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Abstract

Background: It is a common practice in bioinformatics to validate each group returned by a clustering algorithm
through manual analysis, according to a-priori biological knowledge. This procedure helps finding functionally related
patterns to propose hypotheses for their behavior and the biological processes involved. Therefore, this knowledge is
used only as a second step, after data are just clustered according to their expression patterns. Thus, it could be very
useful to be able to improve the clustering of biological data by incorporating prior knowledge into the cluster
formation itself, in order to enhance the biological value of the clusters.

Results: A novel training algorithm for clustering is presented, which evaluates the biological internal connections of
the data points while the clusters are being formed. Within this training algorithm, the calculation of distances among
data points and neurons centroids includes a new term based on information from well-known metabolic pathways.
The standard self-organizing map (SOM) training versus the biologically-inspired SOM (bSOM) training were tested
with two real data sets of transcripts and metabolites from Solanum lycopersicum and Arabidopsis thaliana species.
Classical data mining validation measures were used to evaluate the clustering solutions obtained by both algorithms.
Moreover, a new measure that takes into account the biological connectivity of the clusters was applied. The results of
bSOM show important improvements in the convergence and performance for the proposed clustering method in
comparison to standard SOM training, in particular, from the application point of view.

Conclusions: Analyses of the clusters obtained with bSOM indicate that including biological information during
training can certainly increase the biological value of the clusters found with the proposed method. It is worth to
highlight that this fact has effectively improved the results, which can simplify their further analysis.
The algorithm is available as a web-demo at http://fich.unl.edu.ar/sinc/web-demo/bsom-lite/. The source code and
the data sets supporting the results of this article are available at http://sourceforge.net/projects/sourcesinc/files/bsom.
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Background
In the biology field, clustering is implemented under
the guilt-by-association principle [1], that is to say, the
assumption that compounds involved in a biological pro-
cess behave similarly under the control of the same regu-
latory networks [2]. It is assumed that if a metabolic com-
pound with unknown function varies in a similar fashion
with a known metabolite from a defined metabolic path-
way, it can be inferred that the unknown element is also
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likely to be involved in the same pathway [3]. Therefore,
one cluster that groups some metabolites indicates that
they can be connected within common metabolic path-
ways. This pathway-based approach to identify metabolic
traits results in more biological information (hypothe-
sis) that has to be tested through the design of biological
experiments (wet experiments) [4]. From this perspective,
it could be useful to perform a detailed inspection of the
patterns inside a cluster to determine memberships to
known metabolic pathways.
Due to the limitations of traditional algorithms, com-

putational intelligence has been recently applied to bioin-
formatics with promising results [5,6]. For example,
self-organizing maps (SOMs) [7] are a special class of neu-
ral networks that use competitive learning. SOMs can
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represent complex high-dimensional input patterns into
a simpler low-dimensional discrete map, with prototype
vectors that can be visualized in a two-dimensional lattice
structure, while preserving the proximity relationships of
the original data as much as possible. SOMs have been
used for unsupervised clustering of transcriptome pro-
files [8,9] as well as metabolites [10]. For example in [11]
SOM clustering was used for the analysis of Arabidopsis
thaliana datasets, helping in the hypothesis validation of
a metabolic mechanism responding to sulfur deficiency.
SOMs have been recently proposed also for the integra-
tion and knowledge discovery of coordinated variations
in transcriptomics and metabolomics data [12], and a
software tool for SOM application has been designed to
give support to the data mining task of datasets derived
from different databases, providing user-friendly inter-
face and several visualization tools easy to understand by
non-expert users [13].
When evaluating a clustering solution, it is a common

