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Abstract

Background: Meganucleases are important tools for genome engineering, providing an efficient way to generate
DNA double-strand breaks at specific loci of interest. Numerous experimental efforts, ranging from in vivo selection
to in silico modeling, have been made to re-engineer meganucleases to target relevant DNA sequences.

Results: Here we present a novel in silico method for designing custom meganucleases that is based on the use of a
machine learning approach. We compared it with existing in silico physical models and high-throughput experimental
screening. The machine learning model was used to successfully predict active meganucleases for 53 new DNA targets.

Conclusions: This new method shows competitive performance compared with state-of-the-art in silico physical models,
with up to a fourfold increase in terms of the design success rate. Compared to experimental high-throughput screening
methods, it reduces the number of screening experiments needed by a factor of more than 100 without affecting final
performance.
Background
Genome engineering (GE) focuses on the modification of
genomes in living organisms at specific loci of interest.
Examples of such modifications include insertion of a new
gene into the genome, inactivation of existing genes via
disruption of their sequences and replacement of a mal-
functioning gene with a corrected version. GE has demon-
strated its utility in basic research as well as in many
industrial applications, for instance in agriculture and
therapeutics [1-3]. One approach to GE is based on the
use of sequence-specific nucleases to trigger DNA modifi-
cations by generating DNA double-strand breaks at the
locus of interest. Currently, the four most frequently used
tools in GE to generate targeted DNA cleavage are tran-
scription activator-like effector nucleases (TALENa) [4],
CRISPR nuclease complexes [5,6], zinc-finger nucleases
(ZFN) [4,7,8] and meganucleases (MN) [9,10]. These pro-
teins have different properties (size, origin etc.), making it
possible to match them with specific applications [3,11].
Meganucleases are naturally occurring endonucleases

characterized by large recognition sites (12 bp or more),
which are almost unique in most genomes. The large
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recognition sites makes MNs perfect tools for GE, but
unfortunately the number of naturally occurring MNs is
quite limited and is not nearly sufficient to cover all
potentially interesting loci. Therefore there was a strong
need for a method that would allow us to redesign exist-
ing MNs to cut new DNA sequences. Existing redesign
techniques include the creation of fusion chimeras from
existing MN domains [12-14] and alteration of MN
specificity via direct mutation of protein residues in the
DNA binding scaffold [15-25]. One of the most used
starting scaffolds for the design of new artificial MNs is
I-CreI, a member of the LAGLIDADG family, the largest
of five known families of MNs [26]. I-CreI is a homodi-
meric endonuclease cutting a 22 bp pseudopalindromic
target (Figure 1A) with at least 25 known structures in
the RCSB PDB [27] showing an alpha-beta(2)-alpha-beta
(2)-alpha fold [28] (see Figure 1B). Figure 1C illustrates
which residues participate in the binding of DNA [29].
In each monomer, residues R70 make direct contacts
with base ±3 and ±4, Q44 with base ±4, and R68 with
base ±5, while Q26 and K28 make direct contacts with
bases ±6 and ±7s respectively. Positions ±10 make direct
contacts with residue Y33 and ±9 with Q38 and N30.
The base pairs at positions ±1 and ±2 (2N4 region) do
not make direct contacts with any of the protein
residues. Based on this interaction map, we previously
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Figure 1 I-CreI/DNA binding interface. (A) Natural I-CreI target site with all positions indexed with respect to the center of the site from -11 to
11. -11NNNN and -5NNN are the reverse-complements of 11N4 and 5N3. (B) 3D structure of the I-CreI/DNA complex (PDB code: 1g9y). (C) I-CreI/
DNA interaction map. Columns correspond to position on the DNA, rows correspond to positions of protein residues. Colors in the table are used
to describe the nature of interaction between residues and nucleotides: dark green – backbone interactions, blue – water mediated, red – base
specific. Residues N30-S40 and Q44-D75 are clustered together to indicate that they contact separate regions 11N4 and 5N3 on the DNA target.
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defined four regions on the I-CreI target: the central
2N4 part of the recognition site (positions -2:2), where
I-CreI cuts the DNA and three regions ±11N4, ±7N2,
±5N3 which constitute the binding sites [15-17].
Much effort has been made in the past to engineer I-CreI

