
Koren et al. BMC Bioinformatics 2014, 15:126
http://www.biomedcentral.com/1471-2105/15/126
SOFTWARE Open Access
Automated ensemble assembly and validation of
microbial genomes
Sergey Koren1*, Todd J Treangen1, Christopher M Hill2, Mihai Pop2 and Adam M Phillippy1
Abstract

Background: The continued democratization of DNA sequencing has sparked a new wave of development of
genome assembly and assembly validation methods. As individual research labs, rather than centralized centers,
begin to sequence the majority of new genomes, it is important to establish best practices for genome assembly.
However, recent evaluations such as GAGE and the Assemblathon have concluded that there is no single best
approach to genome assembly. Instead, it is preferable to generate multiple assemblies and validate them to
determine which is most useful for the desired analysis; this is a labor-intensive process that is often impossible or
unfeasible.

Results: To encourage best practices supported by the community, we present iMetAMOS, an automated ensemble
assembly pipeline; iMetAMOS encapsulates the process of running, validating, and selecting a single assembly from
multiple assemblies. iMetAMOS packages several leading open-source tools into a single binary that automates
parameter selection and execution of multiple assemblers, scores the resulting assemblies based on multiple validation
metrics, and annotates the assemblies for genes and contaminants. We demonstrate the utility of the ensemble process
on 225 previously unassembled Mycobacterium tuberculosis genomes as well as a Rhodobacter sphaeroides benchmark
dataset. On these real data, iMetAMOS reliably produces validated assemblies and identifies potential contamination
without user intervention. In addition, intelligent parameter selection produces assemblies of R. sphaeroides
comparable to or exceeding the quality of those from the GAGE-B evaluation, affecting the relative ranking of
some assemblers.

Conclusions: Ensemble assembly with iMetAMOS provides users with multiple, validated assemblies for each
genome. Although computationally limited to small or mid-sized genomes, this approach is the most effective
and reproducible means for generating high-quality assemblies and enables users to select an assembly best tailored
to their specific needs.
Background
Genome assembly reconstructs a genome from many
shorter sequencing reads as faithfully as possible [1-3].
Since reasonable formulations of the problem are NP-
hard [2,4], practical implementations often return an ap-
proximate solution that contains errors. Recent assembly
evaluations like GAGE and the Assemblathon [5-8] have
highlighted the chaotic nature of genome assembly, in
which assembler performance varies widely across data-
sets and small parameter changes can have drastic ef-
fects. In GAGE-B [8] for example, each dataset required
* Correspondence: korens@nbacc.net
1National Biodefense Analysis and Countermeasures Center, 110 Thomas
Johnson Drive, Frederick, MD 21702, USA
Full list of author information is available at the end of the article

© 2014 Koren et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
a different k-mer parameter, the best assembler was not
consistent across datasets, and the continuity difference
between best and second best was often two-fold.
Although genome assembly is a complex problem, val-

idating assemblies is more straightforward. The quality
of a genome assembly can be confirmed by verifying that
the layout of reads is consistent with the sequencing
process used to generate the data [9]. Multiple tools
have been recently developed for validating genome as-
semblies both with and without the use of a reference
genome [10-15]. Thus, given the chaotic nature of assem-
blers and the relative ease of validation, it is recommended
to generate multiple assemblies and use validation to deter-
mine the most appropriate one. This is akin to a “hypoth-
esis generation” view of assembly [16], which can be most
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:korens@nbacc.net
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Figure 1 iMetAMOS workflow and incorporated tools.
iMetAMOS currently incorporates 13 assemblers [21,33-38,40-45] and
7 validation tools [10-15,47]. Prokka [50] is used to predict genes and
annotate all assembiles. Users can control the suite of assemblers
and validation tools to be executed, as well as the scoring formula
used to choose the best assembly. This assembly is evaluated for the
presence of contamination.

Koren et al. BMC Bioinformatics 2014, 15:126 Page 2 of 9
http://www.biomedcentral.com/1471-2105/15/126
easily implemented as an ensemble of independent
methods. Unfortunately, running multiple assemblers
is a time consuming, non-trivial task requiring sub-
stantial installation, learning, and maintenance costs.
There exist a limited set of tools that integrate auto-

mated parameter selection and validation into the as-
sembly process. The A5 pipeline [17,18] automates the
microbial assembly process, but is limited to a single as-
sembler and includes limited validation. CG-Pipeline
[19] is targeted to 454 sequencing. VelvetOptimizer [20]
automates a parameter sweep of k-mer sizes for the Vel-
vet assembler [21], but uses contig N50 size as the
optimization metric, which is not always representative of
assembly quality [7,22]. More recently, a number of as-
sembly methods have been developed that incorporate as-
sembly likelihood estimates into the primary assembly
algorithm [23-25]. However, none of these tools robustly
automate the execution of multiple assembly methods and
validation metrics to achieve the best possible assembly.
Here we present iMetAMOS, which automates the
process of ensemble assembly and validation.