(and necessary) practice to validate each group returned
by a clustering algorithm through manual analysis and
visual inspection, according to a-priori biological knowl-
edge. Traditionally, the known annotations are used only
as a second step, after data have been clustered according
to their variation patterns. Only those clusters in which
many genes (and proteins/metabolites) are annotated
within the same category (for example, the sameMapMan
BIN [14] or Gene Ontology (GO) terms [15]), are then
selected for further analysis [16-19]. For each pattern, its
annotations and memberships to well-known metabolic
pathways are generally assessed. The results obtained after
inspection of each cluster, by hand, may indicate function-
ally related patterns. Automatic pos-clustering validation
proposals like “gene set enrichment analysis” [20] focus on
groups of genes that share common biological function,
chromosomal location or regulation. Similarly, Protein-
Protein-Interactions (PPI) derived metrics can be used
in combination with genomic data to validate clusters
with respect to their biological relevance [21]. These met-
rics, however, can only be applied to clusters of genes.
Recently, a biologically inspired validity measure that can
be applied not only to groups of genes but also to genes
and metabolites together has been proposed [22].
Actually, there is a growing interest in improving the

cluster analysis of biological data by incorporating such
prior basic knowledge into the clustering itself, in order
to increase the biological meaning of the clusters that are
subjected to later scrutiny. In the past few years, several
methods have been introduced with that aim, since inte-
grating a biological similarity measure or biological infor-
mation into a clustering method can lead to the potential
enhancement in the performance of the clustering, as a
result of the good correlation between biological similar-
ity and gene co-expression levels [23,24]. For example, the

distance function built by [25] combines information from
expression data and the proximity of the proteins in a
metabolic pathway network. In [26] a similar approach is
presented, where a graph is used based on the GO struc-
ture. The work of [27] proposed shrinking the distances
between pairs of genes sharing a common annotation. In
fact, the distancemeasure between two genes can bemod-
ified to be a linear combination of the similarity of their
expression profiles and their functional similarity [28-30].
Moreover, a classical clustering method can be modified
to work with such a newly defined metric, for example, by
slicing a hierarchical clustering tree obtained from a gene
dataset to get clusters that are as consistent as possible
with well-known gene annotations [31]. Another exam-
ple of using heterogeneous genomic data into a clustering
algorithm is proposed by [32], with the aim of identify-
ing highly correlated genes more effectively than using
only expression data or a single data source. Most of these
clustering methods utilize only the annotations provided
by the GO ontology or its hierarchical structure through
the use of similarity measures between terms. Although
GO is heavily used in systems biology, redundancy and
problems with stability over time have been recently indi-
cated [33]. Besides, this information, cannot be associated
to other molecular entities such as metabolites. It can
be used for genes and their products only. Addition-
ally, there are many genes that are currently unannotated
and this situation is generally handled by excluding them
from the analysis or by considering them as exceptional
cases.
In summary, it can be anticipated that the integration

of -omics measurements with additional relevant bio-
logical information is expected to improve the quality
and the biological significance of unsupervised clustering.
This paper proposes and illustrates this integrative prin-
ciple, not only for genomic data but also for metabolic
and integrated datasets. We present a novel training algo-
rithm that combines biological similarities derived from
metabolic pathways information and demonstrate that its
application improves the quality of the clustering. This
new approach weights the biological connectivity of the
patterns (genes and/or metabolites) during training of the
clustering method. This can be achieved through the use
of a new term for the biological assessment of the clus-
ters while they are being formed. The algorithm takes
into account not only the classical Euclidean distance
between patterns, but also a biological term assessed by
means of the number of common pathways. The pro-
posed approach was tested on a set of transcriptome
and metabolome data from Solanum lycopersicum and
Arabidopsis thaliana, showing improved clusters forma-
tion when using the proposed biologically inspired SOM
(bSOM), in comparison to the standard SOM train-
ing (sSOM). This improvement is demonstrated by the
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increase of biological connections in the clusters found by
bSOM and the biological analysis of the clusters found.

Methods
In the following section we explain in detail the new
biologically-inspired algorithm for SOM training. After
that, the validation measures used for performance com-
parison among training algorithms are presented. Finally,
the datasets used for SOM training are described.