[15-21]. We formerly reported a successful combinatorial
approach relying on the division of the I-CreI/DNA
interface into separate clusters of amino acids with different
DNA recognition regions. Namely, the fact that there is no
intersection between groups of residues binding the 5N3
and 11N4 regions (see Figure 1C) makes it possible to
screen for proteins binding target variants in the 5N3 and
11N4 regions independently and then combine the muta-
tions from these two protein sets to cut a hybrid 11N4-5N3
target [15-17]. While conceptually the combination of
different clusters allows efficient MN design, one still needs
to screen hundreds of molecules to find the optimal MN.
In [16], an assay based on single-strand annealing (SSA)
was developed to perform such high-throughput screening
as a routine assay. Another example of a semi-rational
experimental approach is based on the sequential design of
I-OnuI derived MNs [22]. Here, we present a new method
for MN engineering that significantly reduces the number
of molecules screened without reducing the final success
rate.
Several studies have described the possibility of engineer-

ing MNs using atomistic molecular modeling software such
as FoldX [19] and Rosetta [18,20,21]. These software
packages build optimal MN structures by minimizing the
binding energy of protein-DNA complexes. Most reported
studies have limited the use of these packages mainly to the
prediction of MNs for single base substitutions, but in [18]
the authors reported successful MN prediction on targets
with up to three base substitutions.
Diverse applications of machine learning (ML) ap-

proaches [30-36] have positioned machine learning
techniques as promising tools for solving complex bio-
logical problems. Some of these applications, such as
how to predict transcription factors, bear many similar-
ities with the design of MNs. A necessary condition for
the application of a ML approach is the existence of
data from which a ML algorithm can learn a model.
Over the years, we have gathered data on the cleavage
activity of several hundreds of thousands of MN-DNA
target pairs, which we used to train a machine learning
model.
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In this manuscript we present a new efficient method
of MN design based on machine learning techniques.
This strategy presents the advantage of a competitive
success rate compared to that of experimental combina-
torial high-throughput screening, while significantly re-
ducing the number of screened molecules by several
orders of magnitude and at the same time significantly
outperforming alternative in silico models such as
Rosetta and FoldX. The experimental validation of the
ML approach lead to the successful design of MNs for
53 new DNA targets.

Results
Cross–validation experiments
The principal dataset used to train/cross-validate the
machine learning model and to compare the performance
of various in silico models consisted of 251 pseudopalindro-
mic (reduction of non-palindromic targets to pseudopalin-
dromic is described in [17]) 22 bp DNA targets screened
according to a combinatorial process (see “Materials &
methods”) giving in total 293k protein-DNA pairs of known
activity (each target had at least one active protein).
In the first series of experiments we studied how in silico

methods (ML approach and physical models) performed
on the combinatorial dataset by doing cross-validation ex-
periments (a detailed description of cross-validation scheme
is given in Additional file 1: Figure S1). To assess the quality
of model predictions, we computed several performance
scores for each target: AUC score, Top10 score, and %
Top10. Finally, the average value of each score over all
targets from the test set was used as a global performance
measure of in silico models (hereinafter we will use the
simplified notations AUC, Top10, and %Top10 to denote
the overall average values of each score).
Figure 2 presents the cross-validation performance scores

(Top10% and AUC) for the following models: FoldX (Fx),
Figure 2 Cross-validation performance of various in silico methods. (L
molecule in Top10 ranked, (Right) AUC – AUC score (see Material and Met
activities, Fx — FoldX score, Rt — Rosetta score, SeqMact — protein/targe
combined (sequences +module cleavage activities + FoldX scores and inte
cross-validation experiments.
Rosetta (Rt), Mact (machine learning model trained only
on the cleavage activities of the p5N3 and p11N4 building
modules), SeqMact (ML model trained on the cleavage
activities of building modules plus target and protein se-
quences), SeqMactFxStr (ML model trained on all available
features such as cleavage activities of building modules, tar-
get and protein sequences, FoldX scores and protein-DNA
interaction maps). Values of Top10 score are given in
Additional file 1: Figure S6. FoldX and Rosetta did not use
the information available in the training set; they made their
predictions by estimating the binding energy of the protein-
DNA couple from a physical model. For a more detailed
description of ML models, FoldX and Rosetta, see the
corresponding sections of “Materials and methods”.
Overall Mact had an AUC score of around 0.66 and was