Implementation
Whereas MetAMOS [26] was developed for metagenomic
assembly, iMetAMOS is an isolate-focused extension that
encapsulates the current best practices for microbial gen-
ome assembly using Illumina [27], 454 [28], Ion [29], or
PacBio [30] sequencing data. Building on the conclusions
of GAGE and the Assemblathon, iMetAMOS runs mul-
tiple, independent tools to generate and validate assem-
blies. Uniquely, iMetAMOS automates the entire ensemble
assembly process including automated parameter selection
and sweeps, execution of multiple assembly and validation
tools, preliminary gene annotation, and identification of
potential contaminating sequences. This ensemble ap-
proach is robust to individual tool failures and reliably
generates high-quality assemblies with minimal user
input.

Pipeline design
Figure 1 details the iMetAMOS pipeline, which treats
each assembly project as a competition among multiple
assemblers. As an added benefit to the ensemble ap-
proach, iMetAMOS is robust to failure; if any tool or
parameter combination fails, iMetAMOS will continue
the analysis using only the ones that succeeded. A “win-
ning” assembly is then automatically selected based on
the combined validation results. However, users may
also browse the validation metrics to choose their own
preferred assembly, such as one that optimizes consen-
sus accuracy without regard to continuity.
iMetAMOS is primarily written in Python and builds

upon Ruffus [31] for pipeline management. However, it in-
corporates many freely available tools written in a variety

Koren et al. BMC Bioinformatics 2014, 15:126 Page 3 of 9
http://www.biomedcentral.com/1471-2105/15/126
of languages. To simplify installation, iMetAMOS is dis-
tributed as 64-bit OS X and Linux binaries, including all
supported assemblers, tools, and required databases. On
32-bit systems, iMetAMOS automatically downloads and
installs the required dependencies, as needed, which sig-
nificantly simplifies installation.

Modular infrastructure
To support future extensibility, iMetAMOS includes a
generic framework to add new tools to the pipeline. Cur-
rently supported modules are for assembly and classifica-
tion. When a new tool is available, no code modification is
need. Instead, a configuration is written to specify parame-
ters for the tool and required inputs and outputs. iMetA-
MOS will automatically load this configuration and run
the requested tool. When an external tool is executed, a
corresponding citation is output to ensure users of iMetA-
MOS properly credit the tools on which it relies.

Reproducibility
iMetAMOS enables reproducible analysis by recording
all commands, software versions (via an MD5 hash), and
intermediate inputs and outputs. The single, compre-
hensive binary is generated via PyInstaller [32], which
also serves to fix and archive the exact version of all pro-
grams used. Reproducibility of custom analyses is sup-
ported via workflows. A workflow defines the software
required for an analysis, as well as optional parameters
and input data. Workflows support both local and re-
mote file names, as well as SRA run identifiers, and can
inherit their parameters from other workflows, allowing
users to easily add or modify input data or parameters.
Given a workflow, iMetAMOS will download any required
remote data and run the analysis using pre-specified pa-
rameters. For further reproducibility, a workflow is auto-
matically created for every iMetAMOS run, which can be
easily shared with remote collaborators. If the data are
available on the Internet, the entire analysis can be repro-
duced by two simple commands.

Assembly
Assembly is treated as a hypothesis generation and test-
ing problem. Multiple assembly tools are run to ensure
robustness to failure and a thorough exploration of the
hypothesis space. The following assemblers are currently
supported: ABySS [33], CABOG [34], IDBA-UD [35],
MaSuRCA [36], MetaVelvet [37], MIRA [38], Ray/RayMeta
[39,40], SGA [41], SOAPdenovo2 [42], SPAdes [43], Spar-
seAssembler [44], Velvet [21], and Velvet-SC [45]. For De
Bruijn assemblers, a k-mer size is automatically selected
using KmerGenie [46]. Alternatively, users can specify a list
of k-mers and iMetAMOS will run each assembly with
each specified k-mer. In this mode, iMetAMOS can operate
similarly to VelvetOptimizer [20], but for multiple assem-
blers and with more appropriate validation measures.

Validation and annotation
Each assembly is treated as a hypothesis subject to valid-
ation. The following validation tools are supported: ALE
[10], CGAL [11], FRCbam [15], FreeBayes [47], LAP
[14], QUAST [13], and REAPR [12]. Both reference-
based and reference-free validations are performed. For
reference-based validation, a MUMi distance [48] is used
to recruit the most similar reference genome from RefSeq
[49] to calculate reference-based metrics. For reference-
free validation, the input reads and read pairs are verified
to be in agreement with the resulting assembly using both
likelihood-based methods and mis-assembly features. In
addition, to provide an initial annotation and comparison
between gene content, the assemblies are automatically
annotated using Prokka [50].
From the ensemble, the “winning” assembly is selected

using the consensus of the validation tools. For each se-
lected metric, the assemblies are assigned an order from
best to worst (with 1 being best). By default, the top as-
semblies are selected as those that are in the top 10% for
at least half the metrics. The best assembly is then se-
lected as the top scoring assembly with the highest
count of best scores. A user can select a single metric
(i.e. consensus accuracy) or an arbitrarily weighted
combination of metrics for validation. Importantly, this
allows users to customize the validation process to suit
their downstream project goals. For example, studies
focused on phylogenetic tree reconstruction may pre-
fer to minimize consensus errors, while structural vari-
ation studies may instead focus on maximizing continuity
and minimizing long-range errors.