Improved SOM training usingmetabolic pathways
SOM clustering is based on nodes (neurons) that compete
in response to a given input. Inputs are fully connected
to the output nodes. Each output node corresponds to
a cluster and is associated with a prototype or synaptic
weight vector [34]. Given an input pattern, competition
among neurons takes place, when their similarity (or dis-
tance) to the input is computed. Thus, the neurons in the
output layer compete with each other, and only the closest
to the input becomes activated or fired. The weight vector
of this winning neuron is further moved towards (closer
to) the input pattern. This competitive learning paradigm
allows learning for the neuron that best matches the given
input pattern and it is also known as winner-takes-all
learning [35].
When competition among the neurons is complete,

SOM updates not only the weight vector of the winning
neuron but also a set of weights within its neighborhood,
according to a neighborhood function �. This function
defines the neurons that will be affected by the changes in
the winning neuron. We have used the standard squared
neighborhood. Thus for example, if the radius of the
neighborhood is 1, all the 8 neurons in touch with the
winning one will be updated as well. At the beginning of
training, � has a radius equal to a quarter of the size of
the map. During training, this radius is reduced linearly
with training epochs, until reaching 0 (that is to say, at this
point only the winning neuron is updated). The rate of
the modifications at different neurons is a monotonically
decreasing scalar function of the training epochs. Its form
is not so important as long as its value is large at the begin-
ning of the process, gradually reducing it to a fraction of it
in successive steps [7].
The goal of SOMs is to represent complex high-

dimensional input patterns into a simpler low-
dimensional discrete map, with prototype vectors that can
be located in a two-dimensional lattice structure, while
preserving the proximity relationships of the original
data as much as possible [36]. SOM structures the output
nodes (neurons) in such a way that nodes in closer prox-
imity are more similar to each other than to other nodes
that are farther apart. Having finished the training, input
patterns are projected into the lattice, corresponding to
adjacent neurons connected to each other through the

neighborhood function, giving a clear topology of how the
network fits into the input space [35]. In this projection,
an input pattern is associated to a neuron (cluster) simply
according to minimum distance to all neuron prototypes.
In Algorithm 1 we present a new algorithm for SOM

training over biological datasets (bSOM). The following
notation is used: X is the dataset formed by x� data sam-
ples; �m is the set of samples that have been grouped in
the cluster m and W is the set of the wm centroids of
the clusters. We propose the use of a combination of the
classical Euclidean distance among patterns and the neu-
rons centroids, plus an additional term that measures the
internal biological connectivity of the patterns grouped
in a cluster (line 7). The distance is computed using the
weighted sum

d�m = (1 − α) ε�m + α b�m, (1)
where α is a regularization parameter that can be var-
ied between 0 and 1 and controls the weight given to the
biological distance during training; ε�m = ‖x� − wm‖2

Algorithm 1: SOM training using metabolic pathways
(bSOM).
Inputs :

X: training set
n: map size (n × n)
α: biological weight
ρ: matrix of metabolic pathway connections

Outputs:
�: clusters
W : centroids

begin
N = |X|
k = n × n
Define neurons neighborhood function �

Initialize the map by choosing random weights
values wm� ∈[−0.5,+0.5]
repeat

Select a pattern at random x� Calculate the
biological contribution:

��∈m = �m ∪ x�, π�∈m = 2
∑

∀i,j/xi ,xj∈��∈m ρij

|��∈m|2−|��∈m|
��/∈m = �m − x�, π�/∈m = 2

∑
∀i,j/xi ,xj∈��/∈m ρij

|��/∈m|2−|��/∈m|
b�m = π�/∈m−π�∈m

max{π�/∈m,π�∈m}
Search for the winning neuron:
m∗ = argmin∀m

{(1 − α) ε�m + α b�m}
Adapt weights wm of neurons in the
neighborhood �m∗
Update �

until no significative changes in wm;
�m ← x�/(1−α) ε�m+α b�m < (1−α) ε�q+α b�q ,

∀q �= m, 0 < q ≤ k
end



Milone et al. BMC Bioinformatics 2014, 15:101 Page 4 of 10
http://www.biomedcentral.com/1471-2105/15/101

is the standard Euclidean distance between a pattern �

and a neuron prototype wm; and b�m is the biological
contribution of a pattern � to a clusterm, computed as

b�m = π�/∈m − π�∈m
max {π�/∈m,π�∈m} , (2)

where π�/∈m is the average number of biological connec-
tions among all the patterns clustered in the neuronm not
including the pattern �; and π�∈m is the average number
of biological connections among all the patterns clustered
in the neuron m including the pattern �. The average
biological connections are calculated using a metabolic
pathways connection matrix ρ, where each element ρij has
the number of metabolic pathways that involve both pat-
tern in row i and pattern in column j. This is calculated by
simply counting the number of pathways in common, fol-
lowing the same procedure for metabolites as well as for
transcripts.
The biological term b�m measures how close (or distant)