able to predict at least one positive protein in the top 10 for
about 20% of targets. Remarkably, the performance of the
physical models (Fx and Rt) matched that of Mact. It is
worth noting that Fx/Rt do not use information on module
cleavage activities and can be used ab initio without any
preliminary steps (i.e. screening of module libraries). How-
ever, when we added the information on protein and target
sequences into the ML model (SeqMact), we obtained a
significantly better success rate, predicting at least one posi-
tive mutant in the top 10 for about 80% of targets, with an
AUC score of 0.9 (Additional file 1: Figure S13 shows the
average ROC curve computed over test targets). The sub-
stantial difference in the success rates of Mact and SeqMact
suggested that combining the best modules was not suffi-
cient to get an active combined mutant; we also had to take
into account protein and target sequence composition. An-
other important conclusion was that by learning sequence
patterns specific to active and non-active proteins, we could
obtain much better predictions than by exploiting a general
physical model. Interestingly, when we combined SeqMact
and Fx into a more general ML model (SeqMactFxStr)
eft) %Top10 — percentage of targets with at least one positive
hods) Mact - predictions made on the basis of module cleavage
t sequences +module cleavage activities, SeqMactFxStr — all features
ractions). Error bars are estimated from 30 independent
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trained on sequence and structural features, we did not
observe any improvement even though the two methods’
final protein rankings were not always the same.
Machine learning performance scores presented in

Figure 2 correspond to the case when all available data
in the training set were used to train the model (on aver-
age screening results on 226 = 0.9*251 targets). Figure 3
(Left) shows how Top10% (AUC and TopN are pre-
sented in Additional file 1: Figure S7) of Mact and Seq-
Mact varies with the size of the training set, with only
10-20 targets (~10% of the actual traing set) SeqMact
already matches the performance of FoldX and with 60
targets, it almost triples the performance. To make sure
that SeqMact generalizes well on targets which are
significantly different from what we already have in the
training set, we repeated the previous experiment but
this time instead of random subsampling of targets from
the training set, we kept only those that had at least 2
and 3 base pair difference with all test targets (1 bp dif-
ference is the default situation where we use the entire
training split). Figure 3 (Right) shows how the perform-
ance varied with the minimal allowed distance between
training and test sets, we observe a drop in performance
when the minimal distance (red circles) is increased.
However the decrease is almost identical when we ran-
domly sample an equivalent number of targets meaning
that the model predicts well on significantly different
targets and the observed drop in performance is due to
the reduced size of the training set. Additional file 1:
Figure S8 presents the distribution of all possible MN
targets with respect to their distance from our training
set. A majority of targets were at most 3 nucleotides
distant from the training set, indicating that we could
safely apply our method to almost all potential MN targets.
Another important question is how many molecules

we needed to screen in order to have at least one
Figure 3 Performance of ML model as a function of training set comp
set size (i.e. number of combinatorial libraries). Experimental setting are sim
the cross-validation performance when we use only a portion of the trainin
between test and training targets (1, 2, 3) – distance in number of bases, (1
removal of targets which are too similar to targets in the test set. Distance sub
random selection of equivalent size training set; r gives the drop (ratio) in per
positive mutant. Additional file 1: Figure S9 shows how
the success rate of in silico approaches varied with the
size of the screening pool. Ten molecules seemed to
provide a good compromise between the number of
molecules tested and the corresponding success rate; six
molecules were enough to have on average one active
molecule and at least one active molecule for more than
50% of the targets tested.