Contamination detection
Although iMetAMOS focuses on single-genome assem-
bly, all inputs are considered as a metagenome to con-
trol against possible contamination. The winning assembly’s
contigs and unassembled reads are analyzed by a taxonomic
classification program. By default, iMetAMOS uses the k-
mer based Kraken [51] tool, but the alternative methods of
FCP [52], PhyloSift [53], PHMMER [54], and PhymmBL
[55] are also supported. Contigs are partitioned into separ-
ate, taxon-specific directories (genus by default) according
to their classification, so that contaminating sequence can
be easily identified and removed. This process also
serves as an initial species identification when assem-
bling novel organisms.
The classification result is dependent on the classifier

and database used, and serves as only a preliminary spe-
cies identification or indicator of potential contamin-
ation. Manual follow-up is recommended to confirm the
classification. For example, recently acquired genomic

Koren et al. BMC Bioinformatics 2014, 15:126 Page 4 of 9
http://www.biomedcentral.com/1471-2105/15/126
elements, such as phage integrations, may be incorrectly
classified. Nevertheless, this initial binning facilitates rapid
identification of the assembled organism and easier con-
taminant removal before downstream analysis or submis-
sion to a nucleotide archive.
Results display
The final output of iMetAMOS is a self-contained HTML5
summary page. Here, users can browse the output files as
well as drill down to detailed results from any step in the
pipeline. This includes FastQC [56] reports for the pre-
process step, QUAST [13] graphs and metrics from the
validation step, and an interactive Krona [57] display of the
taxonomic classifications.
Results
Automated assembly evaluation
With iMetAMOS it is possible to automatically recreate
an assembler evaluation for every sample. We used iMe-
tAMOS to perform ensemble assembly of the Rhodobacter
sphaeroides 2.4.1 MiSeq dataset from the recent GAGE-B
evaluation [8]. In addition, our automated evaluation in-
cluded four additional assemblers (IDBA-UD [35], Spar-
seAssembler [44], Velvet-SC [45], and Ray [39]) and
validation metrics not utilized by GAGE-B (e.g. consensus
accuracy).
25 35 45 55 65 75 85 95 105 115 125

0
10

30
50

70
90

11
0

13
0

15
0

17
0

Corrected N50

k−mer

N
50

 (
K

bp
)

Figure 2 Comparison of corrected and raw N50 contig sizes for all as
using the GAGE metrics [7]. The dashed vertical line indicates the auto-selec
from GAGE-B. The auto-selected k-mer provides the best overall corrected N50 o
k produced an N50 13% lower than the best. This is likely caused by SPAdes
does not currently take into account. In all other cases, except when GA
selected k-mer outperforms the k-mer choice from GAGE-B.
The GAGE-B evaluation included assemblers run with
multiple, manually selected k-mers for each assembler
that ranged from a minimum of 31 to a maximum of 85.
For a thorough comparison, the R. sphaeroides dataset
was downloaded from the GAGE-B website (http://ccb.
jhu.edu/gage_b/), and two iMetAMOS runs generated,
both with an auto-selected k of 35 as well as all k-mer
sizes divisible by 5 from 25–125. The original GAGE
scripts [7] were used to calculate both corrected and raw
N50s on all iMetAMOS assemblies and those from GAGE-
B. In some cases, iMetAMOS ran a more recent assembler
than GAGE-B. Repeating the experiment using the exact
software versions as GAGE-B produced the same results,
with the exception of SPAdes, which showed assembly im-
provement in version 2.5. The entire auto-selected k-mer
iMetAMOS run can be reproduced using the following
commands:

> initPipeline -d test_gageb -W
isolate_gageb
> runPipeline -d test_gageb -p 16

The best assembly of this dataset, as selected by iMe-
tAMOS with an automatically chosen kmer-size of 35,
was MaSuRCA, matching the GAGE-B result. However,
the corrected N50 of the iMetAMOS MaSuRCA assem-
bly increased to 139 Kbp from the 120 Kbp using the
25 35 45 55 65 75 85 95 105 115 125

0
10

30
50

70
90

11
0

13
0

15
0

17
0

N50

k−mer

N
50

 (
K

bp
)

ABySS
IDBA−UD
MaSuRCA
MIRA
Ray
SGA
SOAPdenovo2
SPAdes
SparseAssembler
Velvet
Velvet−SC

semblies of R. sphaeroides. Corrected N50 sizes were computed
ted k of 35 chosen by KmerGenie. The individual points indicate assemblies
n this dataset. One notable exception is SPAdes, for which the auto-selected
use of multiple k-mers for assembly, something that KmerGenie
GE-B used EA-UTILS [58] to trim the input sequences, the automatically

http://ccb.jhu.edu/gage_b/
http://ccb.jhu.edu/gage_b/

25 35 45 55 65 75 85 95 105 115 125

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

CN50/N50 Ratio

k−mer

R
at

io
 %

ABySS
IDBA−UD
MaSuRCA
MIRA
Ray
SGA
SOAPdenovo2
SPAdes
SparseAssembler
Velvet
Velvet−SC

Figure 3 Ratio of corrected N50 versus raw contig sizes for all
assemblies of R. sphaeroides. Corrected N50 sizes were computed
using the GAGE metrics [7]. The dashed vertical line indicates the
auto-selected k of 35 chosen by KmerGenie. The individual points indicate
assemblies from GAGE-B. For 3 of 11 assemblers, the automated k-mer
selection provides the best corrected N50. Additionally, for 9 of the 11
assemblers, the automated k-mer selection provides a corrected to raw
N50 ratio within 10% of the optimal.