is a pattern � to a neuron m, in terms of improvement of
the average number of common pathways in that cluster.
When a pattern has b�m > 0 with respect to neuron m, it
means that if the pattern � were assigned to the neuronm,
the average number of common pathways among all the

data patterns clustered in that neuronwould be decreased.
Instead, if b�m < 0, the assignment of the pattern � to the
neuron m would certainly increment the number of aver-
age common pathways, clearly increasing the biological
value of that cluster. The parameter α is used to balance
between the two goals: when α = 0, d�m becomes the clas-
sical Euclidean distance and the algorithm becomes the
standard SOM clustering (sSOM); and when α = 1 the
algorithm completely disregards the expression measures
and groups data only according to biological connections.
In principle, it cannot be stated that there is any optimum
α, it depends on the weight that is given to the related
biological information in the final analysis.
An artificial “toy-example” data set has been used to

illustrate the new algorithm. It is shown in Figure 1. The
set consists of four groups of 100 data points each, fol-
lowing Gaussian distributions. In Figure 1a) the ρ matrix
corresponding to this data set is shown. For simplicity
purposes, the matrix is stored as upper triangular. The
color of the pixels indicate the existence of biological con-
nections among elements. In this artificial example, four
groups biologically connected can be distinguished by
looking at the main diagonal (black pixels). The rest of
the data points do not have pathways in common (white

100 200 300 400

50

a b

c d

100

150

200

250

300

350

400
0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2
α = 0 .00

1
2
3
4

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2
α = 0 .50

1
2
3
4

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2
α = 1 .00

1
2
3
4

Figure 1 Example of SOM training using metabolic pathways (bSOM) with an artificial data set. a) ρ matrix; b) α = 0.00; c) α = 0.50;
d) α = 1.00 (the two dimensions in this simplified example could represent measures for two different treatments in real data). Each cluster found
by the algorithm is indicated with a different color (red, green, cyan and purple). Groups of biologically related points are indicated with different
markers (squares, diamonds, circles and triangles).
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pixels). In the remaining sub-figures, the data points dis-
tribution is shown, as well as the groups and the centroids
of each cluster (black dots) obtained for n = 2 (that is, 4
neurons). Each cluster found by the algorithm is indicated
with a different color. The points located at the extremes
of the groups are biologically related among them, as indi-
cated with different markers (squares, diamonds, circles
and triangles) which correspond to the four groups of
high biological connections present in the ρ matrix. In
Figure 1b), α = 0.00 is used (equivalent to sSOM). It can
be seen that the neurons centroids are located approx-
imately in the euclidean center of each distribution. In
the case of α = 0.50, shown in Figure 1c), the Euclidean
distance as well as the biological connections are used
to form the clusters. It can be noticed that the centroids
here have been moved in order to group in the same clus-
ter some of the patterns biologically connected. At the
extreme, with α = 1.00 in Figure 1d), only the groups
that have common pathways among their elements form
a cluster and determine the centroids location. As it can
be clearly seen from this example, when α is increased
the biological connections among elements increase their
direct influence on the clustering results.

Validationmeasures
After the application of an unsupervised mining tech-
nique, it is quite difficult to validate the obtained results. A
set of objective measures can be used to quantify the qual-
ity of the clusters obtained by different available methods
[34]. A new kind of biological measure is presented as
well, that evaluates the metabolic connections existing in
the clustering partition found. The work of [37] presents
a summary of different types of validation measures that
can be used to qualify a clustering solution. In this study
we have used:

Compactness
It measures intracluster compactness or homogeneity as
Cj = 1/|�j| ∑∀xi∈�j ‖xi − wj‖2, For a global measure of
compactness, the average over all k clusters is calculated
as C = 1/k

∑
j Cj. Values of C close to 0 indicate more

compact clusters.

Separation
It quantifies the degree of separation between individual
clusters, measuring the mean Euclidean distance among
cluster centroids as S = 2/

(
k2 − k

)∑k
i=1

∑k
j=i+1 ‖wi −

wj‖2, where S close to 1 indicates more separated clusters.