Key features in machine learning model
In this section we address why SeqMact was more effi-
cient than Mact. As described in “Cross-validation per-
formance scores”, SeqMact can be seen as an extended
version of Mact with additional features describing protein
and target sequences. To determine whether any particular
group of features contributed most to the performance
boost, we tested alternative versions of SeqMact trained on
several subgroups of features:

� SM-5 (SM-11 respectively): features encoding the
p5N3 (p11N4 respectively) part of proteins and
DNA sequences; no interactions between features;
the relative performance of this model with respect
to Mact reflected the importance of the p5N3
(p11N4 respectively) part of the sequences;

� SM-5_11: union of features from the two previous
models; no interactions between features; the
relative performance of this model with respect to
SM-5 and SM-11 showed whether the combination
of both parts (p5N3 and p11N4) improved performance
with respect to the individual use of each part;

� SM-M2M: all features from the SM-5_11 model plus
interactions between features encoding protein
sequences; the relative performance of this model
with respect to SM-5_11 reflected the impact of
simultaneous protein mutations, i.e. whether there
osition. (Left) Performance of ML model as a function of the training
ilar to those presented in Figure 2, where each point corresponds to
g data. (Right) Success rate as a function of the minimal distance
00%, 80%, 20%) – proportion of the training set which is kept after
sampling – distance based selection of targets, Uniform subsampling –
formance score due to the distance based selection of training targets.
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were any combinations of protein mutations that
were harmful (or on the contrary favorable) to
protein activity on any target (perhaps due to some
folding or expression problems).

� SM-M2T: all features from the SM-5_11 model plus
interactions between features encoding protein
sequences and features encoding target sequences;
this reflected the importance of dependencies between
protein and target sequences, i.e. whether there were
any preferences between target and protein sequences
in addition to the already known cleavage activities of
the p5N3 and p11N4 modules on the corresponding
targets;

� SeqMact: union of all features used in previous
models; the relative performance of SeqMact
and SM-5_11 reflected the impact of 2nd order
interactions between features encoding protein and
target sequences, while the relative performance of
SeqMact, SM-M2Tand SM-M2M could tell us if there
was any particular group of 2nd order interactions
(M2M or M2T) contributing most to the
performance boost.

In addition to the M2M versus M2T split, we also split
2nd order interaction features into features encoding de-
pendencies within the same ‘module’ (interactions between
features encoding the p5N3 part of the protein-DNA inter-
face plus interactions between features encoding the p11N4
part) - SM-Intra, and 2nd order interaction features encod-
ing dependencies between the p11N4 and p5N3 parts
(i.e. cross-talk between combinatorial modules) - SM-Cross.
The cross-validation performance of the alternative Seq-

Mact versions is presented in Figure 4 (Left; Top10%, AUC
and Top10 are given in Additional file 1: Figure S10). Over-
all, the use of information on protein sequences tripled the
Figure 4 Cross-validation performance of ML model as a function of
least one positive molecule in Top10 ranked. Description of various groups
SM-Intra and SeqMact) are given in the text. Error bars are estimated from
active mutants at least as specific as the wild type I-CreI. Top10 — avg. nu
molecules, α — trade-off parameter between predicted specificity and acti
protein/target sequences, Fx – FoldX score.
average number of active proteins in the top 10 predicted
and the number of targets with at least one positive protein
in the top 10 (SM-5_11 versus Mact). SM-5_11 basically
learned which protein mutations were bad and which were
good independently of the target sequence, i.e. non-specific
activity patterns. The performance of SM-5_11 could be
further enhanced by adding features describing simultan-
eous protein mutations (SM-M2M versus SM-5_11). SM-
M2M learned only non-specific activity patterns, but these
patterns were more sophisticated: now the model also
learned whether there were any particular combinations of
protein mutations that were good or bad for overall
performance. When we added target-specific interactions
(SM-M2T), we obtained an even higher performance boost.
Finally, when we combined all features (SeqMact), the re-
sult was a model that outperformed both the SM-M2T and
SM-M2M models, meaning that both types of interaction
were important in the final model.
The relative performance of the SM-Cross and SM-