Koren et al. BMC Bioinformatics 2014, 15:126 Page 5 of 9
http://www.biomedcentral.com/1471-2105/15/126
manually selected k-mer size of 55 reported in GAGE-B.
Similar improvements were observed for four assemblers
when compared to the manually selected k-mer in GAGE-B.
This improvement is the result of selecting a value of k to
maximize assembly correctness, rather than the GAGE-B
approach of maximizing the uncorrected contig N50 size. In
cases where iMetAMOS did not outperform the GAGE-B
results, GAGE-B had utilized EA-UTILS [58] to pre-process
the data. While EA-UTILS is supported by iMetAMOS,
Table 1 GAGE-B assemblies versus iMetAMOS (iMA) assemblie

Assembler GAGE-B
rank

GAGE-B
N50

GAGE-B
CN50

GAGE-B
reference
coverage

GAGE-B
#short-
range

ABySS 5 21,441 21,307 99.64% 422

MIRA 6 15,792 15,190 99.78% 424

MaSuRCA 1 130,714 119,839 92.31% 532

SGA 7 9,108 9,055 99.39% 295

SOAPdenovo2 3 33,491 32,605 98.82% 343

SPAdes 2 118,093 89,065 99.95% 605

Velvet 4 23,979 23,230 99.10% 760

The table lists the relative ranking, assembly, and corrected N50 for each of the 7 a
automatically-selected k-mer. Assembly N50 was computed using the reference as
The short-range errors are a sum of SNPs and short and long indels. The long-range
using raw sequencing data generated the best assemblies in
GAGE-B, so pre-processing was disabled.
Figure 2 shows the raw and corrected N50s for all assem-

blers with k ranging from 25–125. This example illustrates
the power of iMetAMOS, with each run being equivalent
to a GAGE-style assembly evaluation. In addition, for 9 of
11 assemblers, the KmerGenie auto-selected k of 35 pro-
vided a ratio of corrected to raw N50 contig size within
10% of the optimal (Figure 3). Because the corrected as-
semblies are broken at each mis-assembly, the ratio of cor-
rected to raw N50 size is a good indicator of error rate.
Thus, these results suggest that simply running each as-
sembler with an auto-selected value of k will produce high-
quality assemblies without the computational expense of
producing separate assemblies for multiple values of k.
The benefit of intelligently choosing a minimum over-

lap length (for overlap-based assemblers) or a value of k
(for de Bruijn assemblers) is also obvious from Figure 2,
as it changes the relative rankings of assemblies com-
pared to the GAGE-B evaluation. In one example, MIRA
goes from a corrected N50 of 15.19Kbp (ranked 6th) to
46.97Kbp (ranked 4th)—an increase of over 3-fold. The
comparative ranking of assemblers on this dataset is
given in Table 1.

Contaminant detection
The detection and removal of contaminating DNA se-
quences is an often-overlooked phase of assembly. For
example, the Assemblathon 1 dataset included mock
contaminant, which only a few teams attempted to de-
tect and remove [6]. Failure to remove real contaminant
from assemblies significantly affects the quality of public
databases to which these genomes are submitted.
To assist in contaminant detection and removal, iMe-

tAMOS supports multiple tools that taxonomically clas-
sify the assembled contigs and reads left unassembled.
To test this process on a large scale, we downloaded and
analyzed the raw sequencing data from 225 samples from
a recently published study of Mycobacterium tuberculosis
s on the R. sphaeroides dataset

GAGE-B
#long-
range

iMA
rank

iMA
N50

iMA
CN50

iMA
reference
coverage

iMA
#short-
range

iMA
#long-
range

2 5 38,322 36,101 99.66% 674 0

15 4 52,034 46,977 99.84% 420 5

2 1 163,762 139,231 92.95% 535 5

0 7 3,657 3,655 91.96% 460 3

1 3 87,036 65,337 99.86% 432 5

1 2 118,214 81,505 99.76% 526 4

5 6 19,652 19,355 99.71% 1191 4

ssemblers common between GAGE-B and the iMetAMOS run using an
the true genome size. Corrected N50 (CN50) was calculated as in GAGE [7].
errors are a sum of translocations, relocations, and inversions.

Table 2 iMetAMOS average runtime on 225M.
tuberculosis samples

Step Average time (h)

Assemble 4.10

Validate 4.19

FindORFS 9.09

Classify 8.26

Total 32.25

The table lists the average run per sample for the longest-running steps within
iMetAMOS. Timings were collected on a 16-core 2.4GHz AMD with 32G RAM.
Full runtime details are available in Additional file 2.

