD and IBD, with
evolutionary-based trees, using Tamura 3-parameter distance. The trees were
generated through NJ and UPGMA algorithm.

Table 6 Tree similarity score among compression-based
trees and evolutionary trees obtained with Tamura-Nei
distance.

Dataset PhyloCore

NCD IBD

NJ UPGMA NJ UPGMA

ABSMC 0.93 0.95 0.95 0.93

AECI 0.81 0.87 0.82 0.87

AGFDO 0.88 0.92 0.88 0.92

AGFSU 0.86 0.84 0.84 0.89

AGLUO 0.90 0.84 0.90 0.85

AGWEB 0.76 0.73 0.88 0.77

ARCPU 0.90 0.87 0.85 0.87

BACX 0.76 0.80 0.78 0.80

BCUB 0.89 0.90 0.86 0.91

BLSPA 0.80 0.86 0.79 0.85

BRBP 0.90 0.99 0.84 0.99

BSHMT 0.81 0.87 0.73 0.90

CNLVA 0.81 0.91 0.87 0.94

DLTC 0.81 0.86 0.81 0.85

DSALA 0.87 0.91 0.87 0.91

DSANA 0.72 0.91 0.63 0.91

DSFCH 0.68 0.83 0.54 0.80

FBLGO 0.86 0.87 0.84 0.87

FBLOT 0.82 0.89 0.84 0.91

GBFBA 0.80 0.86 0.85 0.87

GZPSE 0.86 0.84 0.85 0.85

JDWAM 0.80 0.88 0.79 0.87

JTB 0.64 0.75 0.65 0.84

MHTRI 0.59 0.89 0.59 0.88

MJMSL 0.83 0.89 0.79 0.89

Onychophora 0.77 0.89 0.81 0.92

PLOCE 0.93 0.95 0.91 0.94

RDMYS 0.60 0.74 0.87 0.77

SIBHI 0.90 0.92 0.92 0.93

WXYZ 0.82 0.79 0.87 0.77

PhyloCore similarity scores of the 30 barcode datasets. The score are obtained
comparing compression-based trees, using both NCD and IBD, with
evolutionary-based trees, using Tamura-Nei distance. The trees were
generated through NJ and UPGMA algorithm.
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similarity score is explained considering the different
lengths of its sequences, ranging from 658 to 899 bp. As
early said in Section “Barcode Datasets”, longer sequences
contain additional information not related to COI barcode
gene and furthermore the spread of sequence length influ-
ences NCD and IBD computation (Eq. (3) and (4)).
In order to realize what are the most similar com-

pression-based and evolutionary-based trees, with
regards to the evolutionary distance model adopted, we
draw the histogram of Figure 4. The histogram is
obtained considering the highest similarity values from

Tables 3, 4, 5, 6, 7, that is considering both NJ and
UPGMA algorithms and both NCD and IBD distance
models. The chart in Figure 4 shows the highest simi-
larity scores are reached in the comparison among
compression-based trees and evolutionary-based trees
obtained through MCL distance model. Moreover in
Figure 5 we show the boxplot of similarity scores
obtained comparing MCL-based trees and compres-
sion-based (NCD and IBD) trees using both NJ and
UPGMA algorithm. This chart confirms the best simi-
larity scores, in terms of minimum value, maximum
value and mean values, are reached in the comparison
between MCL-based trees and compression-based trees
using UPGMA algorithm. Finally, in the piechart of
Figure 6, we summarize the mean similarity scores for
the 30 datasets resulting from the comparison between
both compression-based trees and MCL-based trees
using UPGMA algorithm. The piechart shows that in
6% of cases (2/30) we obtain similarity score below
80% (corresponding to AGWEB and JTB datasets); in
58% of cases we have a similarity scores ranging from
80% and 90% (17/30); in 33% of considered datasets
(10/30) we obtain a similarity score over 90% and in
the 3% of cases (1/30) we reach a 100% of tree similar-
ity. It interesting to note that the perfect similarity
score (100%) is obtained for BPRP dataset that, as
reported in Table 2, represents an ideal barcode data-
set, with 658bp sequence lenght and 0% of sequences
with undefined bases. As explained in Section “Evolu-
tionary Distances and Phylogenetic Trees”, MCL
method gives a better estimates of evolutionary dis-
tance than the other four distance models, and conse-
quently more accurate phylogenetic trees. From our
experimental study we found NCD and IBD compres-
sion-based distances,using UPGMA algorithm, build
phylogenetic trees that have the best similarity scores
with MCL-based trees, which, in turn, give the most
accurate phylogenetic relationships.
In order to strengthen our experimental results, we car-

ried out other tests using simulated data, as described in
Section “Data Simulation”. Results obtained with simulated
datasets are summarized in Table 8 and 9. Since we
obtained analogous results using both NCD and IBD dis-
tance measures, we report only the similarity scores
obtained using NCD for sake of simplicity. For each number
of input sequences (100, 150, 200, 500), we replicated the
simulation 25-fold, for a total of 100 new experiments. Con-
sidering all five evolutionary models and the NJ algorithm
we evaluated the comparison between compression-based
and evolutionary trees, obtaining a very high mean similar-
ity score (83% with a variance between 10−3 and 10−4).
Using the UPMGMA algorithm the similarity score was
even higher with a mean of 99% and a variance between
10−3 and 10−6 .