Intra models suggests that the major performance boost
obtained after adding interaction features came from
the features describing dependencies within the same
modules.
Examples of features with the strongest positive and

negative impact in the model are given in Additional file 1:
Table S1. The negative impact of the 44F mutation could
be probably explained by the enhanced rigidity of the sec-
ond beta-strand due to the contemporaneous presence of
the wild type 43F; on the contrary the mutation 32K could
have triggered additional non-specific DNA interactions.
Electrostatic repulsion between 44R and 77R may have
been the cause of the negative effect of the simultaneous
presence of these two mutations in the protein (Additional
file 1: Figure S12 illustrates the spatial proximity of 44R and
77R leading to an important interaction between them).
interaction features. (Left) %Top10 — percentage of targets with at
of features (SM-5, SM-11, SM-5_11, SM-M2M, SM-M2T, SM-Cross,
30 independent cross-validation experiments. (Right) Prediction of
mber of active proteins at least as specific as I-CreI in top10 ranked
vity of candidate proteins. Seq – machine learning model trained on
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Most of the features describing protein-DNA interactions
corresponded to contacting positions, providing additional
insights on which residues should or should not be used to
target particular nucleotides.

Activity versus specificity trade-off
Cleavage activity on the target of interest is not the only
parameter we would like to control in MN, another
important characteristic is its specificity. Since the
prediction step was fast using the ML model compared
to physical models, we could predict the activity of all
candidate mutants on all possible targets in a matter of
seconds and pick the mutant with the most specific
profile or the mutant with the best trade-off between its
predicted activity and specificity.
To assay experimentally a protein on all possible tar-

gets would require a tremendous amount of resources,
so to validate our approach we used a set of 2,576
proteins mutated at positions contacting the 5N3 region
and screened them on all 64 possible 5N3 targets (each
mutant being active on at least one target). Screening all
mutants on all targets enabled us to compute the specifi-
city of all mutants in the same context (that of 5N3
targets). Similarly to [20], we computed the specificity of
mutant pi on target tj as the ratio of the activity of pi on
tj over the total activity of pi on all targets.
Rather than simply predicting the most active mutant,

we were able to alter our criteria to favor the prediction
of active mutants that were at least as specific as the
wild type I-CreI on the same set of 64 5N3 targets (other
activity/specificity trade-offs are possible as well). To
predict mutants that were active and specific at the same
time, we first predicted the activity of the candidate
mutants on all 64 5N3 targets; we then computed the
predicted specificity as the ratio of mutant activity on a
given target of interest over the total activity on all 64
targets. Finally, we ranked all candidate mutants accord-
ing to the following score combining predicted activity
and predicted specificity:

Rα ¼ αAþ 1−αð ÞS

where A and S are predicted activity and specificity,
respectively.
Figure 4 (Right) shows how the number of active mutants

at least as specific as I-CreI in the top 10 varied as a func-
tion of α. When we ranked the candidate mutants accord-
ing to their predicted activity, we obtained only a few
specific mutants (α = 0), but when we output the most
specific mutants we obtained very few active proteins. The
results presented in Figure 4 were natural in the sense that
if we wanted to predict not only active but also specific
mutants we had to use a combined score representing a
trade-off between the predicted activity and specificity of
candidate mutants.

De novo experiments: designing new custom MNs
In the second series of experiments, we tested the ability
of our ML model to predict MNs on completely new
DNA targets. The experiments were done on two groups
of targets, a first group sampled from the extended
target space (ETS) (38 targets), and a second group (39
targets) sampled from the restricted target space (RTS)
(a subset of ETS) (see Additional file 1: Table S2 for the
exact list of targets tested). The ETS is defined by a set
of constraints on the sequences of 2N4 and 7N2 regions
and the existence of active p5N3 and p11N4 building
modules, it corresponds roughly to one target every 250
base pairs. These constraints were necessary to ensure a
good probability that the combinatorial approach would
find an active MN [15,37]. The RTS was defined as a
subset of the ETS with additional constraints on the set
of 2N4 sequences (only the most favorable 2N4 were
allowed [38]), and 11N4-5N3 combinations (with the
top 20% highest ML prediction scores), it corresponds to
an average frequency of one target every 5.5kbp.
For each target we predicted and tested 6 proteins (on