Davies-Bouldin index
This is a combination of the previous two measures and
a popular metric for evaluating clustering algorithms [38].
DB index is a function of the ratio of the sum of within-
cluster scatter to between-cluster separation. This is an

indication of clusters overlap, thereforeDB close to 0 indi-
cates that the clusters are compact and far from each
other.

Dunn index
It combines dissimilarity between clusters and their diam-
eters, based on the idea of identifying cluster sets that
are compact and well separated. D index measures inter-
cluster distances (separation) over intra-cluster distances
(compactness). If a clustering partition contains well-
separated clusters, the distances among them are usually
large and their diameter is expected to be small. Therefore,
a larger D value means better cluster configuration.

Biological internal connectivity
For the evaluation of the clusters from the viewpoint of
their biological meaning, we use a measure defined as
follows:

P = − log

⎛
⎝1
k

k∑
m=1

pm
pm∗

⎞
⎠ , (3)

where

pm = 1 +
∑

∀i/xi∈�m
∀j/xj∈�m

j �=i

ρij

is the number of common pathways among patterns
grouped in cluster m, with ρij the number of pathways in
common between patterns i and j, and

pm∗ = 1 +
∑

∀i/xi∈�m
∀j �=i

ρij,

is the number of all the possible shared pathways among
patterns grouped in cluster m and any other pattern in
the dataset. A P value close to 0 indicates more biologi-
cally significant clusters. For this measure, non empty and
annotated clusters are taken into account.

Global Measure for Linked Clustering (GMLC)
For evaluating both coherence and biological significance
of clusters found over biological datasets, we have used the
G measure which is a biologically-inspired validity mea-
sure for comparison of clustering methods over metabolic
datasets [22]. It is defined as the sum of Ȟ , which is a mea-
sure of the flatness of the distribution of patterns along
clusters, 	 that indicates if the data samples have been
coherently grouped when having a sign-inverted value,
and P which evaluated biological internal connectivity, as
previously explained.

Datasets
In this subsection, the datasets used for SOM training
are described. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) [39,40] pathway database was used for
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calculation of the biological connectivity. All pathways
in which the measured elements participated have been
considered.

Solanum lycopersicum dataset
The first biological dataset used in this paper involves
metabolic and transcriptional profiles from Introgression
Lines (ILs) of Solanum lycopersicum. The ILs harbor,
at certain chromosomes segments, introgressed por-
tions of the wild species (Solanum pennellii). After log-
transforming the expression values over the entire dataset,
genes with no significant change were discarded from
further analysis. As a result of the pre-processing and
selection steps, 1159 genes were selected. The metabolic
data were obtained analyzing polar extracts of tomato
fruits, through Gas Chromatography coupled to Mass
Spectrometry (GC-MS). The metabolite profiling tech-
nique used allows the identification of approximately 80
primary metabolic compounds. For each metabolite in
each IL, the log ratio of the mean of the replicates was cal-
culated. In the selection step only 70 metabolites (having
log ratio greater than 0.1) were kept for data integration
and cluster analysis. Further details on data selection can
be found on [12]. This data set has a size of 1229 data
points.

Arabidopsis thaliana dataset
The second biological dataset comprises primarymetabo-
lites and transcripts measured in Arabidopsis thaliana
leaves. The integrated analysis of this data is aimed at
studying the effects of the cold on circadian regulated
genes in this plant [41]. In this study we included metabo-
lites and transcripts under light-dark cycles at two control
temperatures (20°C and 4°C). Genes involved in diurnal
cycle and cold-stress responses were selected for fur-
ther study. More details on how the data were processed,
filtered and normalized can be found in [41]. A total of

1549 genes and 51metabolites were used in the integrated
analysis, resulting in a total of 1600 data patterns.