Table 7 Tree similarity score among compression-based
trees and evolutionary trees obtained with MCL distance.

Dataset PhyloCore

NCD IBD

NJ UPGMA NJ UPGMA

ABSMC 0.95 0.97 0.95 0.92

AECI 0.86 0.85 0.87 0.88

AGFDO 0.88 0.88 0.88 0.88

AGFSU 0.86 0.81 0.85 0.85

AGLUO 0.97 0.99 0.97 1,00

AGWEB 0.76 0.77 0.89 0.76

ARCPU 0.93 0.87 0.88 0.87

BACX 0.76 0.79 0.79 0.80

BCUB 0.87 0.91 0.87 0.92

BLSPA 0.80 0.86 0.77 0.84

BRBP 0.89 1,00 0.82 1,00

BSHMT 0.81 0.88 0.73 0.90

CNLVA 0.81 0.92 0.87 0.95

DLTC 0.79 0.86 0.77 0.84

DSALA 0.87 0.90 0.87 0.90

DSANA 0.75 0.91 0.66 0.91

DSFCH 0.68 0.84 0.53 0.80

FBLGO 0.84 0.88 0.84 0.88

FBLOT 0.81 0.88 0.82 0.90

GBFBA 0.80 0.86 0.85 0.87

GZPSE 0.84 0.81 0.84 0.82

JDWAM 0.81 0.88 0.80 0.87

JTB 0.63 0.75 0.64 0.83

MHTRI 0.59 0.90 0.58 0.89

MJMSL 0.81 0.87 0.78 0.88

Onychophora 0.78 0.89 0.82 0.92

PLOCE 0.93 0.94 0.91 0.94

RDMYS 0.60 0.78 0.87 0.81

SIBHI 0.92 0.93 0.91 0.95

WXYZ 0.78 0.90 0.73 0.92

PhyloCore similarity scores of the 30 barcode datasets. The score are obtained
comparing compression-based trees, using both NCD and IBD, with
evolutionary-based trees, using MCL distance. The trees were generated
through NJ and UPGMA algorithm.
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We can state, then, that our proposed approach is
very reliable using simulated data and robust enough to
be applied with real barcode datasets.

Speed evaluation
In order to compare the processing time of the proposed
algorithm with the speed of evolutionary distance

methods, we performed additional experiments. It is possi-
ble to notice that the compression-based distance can
be calculated separately for each sequence versus all the
other, so that, in principle we can calculate all the distance
running all the programs at the same time (one program
for each sequence running on one processor core), this
makes the compression-based method intrinsically

Figure 2 Mean PhyloCore similarity scores of 30 input datasets. Mean PhyloCore similarity scores resulting from the comparison among
NCD and IBD based trees with the trees obtained from all the five evolutionary distance models. We considered separetely the results obtained
using both NJ and UPGMA algorithm(a), only NJ algorithm (b), only UPGMA algorithm (c). The trend curves show NCD and IBD distance models
give a quite identical similarity scores in trees’ comparison when using UPGMA algorithm for tree inference.
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Figure 3 Histogram of the best similarity scores, for all the evolutionary distance models and input datasets, using NJ and UPGMA
algorithm. In 90% (27/30) of cases, the best similarity scores from comparison among evolutionary based trees and compression based trees
are obtained using UPGMA.

Figure 4 Histogram of the best Phylocore similarity scores for all input datasets. For each dataset, it is shown the best similarity score
resulting from the pairwise comparison of compression-based trees and the five trees derived from the five evolutionary distance models. The
chart shows the highest similarity scores are reached in the comparison among compression-based trees and evolutionary-based trees obtained
through MCL distance model.

La Rosa et al. BMC Bioinformatics 2013, 14(Suppl 7):S4
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Figure 5 Boxplot of similarity scores obtained comparing MCL-based trees and compression-based trees using both NJ and UPGMA
algorithm. The best similarity scores, in terms of minimum value, maximum value and mean values, are reached in the comparison between
MCL-based trees and compression-based trees, using both NCD and IBD distances, with UPGMA algorithm.