average). Since the impact of 2N4 regions was independent
of other regions and was not taken into account in the ML
model, predicted mutants were also tested on variants of
sampled targets with their 2N4 regions substituted by a
GTAC sequence (the 2N4 sequence of the palindromic
target derived from the left part of I-CreI wild type target
and one of the most favorable 2N4 sequences [39]). Tests
on GTAC target variants enabled us to see the success rate
of the ML model regarding the quality of prediction of the
optimal MN binding interface independent of any influence
of the 2N4 region.
In the first series of experiments, 156 MNs were pre-

dicted for 26 DNA targets sampled from the ETS. Figure 5
(Left) SeqMact presents the success rate (i.e. proportion of
targets with at least one active MN) of ML predictions on
the first group of targets (ETS). ORIG and GTAC denote
the success rate over the original sampled targets and their
GTAC variants, respectively. We also report the proportion
of ORIG targets with at least one strongly active MN:
ORIGstrong (cleavage activity score above 0.8). Overall,
62% (16/26) of GTAC targets and 23% (6/26) of ORIG
targets were cut. Among the six ORIG targets cut, three
had strongly active MNs.
It is known [40] that additional mutations such as I132V

can help boost the activity of MNs. In the second series of
experiments 72 MNs were predicted for another 18 targets
sampled from the ETS, and this time all predicted MNs
were synthesized with the additional mutation I132V.
Figure 5 (Left) SeqMact + shows the success rate of ML
predictions with additional I132V mutations. Although



Figure 5 Success rate of meganuclease design methods. (Left) Experimental results on targets sampled from ETS (extended target space).
(Right) Experimental results on targets sampled from RTS (restricted target space). SeqMact - machine learning predictions, SeqMact +—
machine learning predictions with additional I132V mutation, Comb — combinatorial libraries. GTAC — proportion of GTAC target variants with
at least one positive mutant, ORIG — proportion of original (sampled) targets with at least one positive mutant, ORIGstrong — proportion of
original (sampled) targets with at least one highly active mutant (normalized cleavage activity score above 0.8).
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small sample sizes did not enable us to say that there was a
statistically significant difference between success rates with
and without the additional I132V mutation, the proportion
of successfully cut GTAC targets went up to 83%, targets
with original 2N4 up to 58%, and strongly cut original
targets up to 16%.
As a comparative reference, we report the success rate

of the combinatorial process (Comb, high-throughput
screening of about 1,160 proteins per target) on a much
larger body of 758 targets also sampled from the ETS
(see Figure 5 (Left) Comb). Overall, using ML predic-
tions provided us with a success rate that was competi-
tive in relation to that of high-throughput screening,
with 200 times fewer molecules tested.
In the last series of experiments, we hypothesized that

we could still improve the success rate of ML predic-
tions by choosing targets that would be expected to be
the easiest to cut [39]. To this end, 39 targets were thus
randomly sampled from the more stringent RTS and
assayed both with the original 2N4 and GTAC (Figure 5
(Right)). Indeed, the success rate on GTAC targets and
targets with the original 2N4 went up to 92% and 90%
respectively (42% strongly cut for original 2N4). The
success rate of Comb on the RTS was the same as on
the ETS.

Discussion
Apart from a significant boost in performance, relatively
low performance of Mact with respect to SeqMact
models provided additional evidence to the hypothesis
of non-negligible interdependency between p11N4 and
p5N3 protein domains [15]. Furthermore the perform-
ance of alternative ML models trained on different
subsets of features (SM-Cross and SM-Intra) suggested
that the principal gain in performance was coming from
a better selection of starting p11N4 and p5N3 modules
that keep their activity profile when combined with each
other, therefore providing a basis for the desirable
factorization of the binding interface.
There are several explanations for the difference in

performance between the ML approach and physical
models. First, physical models rely on the computation
of binding energy as the only important factor to predict
active MNs. However in reality there are other factors
such as protein expression and cleavage activity that can
greatly influence the final activity of MNs. With the ML
approach we directly model the final outcome, which
may be much harder to handle with a physical model.
Second, existing physical models use many approxima-
tions and simplifications that significantly reduce com-
putation time, but which may have a negative impact on
precision. The majority of the computational studies
predicting DNA binding affinity for MNs have used a
very conservative approach, only one base has been
allowed to change. In [18] a triple base change was
reported. In [20] many possible reasons for the difficulty
of generating new in silico MNs are clearly discussed.
Whereas the main in silico experiments with physical