Results and discussion
This section presents the results obtained from the appli-
cation of the new biologically-inspired training algorithm
(bSOM), in comparison to the standard training (sSOM).
For a preliminary assessment, only the metabolic pro-
files of each data set were used since all metabolites
have information associated to metabolic pathways. The
corresponding ρ matrix for Solanum lycopersicum and
Arabidopsis thaliana datasets, respectively, are shown in
Figure 2. The intensity in the color scale indicates a higher
connection value. It can be seen that most of the data
points have metabolic pathways in common (there is a
very low number of white pixels). There are just few
points highly connected (black pixels), but most of the
data points have a moderate number of common path-
ways. For this reduced subset, a map size of 6× 6 neurons
was used. This allowed us to easily evaluate whether there
was an improvement in the biological connections of the
clusters found by the new bSOM in comparison to sSOM.
The α parameter that weights the biological distance has
been varied in the range [0.00, 0.25, 0.50, 0.75].
Table 1 shows the results of the comparison of both

training algorithms over the two biological datasets, for
the validation measures presented in the Validation mea-
sures Section. For each measure, a triangle up or down
is shown in order to easily indicate whether the best
expected index value should have a high or a low value.
Compactness and average separation of the clusters are
slightly worsened when using bSOM in comparison to
sSOM in both data sets. This is due to the fact that these
measures are highly dependant on the Euclidean distance
and at higher α the biological term has a stronger influ-
ence on the assignment of patterns to clusters than the
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Figure 2 Biological internal connectivity of data sets. Corresponding ρ matrix for: a) Solanum lycopersicum, b) Arabidopsis thaliana data sets. The
intensity in the gray scale indicates a higher connection value.
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Table 1 Validationmeasures for SOM training: standard
(sSOM) versus biological (bSOM) formetabolic datasets

sSOM bSOM
α → 0.00 0.25 0.50 0.75

Solanum lycopersicum

C
�

0.65 0.69 0.73 0.79

S
�

0.66 0.65 0.59 0.49

DB� 9.56 31.00 13.90 19.05

D� 0.59 0.40 0.40 0.37

P
�

3.58 2.74 2.58 2.08

G� 0.87 0.90 0.83 0.87

Arabidopsis thaliana

C
�

0.48 0.55 0.64 0.65

S
�

0.81 0.79 0.79 0.71

DB� 10.45 8.86 490 60.66

D� 0.32 0.24 0.50 0.54

P
�

3.84 2.93 2.17 1.56

G� 0.65 0.67 0.52 0.48

Euclidean distance. The DB measure does not improve
when using bSOM in any case, on the contrary, it gets
worst scores. This can be expected since, in fact, this
measure is designed to better qualify well-separated and
highly compact clusters (in the Euclidean sense) and, as
explained above, compactness and separation are wors-
ened as α increases. Similar behavior has the Dunn index
for the first data set, although improving with bSOM and
α = 0.5 and α = 0.75 for the second dataset. Although
these two measures are a combination of compactness
and separation into one single index (Dunn qualifies clus-
ters taking into account the same general criteria as DB)
they present contradictory results. While DB uses the
Euclidean distance of data to centroids in a direct way,
Dunn measures the distance to the global centroid of all
data and not between data and each cluster centroid.
With respect to measures that take into account the

biological information associated to the clusters obtained,
considering the P measure, it is clearly and consistently
improved as α increases for the proposed algorithm
when compared to sSOM, for all configurations and both
datasets. As can be expected, at low α the improvement is
not so important but when α increases, clusters are more
biologically connected which is directly reflected by this
measure, reaching the best possible result for this index at
themaximum α here considered. The significance of these
results has been statistically tested by performing 100 re-
samplings of 90% of the metabolites in both datasets, for
all the methods (sSOM vs. bSOM with different α). An
ANOVA was performed to test the null hypothesis in
which the difference among the clustering results for the
biological connectivity measure (P) with different training

methods is not significant. The analysis revealed that the
results in the table show significant differences (p <

0.001). Finally, the G measure, which evaluates in a sin-
gle index not only clusters quality but also their biological
content, remains almost unchanged or even improves. For
the first data set, G has almost the same value in all con-
figurations. As α is increased on bSOM,G values improve
for the second data set, even at maximum α. In general,
it can be stated that while a balance between homogene-
ity and coherence is maintained, an improvement in the
biological connectivity of the clusters can be achieved.
Table 2 shows the results of the comparison of both

training algorithms over the two full biological datasets
(transcripts and metabolites). The Gap Statistic [42],
intended to estimate adequate cluster numbers from a
dataset [43], was used to select the number of clusters
for the comparisons among methods. The selected map
size was 10 × 10 neurons. Comparisons between sSOM
and other clustering algorithms for the datasets used in
this study have already been done in [22]. It is worth
to highlight the fact that, although all metabolites were
annotated, only a low proportion of the genes (approxi-
mately 10%) were associated to metabolic pathways in the
KEGG database. In this case, with so many clusters with-
out related biological information, one should expect that
it will be very hard to enhance the results, even using
high α values. However, the results obtained in both cases
show that bSOM can work well even in this situation,
improving the biological connections of the clusters. Con-
sidering the classical data mining measures in Table 2,
the results do not vary significantly between methods and
configurations tested. For example, compactness as well