Figure 6 Piechart summarizing the mean similarity scores among compression-based trees and MCL-based trees obtained using
UPGMA algorithm. From the chart it is shown that in 7% of cases (2/30) we obtain similarity score below 80% (corresponding to AGWEB and
JTB datasets); in 57% of cases we have a similarity scores ranging from 80% and 90% (17/30); in 33% of considered datasets (10/30) we obtain a
similarity score over 90% and in the 3% of cases (1/30) we reach a 100% of tree similarity.
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parallel. If we want to compare the performance of the
proposed method to the one using the alignment distance,
we have to take into account a parallel version of the
alignment algorithm. We used the algorithm described in
[44], that exploits the multi-core processor and becomes
faster each time a processor core is available. In this algo-
rithm the speed increment decreases in non-linear way
each time we double the number of cores. On the other
hand, as said above, in the compression-based distance
method the speed increment is constant and each time we
double the number of cores, the speed doubles. For this
reason if we compare the running time of the two methods
in term of number of cores we will find a trade-off point.
Experiments for evaluation of running times were carried
out using a multicore system up to 16 cores. We tested the
execution times of both compression and alignment for
barcode dataset of 500 sequences versus the number of
cores. Running times are summarized in Figure 7, that
shows real (solid line) and estimated (dashed line) times in
log2 base. Compression-based approach overcomes align-
ment approach using a multicore system after 32 cores.

Conclusions
In this paper we presented a novel alignment-free
approach for the study of barcode genetic sequences. We
used two compression-based approximations of USM,
namely NCD and IBD, for reconstructing phylogenetic
trees of short barcode sequences. In previous works, in

fact, compression-based distances were used only for the
analysis of whole mithocondrial genomes. We tested our
approach considering 30 barcode datasets, of different
size and belonging to different species, and 100 simulated
datasets composed of different number of sequences
(100, 150, 200, 400). Compression-based trees, obtained
from NCD and IBD distances, were compared with evo-
lutionary-based trees derived using five evolutionary dis-
tance models: Kimura 2-parameter, Tajima-Nei, Tamura
3-parameter, Tamura-Nei and MCL. Trees were obtained
using NJ and UPGMA algorithms. Our experimental
tests demonstrated that using NCD and IBD compres-
sion-based distances we were able to obtain phylogenetic
trees quite similar to evolutionary-based trees, with simi-
larity scores ranging from 80% to 100%. More in detail,
the highset similarity scores were reached comparing com-
pression-based trees with MCL-based trees using UPGMA
algorithm, with no substantial differences between NCD
and IBD. MCL provides a better esitmates of evolutionary
distance, and as a consequence more accurate phyloge-
netic trees, than the remaining considered methods. As for
simulated data, our experimental trials show very stable
results with regards to the number of input sequences and
evolutionary model considered, with similarity scores
spanning from 83%, using NJ algorithm, and 99%, using
UPGMA algorithm. NCD and IBD compression distance
models represent a sound alignment-free and parameter-
independent approach, based on strong theoretical

Table 8 Tree similarity score (mean and variance) among compression-based trees and evolutionary trees, obtained
with NJ, of simulated datasets.

Simulated Dataset #sequences Kimura Tajima-Nei Tamura TamuraTamura-Nei MCL

NJ NJ NJ NJ NJ

score variance score variance score variance score variance score variance

100 0.83 4.12E-04 0.83 4.65E-04 0.84 4.77E-04 0.83 4.98E-04 0.83 3.49E-04

150 0.86 8.64E-04 0.86 4.45E-04 0.86 6.44E-04 0.86 4.94E-04 0.86 5.77E-04

200 0.85 1.22E-03 0.85 1.07E-03 0.85 1.23E-03 0.85 9.71E-04 0.84 1.65E-03

500 0.81 1.83E-04 0.81 2.19E-04 0.81 2.23E-04 0.81 2.01E-04 0.81 2.76E-04

PhyloCore similarity scores of the simulated datasets. According to the number of barcode sequences, each simulation was replicated 25-fold, for a total of 100
simulated dataset. The scores (mean and variance) are obtained comparing compression-based trees, using NCD, with evolutionary-based trees obtained through
all five evolutionary models. The trees were generated using NJ algorithm.

Table 9 Tree similarity score (mean and variance) among compression-based trees and evolutionary trees, obtained
with UPGMA, of simulated datasets.

Simulated Dataset #sequences Kimura Tajima-Nei Tamura TamuraTamura-Nei MCL

UPGMA UPGMA UPGMA UPGMA UPGMA

score variance score variance score variance score variance score variance

100 0.99 8.22E-05 0.99 1.02E-04 0.99 7.23E-05 0.99 6.60E-05 0.99 4.80E-05

150 0.99 7.07E-06 0.99 4.43E-05 0.99 1.42E-05 0.97 4.20E-03 0.99 6.25E-05

200 0.98 1.32E-04 0.98 1.17E-04 0.98 1.28E-04 0.98 9.63E-05 0.98 6.61E-05

500 0.98 2.48E-05 0.98 4.22E-05 0.98 3.94E-05 0.98 4.32E-05 0.98 3.11E-05

PhyloCore similarity scores of the simulated datasets. According to the number of barcode sequences, each simulation was replicated 25-fold, for a total of 100
simulated dataset. The scores (mean and variance) are obtained comparing compression-based trees, using NCD, with evolutionary-based trees obtained through
all five evolutionary models. The trees were generated using UPGMA algorithm.
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assumptions. Using these models it is possible to obtain
very reliable phylogenetic trees and they are a valid tool
for the analysis of barcode sequences.
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