Koren et al. BMC Bioinformatics 2014, 15:126 Page 6 of 9
http://www.biomedcentral.com/1471-2105/15/126
[59]. All 225 runs corresponding to project ERP001731
were downloaded, and iMetAMOS was run using the en-
semble of SPAdes, MaSuRCA, and Velvet. The iMetA-
MOS run for an individual sample can be reproduced
using the following commands, which downloads the data
directly from the SRA:

> initPipeline –d test_TB –W iMetAMOS -m
< RUN IDENTIFIER > -i 200:800
> runPipeline –d test_TB –a spades,
masurca,velvet –p 16

This also represents the first assembly of these sam-
ples, as the original publication focused only on read
Figure 4 iMetAMOS validation output for an example dataset. The lef
The selected “Validation” tab results are shown in the main window. These
comparison and QUAST [13] report against an automatically recruited refer
sample shows signs of contamination. Finally, the rightmost tab shows a q
MaSuRCA did not run on this sample because it requires paired-end input.
mapping (which is less affected by contamination issues).
The dataset included paired-end and single-end data and
sequence length ranged from 51 bp to 108 bp. The aver-
age number of contigs using unpaired data was 660, N50
was 17Kbp, and average k-mer size used was 26. For
paired-end data, the average number of contigs was 333,
N50 was 43Kbp, and average k-mer size used was 35.
The SPAdes assembly was the best 88% of the time
(Additional file 1). On average, an iMetAMOS analysis
of a single sample took 32.25 hours using 16 cores. The
Assembly, Validation, and FindORFS steps took approxi-
mately 50% of the runtime. Classification to identify
contaminant took approximately 34% of the runtime
(Table 2, Additional file 2).
While the majority of samples (218 of 225) indicated

no contamination, several showed signs of having mul-
tiple organisms present, such as sample ERR233356. In
this case, the assembly has significantly more bases than
expected (6.24 Mbp versus 4.39 Mbp) and an unusually
large number of contigs (>3,700). Figure 4 shows the
HTML summary for sample ERR233356, with the valid-
ation tab selected. This tab provides information on the
selected assembly, quality statistics for all assemblies, as
well as an indication of contamination in the sample.
Figure 5 summarizes the iMetAMOS classification out-
put for sample ERR233356. M. tuberculosis is clearly
tmost tab allows navigation to view the output of each pipeline step.
include the validation metrics of all successful assemblies, including a
ence genome from NCBI RefSeq. The validation tab also indicates the
uick summary of the winning assembly (# reads, #contigs, # orfs).

Root

6%
 [unassigned R

oot]

Bacteria

ActinomycetalesCorynebacterineae

M
ycobacterium

 90%

Firm
icutes

Bacilli

Bacilla
les

Staphylococcaceae

3%
 S

taphylococcus aureus

Figure 5 iMetAMOS classification output identifies possible
contamination. On sample ERR233356 retrieved from the Sequence
Read Archive, the majority of data is clearly sourced from a
Mycobacterium. However, a significant fraction of the data (~10% of
reads or ~29% of assembly) belongs to other, mostly unidentified,
organisms. A subset of 3% of the reads (1.81 Mbp of the assembly)
is identified as S. aureus and covers over 60% of the S. aureus
genome. iMetAMOS automatically identified this potential
contaminant and binned the contigs by genus to facilitate easy
confirmation and removal by the user.

Koren et al. BMC Bioinformatics 2014, 15:126 Page 7 of 9
http://www.biomedcentral.com/1471-2105/15/126
the dominant constituent, but a significant fraction of se-
quences are assigned to other bacteria or are left unclas-
sified (because the Kraken classification database used
included only microbial genomes, eukaryotic contamin-
ation appears as “unclassified”). To validate the iMetA-
MOS output, we aligned the classified sequences to M.
tuberculosis NITR206 (4.39 Mbp) and S. aureus USA300
(2.87 Mbp) using dnadiff [9]. Sequences classified as
Mycobacterium had an average identity of 99.87% and
98.93% coverage of the reference. Sequences classified as
Staphylococus had an average identity of 99.85% and
61.65% coverage. Over half the S. aureus reference genome
is present in the dataset, confirming the contamination as
the most likely source of these reads. The difference in refer-
ence coverage between all assembled contigs and classified
contigs was less than 1%, indicating the classifier accurately
assigned contigs. All 7M. tuberculosis samples identified by
iMetAMOS as potentially contaminanted were manually
examined and had similarly large assemblies with an un-
usual number of sequences classified as either microbial or
unknown. Using BLAST [60] confirmed both eukaryotic
(human) and microbial contaminant in these samples.
Discussion
We have developed an open-source microbial analysis
pipeline, iMetAMOS, which automates the process of en-
semble assembly. In addition, its modular architecture is
extensible and able to incorporate additional analyses or
alternative tools. A potential enhancement is assembly
correction, or contig breaking, which iMetAMOS does
not currently support. However, the infrastructure re-
quired to support this is largely in place. For example,
REAPR [12] is included with iMetAMOS and capable of
splitting assembled contigs at predicted mis-assemblies.
Using this and other supplied validation tools, assembly
breaking could be iteratively performed until the validation
scores are no longer improving or no more corrections are
possible. Alternatively, because iMetAMOS generates mul-
tiple assemblies, assembly reconciliation techniques [61-63]
could be incorporated into the pipeline. However, in prac-
tice, we have found the simple process of running multiple
assemblers with multiple parameters is capable of generat-
ing high-confidence assemblies on its own, while merging
assemblies can increase the risk of mis-assembly without
significantly improving continuity [8].
The iMetAMOS extensible framework also supports

customizable workflows and parameters on a per-user or
per-run basis. Because all components of iMetAMOS
are open source, users and tool authors are able to con-
tribute improved parameters to the repository. Users can
also contribute custom workflows tailored for specific
analyses. In this way, iMetAMOS can serve as a best-
practice repository for multiple assemblers, data types,
and analysis tools.