Table 2 Validationmeasures for SOM training: standard
(sSOM) and biological (bSOM) for the full datasets

sSOM bSOM
α → 0.00 0.25 0.50 0.75

Solanum lycopersicum

C
�

0.79 0.80 0.80 0.81

S
�

0.68 0.67 0.66 0.64

DB� 8.80 9.07 9.12 10.64

D� 0.18 0.14 0.13 0.26

P
�

3.32 2.65 2.38 1.80

G� 1.09 0.63 0.59 0.52

Arabidopsis thaliana

C
�

0.51 0.52 0.51 0.51

S
�

1.00 1.00 1.00 1.00

DB� 13.30 12.02 10.35 12.19

D� 0.16 0.15 0.16 0.13

P
�

3.13 3.10 2.80 2.00

G� 0.68 0.41 0.43 0.32



Milone et al. BMC Bioinformatics 2014, 15:101 Page 8 of 10
http://www.biomedcentral.com/1471-2105/15/101

as separation remain almost unchanged in all cases. The
DB index is particularly influenced in the case of large
α since the Euclidean distance is almost disregarded for
grouping data points and thus the clusters get closer and
larger, which is highly penalized by this measure. The
Dunn index is slightly worsened in most cases, improving
only in one case with a large α in the first data set.
Taking into consideration now only the measures that

evaluate the biological quality of the solutions (P and
G), both present better results and it can be stated that,
in general, the biological connectivity of the clusters is
really improved when using bSOM compared to sSOM, in
both datasets. The biological connectivity of the clusters
is effectively improved when using bSOM in comparison
to sSOM, which is even achieved when both distances
(Euclidean and biological) are equally considered (α =
0.5). TheGmeasure also consistently obtains better scores
when α increases, in all configurations tested for each
map. This means that enhanced clustering results can be
achieved when using bSOM rather than sSOM, not only
with respect to clusters quality but also from a biological
point of view.
For the full Arabidopsis dataset, we have also calcu-

lated the biological homogeneity index (BHI) [44] for
sSOM and bSOM, which measures how homogeneous
are biologically the clusters obtained. BHI evaluates if
genes in the same cluster are also part of the same func-
tional classes according toGO annotations. The BHI score
obtained for sSOMwas 6.49%. For bSOMwith the same α

values reported in Table 2, the BHI scores were 6.57, 6.68
and 7.53%. As can be seen, this independent measure also
indicates that better biological clusters can be obtained
with the proposed algorithm.
Finally, to show an illustrative example of how bSOM

obtains better clustering results from a biological point
of view, a pathways analysis and validation has been per-
formed over neurons selected at random from a SOMmap
on the first data set. Table 3 shows comparative results
regarding the data points that where clustered in the neu-
rons by both algorithms and the Solanum lycopersicum
dataset. The full statistics for all clusters in both datasets
have been presented in the previous tables.
From a quantitative point of view, it can be seen that in

general bSOM can increase the number of common path-
ways in the clusters for the same number of elements. In
particular, in Cluster A the number of common pathways
among cluster elements is maintained, although bSOM
can achieve that result with less cluster elements. In Clus-
ter B, for the same number of elements a higher number
of common metabolic pathways was obtained. In Clus-
ter C, a better grouping allows finding common biological
information, which could not be achieved by using the
standard training algorithm. Finally, cluster D exempli-
fies how, for the same number of elements with related

Table 3 Detail of patterns and common pathways for
sSOM vs. bSOM

Algorithm→ sSOM bSOM

Cluster A Serine Serine

Threonine Threonine

Valine Valine

Glycine Isoleucine

Lysine

Common ko00260, ko00290 ko00260, ko00290

pathways ko00970, map1060 ko00970, map1060

ko02010 ko02010

ko00460 ko00966

Cluster B Arginine Arginine

β-alanine Glycine

GABA Lysine

Common ko00330, ko00410 ko00310, ko00970

pathways ko04080 map1060, map1064

ko02010

Cluster C LE31F17 LE31F17

LE30O12∗ LE16F20

LE26F02∗

Common - ko00052

pathways ko00511, ko00531

ko00600, ko00604

Cluster D Sucrose Sucrose

Aspartate Glutamate

5oxoproline Proline

LE23B16∗

LE23N08∗

Common ko02010 ko02010

pathways ko00330, ko00970
*does not participate in a well-known pathway.
Gene transcript codes. LE31F17: beta-galactosidase (GB acc# AAC25984);
LE16F20: beta-galactosidase (GB acc# AAC25984); LE30O12: no data; LE26F02:
component of oligomeric golgi complex, putative (GB acc# XP_00251994);
LE23B16: CDPK-related protein kinase (GB acc# AAZ83348); LE23N08: no data.
Pathway codes. ko00260: Glycine, serine and threonine metabolism; ko00290:
Valine, leucine and isoleucine biosynthesis; ko00970: Aminoacyl-tRNA
biosynthesis; map01060: Biosynthesis of plant secondary metabolites; ko02010:
ABC transporters; ko00460: Cyanoamino acid metabolism; ko00966:
Glucosinolate biosynthesis; ko00330: Arginine and proline metabolism; ko00410:
beta-Alanine metabolism; ko04080: Neuroactive ligand-receptor interaction;
ko00310: Lysine degradation; map01064: Biosynthesis of alkaloids derived from
ornithine, lysine and nicotinic acid; ko00052: Galactose metabolism; ko00511:
Other glycan degradation; ko00531: Glycosaminoglycan degradation; ko00600:
Sphingolipidmetabolism; ko00604: Glycosphingolipid biosynthesis.

biological information in a cluster, more common path-
ways can be found by bSOM (note that although the
cluster found by bSOM has 5 elements, only 3 of them
participate in known pathways).
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The previous examples suggest that bSOM is able to
better group the amino acids glycine, serine, threonine,
valine, leucine, isoleucine, lysine and arginine within clus-
ters considering the number of biochemical pathways
they are involved in. For instance, bSOM grouped serine,
threonine, valine and isoleucine within cluster A and
glycine, arginine and lysine in a separate cluster (B). In
this case, bSOM takes account of the possibility that co-
variation of valine and isoleucine can also be affected by
their degradative pathway (ko00280). Another example of
the usefulness of bSOM is given by clusters C and D. In
the first case, bSOM grouped two transcripts which both
encode for beta-galactosidase precursor. It is somehow
here expectable either because they are derived from the
same gene or from different loci. In cluster D, glutamate,
proline and sucrose grouped together with two transcripts.
One of these transcripts (LE23B16) encodes a putative
calcium-dependent protein kinase (CDPK). Although the
exact mechanism by which this protein could be related
to the variation of the above-mentioned metabolites is
not known, the role of different CDPKs in the con-
trol of primary plant metabolism is well documented
[45].

Conclusions
In this paper we presented a new training algorithm for
self-organizing maps (bSOM) over biological datasets.
A new biologically-inspired term, considering common
pathways, is added in the calculation of the distances
among data points and neurons centroids. This term eval-
uates the internal connections of the data samples in terms
of their belonging to known pathways. The proposed
training algorithm was tested in two datasets involving
Solanum lycopersicum and Arabidopsis thaliana tran-
scripts and metabolites. Classical data mining validation
measures were used to qualify the clustering solutions
obtained when using both algorithms, as well as a new
measure that takes into account biological significance of
the clusters found. The new algorithm showed important
improvements in performance in comparison to stan-
dard SOM training. It is worth to highlight the fact that
the inclusion of biological information implicitly during
training has effectively improved the results. This would
certainly increase the biological value of the clusters found
and would simplify their further analysis. Future work will
involve the expansion of the range of additional biological
sources that could be used in combination with clustering
algorithms.
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