Conclusions
iMetAMOS enables accurate and reproducible genome
assembly via a “GAGE-in-a-box” analysis, allowing non-
expert users to run multiple assemblers, validation met-
rics, and annotations with a single command. Results
are presented in a simplified and interactive HTML5 for-
mat, and reproducibility is enabled through detailed log-
ging and workflows. The current implementation supports
over thirteen assemblers and seven validation tools, and its
modular architecture supports the easy addition of future
tools. Ensemble assembly is more robust, reproducible,
and accurate than manual assembly, even surpassing the
quality of GAGE-B assemblies using the same data and
tools. Most importantly, iMetAMOS provides users with a
simple means to generate multiple assemblies and valid-
ation metrics, empowering them to choose the best assem-
bly for their specific needs.

Availability and requirements
Project name: iMetAMOS.
Project home page: http://www.cbcb.umd.edu/software/
imetamos.

http://www.cbcb.umd.edu/software/imetamos
http://www.cbcb.umd.edu/software/imetamos

Koren et al. BMC Bioinformatics 2014, 15:126 Page 8 of 9
http://www.biomedcentral.com/1471-2105/15/126
Operating systems: Linux/OS X.
Programming language: Python, C++, Perl, and Java.
Other requirements: Perl (5.8.8+), Python (2.7.3+),
Java (1.6+), R (2.11.1+ with PNG support), gcc (4.7+
recommended), git, curl.
License: iMetAMOS and metAMOS-specific code are
released open source under the Perl Artistic License [64].
All assemblies described here are available for down-

load from http://www.cbcb.umd.edu/software/imetamos.
The exact version of iMetAMOS used for analysis in this
manuscript is available from ftp://ftp.cbcb.umd.edu/pub/
data/metamos/imetamos_pub.tar.gz. However, we recom-
mend using the latest release for all analyses.

Additional files

Additional file 1: Assembly statistics and reference-free validation
scores for all assemblers used on the M. tuberculosis dataset.

Additional file 2: Computational time for the longest-running steps
within iMetAMOS as well as total times per sample for the M.
tuberculosis dataset.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
SK and AMP conceived the method and drafted the manuscript. SK, TJT, and
CMH developed the software. MP led the development of the MetAMOS
framework. All authors edited and approved the final manuscript.

Acknowledgements
We thank Magoc et al. and Comas et al. who submitted the raw data that
was used in this study. We thank Lex Nederbragt and an anonymous
reviewer for detailed comments on the manuscript and iMetAMOS software,
usability, and documentation. The contributions of SK, TJT, and AMP were funded
under Agreement No. HSHQDC-07-C-00020 awarded by the Department of
Homeland Security Science and Technology Directorate (DHS/S&T) for the
management and operation of the National Biodefense Analysis and
Countermeasures Center (NBACC), a Federally Funded Research and Development
Center. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the U.S. Department of
Homeland Security. In no event shall the DHS, NBACC, or Battelle National
Biodefense Institute (BNBI) have any responsibility or liability for any use,
misuse, inability to use, or reliance upon the information contained
herein. The Department of Homeland Security does not endorse any
products or commercial services mentioned in this publication. MP and
CMH were supported by NIH grant R01-AI-100947and the NSF grant
IIS-1117247.

Author details
1National Biodefense Analysis and Countermeasures Center, 110 Thomas
Johnson Drive, Frederick, MD 21702, USA. 2Center for Bioinformatics and
Computational Biology, University of Maryland, College Park, MD 20742, USA.

Received: 7 February 2014 Accepted: 24 April 2014
Published: 3 May 2014

References
1. Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation

sequencing data. Genomics 2010, 95(6):315–327.
2. Nagarajan N, Pop M: Parametric complexity of sequence assembly:

theory and applications to next generation sequencing. J Comput Biol
2009, 16(7):897–908.
3. Nagarajan N, Pop M: Sequence assembly demystified. Nat Rev Genet 2013,
14(3):157–167.

4. Myers EW: Toward simplifying and accurately formulating fragment
assembly. J Comput Biol 1995, 2(2):275–290.

5. Bradnam K, Fass J, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S,
Chapman J, Chapuis G, Chikhi R, Chitsaz H, Chou W-C, Corbeil J, Del Fabbro C,
Docking T, Durbin R, Earl D, Emrich S, Fedotov P, Fonseca N, Ganapathy G, Gibbs R,
Gnerre S, Godzaridis E, Goldstein S, Haimel M, Hall G, Haussler D, Hiatt J, Ho I:
Assemblathon 2: evaluating de novo methods of genome assembly in three
vertebrate species. GigaScience 2013, 2(1):10.

6. Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, Yu HO, Buffalo V,
Zerbino DR, Diekhans M, Nguyen N, Ariyaratne PN, Sung WK, Ning Z,
Haimel M, Simpson JT, Fonseca NA, Birol I, Docking TR, Ho IY, Rokhsar DS,
Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelley DR,
Phillippy AM, Koren S, et al: Assemblathon 1: a competitive assessment of
de novo short read assembly methods. Genome Res 2011, 21(12):2224–2241.

7. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, Koren S, Treangen TJ,
Schatz MC, Delcher AL, Roberts M: GAGE: a critical evaluation of genome
assemblies and assembly algorithms. Genome Res 2012, 22(3):557–567.

8. Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ, Salzberg SL:
GAGE-B: an evaluation of genome assemblers for bacterial organisms.
Bioinformatics 2013, 29(14):1718–1725.

9. Phillippy AM, Schatz MC, Pop M: Genome assembly forensics: finding the
elusive mis-assembly. Genome Biol 2008, 9(3):R55–R55.

10. Clark SC, Egan R, Frazier PI, Wang Z: ALE: a generic assembly likelihood
evaluation framework for assessing the accuracy of genome and
metagenome assemblies. Bioinformatics 2013, 29(4):435–443.

11. Rahman A, Pachter L: CGAL: computing genome assembly likelihoods.
Genome Biol 2013, 14(1):R8.

12. Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD: REAPR: a
universal tool for genome assembly evaluation. Genome Biol 2013, 14(5):R47.

13. Gurevich A, Saveliev V, Vyahhi N, Tesler G: QUAST: quality assessment tool
for genome assemblies. Bioinformatics 2013, 29(8):1072–1075.

14. Ghodsi M, Hill CM, Astrovskaya I, Lin H, Sommer DD, Koren S, Pop M: De
novo likelihood-based measures for assembly validation. BMC Res Notes
2013, 6(1):334.

15. Vezzi F, Narzisi G, Mishra B: Reevaluating assembly evaluations with
feature response curves: GAGE and assemblathons. PLoS One 2012,
7(12):e52210.

16. Howison M, Zapata F, Dunn CW: Toward a statistically explicit understanding
of de novo sequence assembly. Bioinformatics 2013, 29(23):2959–2963.

17. Tritt A, Eisen JA, Facciotti MT, Darling AE: An integrated pipeline for de
novo assembly of microbial genomes. PLoS One 2012, 7(9):e42304.

18. Coil D, Jospin G, Darling AE: A5-miseq: an updated pipeline to assemble
microbial genomes from Illumina MiSeq data. arXiv preprint arXiv:1401.5130 2014.

19. Kislyuk AO, Katz LS, Agrawal S, Hagen MS, Conley AB, Jayaraman P,
Nelakuditi V, Humphrey JC, Sammons SA, Govil D, Mair RD, Tatti KM,
Tondella ML, Harcourt BH, Mayer LW, Jordan IK: A computational
genomics pipeline for prokaryotic sequencing projects. Bioinformatics
2010, 26(15):1819–1826.

20. Velvet Optimizer: http://bioinformatics.net.au/software.velvetoptimiser.shtml.
21. Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly

using de bruijn graphs. Genome Res 2008, 18(5):821–829.
22. Narzisi G, Mishra B: Comparing de novo genome assembly: the long and

short of it. PLoS One 2011, 6(4):17–17.
23. Medvedev P, Brudno M: Maximum likelihood genome assembly. J Comput

Biol 2009, 16(8):1101–1116.
24. Laserson J, Jojic V, Koller D: Genovo: de novo assembly for metagenomes.

J Comp Biol J Comp Mol Cell Biol 2011, 18(3):429–443.
25. Hayati A, Sato K, Sakakibara Y: An extended genovo metagenomic

assembler by incorporating paired-end information. PeerJ 2013, 1:e196.
26. Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE,

Phillippy AM, Pop M: MetAMOS: a modular and open source metagenomic
assembly and analysis pipeline. Genome Biol 2013, 14(1):R2.

27. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG,
Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira
Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ,
Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B,
Ost T, Parkinson ML, Pratt MR, et al: Accurate whole human genome
sequencing using reversible terminator chemistry. Nature 2008,
456(7218):53–59.

http://www.cbcb.umd.edu/software/imetamos
ftp://ftp.cbcb.umd.edu/pub/data/metamos/imetamos_pub.tar.gz
ftp://ftp.cbcb.umd.edu/pub/data/metamos/imetamos_pub.tar.gz
http://www.biomedcentral.com/content/supplementary/1471-2105-15-126-S1.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2105-15-126-S2.xlsx
http://bioinformatics.net.au/software.velvetoptimiser.shtml

Koren et al. BMC Bioinformatics 2014, 15:126 Page 9 of 9
http://www.biomedcentral.com/1471-2105/15/126
28. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,
Braverman MS, Chen Y-J, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV,
Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI,
Jarvie TP, Jirage KB, Kim J-B, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM,
Lei M, Li J, et al: Genome sequencing in microfabricated high-density picolitre
reactors. Nature 2005, 437(7057):376–380.

29. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH,
Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW,
Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M,
Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M,
Miao X, Reed B, et al: An integrated semiconductor device enabling
non-optical genome sequencing. Nature 2011, 475(7356):348–352.

30. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P,
Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S,
Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C,
Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, et al:
Real-time DNA sequencing from single polymerase molecules.
Science 2009, 323(5910):133–138.

31. Goodstadt L: Ruffus: a lightweight python library for computational
pipelines. Bioinformatics 2010, 26(21):2778–2779.

32. PyInstaller: http://www.pyinstaller.org/.
33. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I: ABySS:

a parallel assembler for short read sequence data. Genome Res 2009,
19(6):1117–1123.

34. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, Brownley A, Johnson J,
Li K, Mobarry C, Sutton G: Aggressive assembly of pyrosequencing reads
with mates. Bioinformatics 2008, 24(24):2818–2824.

35. Peng Y, Leung HC, Yiu SM, Chin FY: IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven
depth. Bioinformatics 2012, 28(11):1420–1428.

36. Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA: The
MaSuRCA genome assembler. Bioinformatics 2013, 29(21):2669–2677.

37. Namiki T, Hachiya T, Tanaka H, Sakakibara Y: MetaVelvet: an extension of
Velvet assembler to de novo metagenome assembly from short
sequence reads. Nucleic Acids Res 2012, 40(20):e155.

38. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai S:
Using the miraEST assembler for reliable and automated mRNA
transcript assembly and SNP detection in sequenced ESTs. Genome Res
2004, 14(6):1147–1159.

39. Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads
from a mix of high-throughput sequencing technologies. J Comput Biol
2010, 17(11):1519–1533.

40. Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J: Ray meta:
scalable de novo metagenome assembly and profiling. Genome Biol 2012,
13(12):R122.

41. Simpson JT, Durbin R: Efficient de novo assembly of large genomes using
compressed data structures. Genome Res 2012, 22(3):549–556.

42. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J,
Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM,
Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J:
SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler. GigaScience 2012, 1(1):18.

43. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N,
Tesler G, Alekseyev MA, Pevzner PA: SPAdes: a new genome assembly
algorithm and its applications to single-cell sequencing. J Comput Biol
2012, 19(5):455–477.

44. Ye C, Ma ZS, Cannon CH, Pop M, Yu DW: Exploiting sparseness in de novo
genome assembly. BMC Bioinforma 2012, 13(Suppl 6):S1.

45. Chitsaz H, Yee-Greenbaum JL, Tesler G, Lombardo MJ, Dupont CL, Badger JH,
Novotny M, Rusch DB, Fraser LJ, Gormley NA, Schulz-Trieglaff O, Smith GP,
Evers DJ, Pevzner PA, Lasken RS: Efficient de novo assembly of
single-cell bacterial genomes from short-read data sets. Nat Biotechnol
2011, 29(10):915–921.

46. Chikhi R, Medvedev P: Informed and automated k-mer size selection for
genome assembly. Bioinformatics 2014, 30(1):31–37.

47. Garrison E, Marth G: Haplotype-based variant detection from short-read
sequencing. 2012, arXiv preprint arXiv:1207.3907.

48. Deloger M, El Karoui M, Petit MA: A genomic distance based on MUM
indicates discontinuity between most bacterial species and genera. J Bacteriol
2009, 191(1):91–99.
49. NCBI RefSeq: ftp://ftp.ncbi.nih.gov/genomes/Bacteria/all.fna.tar.gz.
50. Seemann T: Prokka: rapid prokaryotic genome annotation.

Bioinformatics 2014:btu153.
51. Wood D, Salzberg S: Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol 2014, 15(3):R46.
52. Parks DH, MacDonald NJ, Beiko RG: Classifying short genomic fragments

from novel lineages using composition and homology. BMC Bioinforma
2011, 12(1):328–328.

53. Darling AE, Jospin G, Lowe E, Matsen FAIV, Bik HM, Eisen JA: PhyloSift:
phylogenetic analysis of genomes and metagenomes. PeerJ 2014,
2:e243.

54. Eddy SR: Accelerated profile HMM searches. PLoS Comput Biol 2011,
7(10):e1002195–e1002195.

55. Brady A, Salzberg SL: Phymm and PhymmBL: metagenomic
phylogenetic classification with interpolated markov models.
Nat Methods 2009, 6(9):673–676.

56. FastQC: A quality control tool for high throughput sequence data: http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/.

57. Ondov BD, Bergman NH, Phillippy AM: Interactive metagenomic
visualization in a web browser. BMC Bioinforma 2011, 12(1):385–385.

58. Command-line tools for processing biological sequencing data: https://
code.google.com/p/ea-utils/.

59. Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, Parkhill J, Malla B,
Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S,
Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S: Out-of-Africa
migration and Neolithic coexpansion of Mycobacterium tuberculosis with
modern humans. Nat Genet 2013, 45(10):1176–1182.

60. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215(3):403–410.

61. Vicedomini R, Vezzi F, Scalabrin S, Arvestad L, Policriti A: GAM-NGS:
genomic assemblies merger for next generation sequencing. BMC
Bioinforma 2013, 14(Suppl 7):S6.

62. Yao G, Ye L, Gao H, Minx P, Warren WC, Weinstock GM: Graph
accordance of next-generation sequence assemblies. Bioinformatics
2012, 28(1):13–16.

63. Sommer DD, Delcher AL, Salzberg SL, Pop M: Minimus: a fast, lightweight
genome assembler. BMC Bioinforma 2007, 8(1):64–64.

64. Perl Artistic License: http://dev.perl.org/licenses/artistic.html.

doi:10.1186/1471-2105-15-126
Cite this article as: Koren et al.: Automated ensemble assembly and
validation of microbial genomes. BMC Bioinformatics 2014 15:126.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.pyinstaller.org/
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/all.fna.tar.gz
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://code.google.com/p/ea-utils/
https://code.google.com/p/ea-utils/
http://dev.perl.org/licenses/artistic.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Pipeline design
	Modular infrastructure
	Reproducibility
	Assembly
	Validation and annotation
	Contamination detection
	Results display

	Results
	Automated assembly evaluation
	Contaminant detection

	Discussion
	Conclusions
	Availability and requirements
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