models were carried out using only one structure, we
also studied the possibility of using more than one
structure to build our models. On 20% of the original
combinatorial dataset we tested the performance of the
method using three different structures (1g9b, 2vbj and
2xe0). No detectable improvements could be reported
(data not shown), suggesting that a much wider struc-
tural coverage of potential MN/DNA target pairs is
necessary to improve the success rate of physical models
in large scale experiments.
Concerning the application of ML approaches to the

design of new DNA-binding proteins, active learning
methods [41] (instead of random sampling) as a more
efficient way to collect the training data is an interesting
direction for future research. Such a method would be
especially useful when starting data collection for a new
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binding scaffold since it would help to choose the most
informative examples for sampling and to reach faster
the optimal success rate.

Conclusions
In this study we address the application of a machine
learning approach to the design of meganucleases cut-
ting specific DNA targets. Our results are very promis-
ing in that the ML model significantly outperformed
state-of-the-art in silico models such as FoldX and
Rosetta. In addition, our method had success rates
competing with those of combinatorial high-throughput
screening, while reducing the number of molecules
screened by several orders of magnitude. In experimen-
tal validation, the ML model successfully predicted
active MNs for 53 new DNA targets. The boost in
performance brought by the ML model comes with a
price, as one needs a training set to learn the model,
meaning it cannot be used completely ab initio. How-
ever, if a training set already exists, or if one is prepared
to invest in building a new one, this could be considered
a very interesting alternative to existing methods. In the
case of MNs, experimental results on 20 DNA targets
were already enough to train a machine learning model
that outperformed existing in silico models.

Methods
Combinatorial process
A detailed description of the combinatorial process can be
found in [17]. Here, we give a brief description of the
procedure according to which the dataset of combinatorial
libraries was generated. The goal of the combinatorial
process was to find MNs that cut a given 22 bp DNA target
T. We consider the case of palindromic target T (the case
of a non-palindromic target can easily be reduced to the
palindromic case by designing a separate meganuclease for
the left and right parts of T; see [17]). The preliminary step
in the combinatorial process involved creating module
libraries of mutants cutting all possible 5N3 targets (64
targets) and all possible 11N4 targets (256 targets). Module
libraries were created by degenerating a pool of I-CreI
mutants at positions Q44, R68, R70, D75, I77 (hereinafter
denoted by p5N3) contacting 5N3 regions and positions
N30, S32, Y33, Q38, S40 (hereinafter denoted by p11N4)
contacting 11N4 regions with further screening on all pos-
sible 5N3 (respectively 11N4) targets. This preliminary step
needed to be done only once for all future targets. Since the
sets of I-CreI interface residues contacting 5N3 and 11N4
regions were disjoint, a MN combining mutations of MNs
cutting the 5N3 and 11N4 targets had a good chance of
cutting the combined 11N4-5N3 target. In practice, testing
a single combined MN rarely leads to success, and in order
to have a good probability of finding an active MN up to 40
by 40 combinations (i.e. 1,600 combinations of 40 p5N3
MNs and 40 p11N4 MNs) have to be tested in high-
throughput screening.

Dataset of combinatorial libraries
When applying the combinatorial process to find active
MNs for a given palindromic target of interest T, we started
from the selection of MN modules targeting the 5N3 and
11N4 part of T, which were later used in the PCR assembly
process (see “Combinatorial process”) to generate a number
of final MNs p1,…,pK where pi is a combination of p5N3
mutations of a random p5N3 module and p11N4 muta-
tions of a random p11N4 module. After screening candi-
date mutants p1,…,pK on the target of interest T, only
positive mutants (if any) were sequenced. Although due to
the random nature of the PCR assembly process we could
not guarantee that all possible combinations of starting
modules were present among the K candidate mutants, we
could make the number of untested mutants quite low by
oversampling (in our lab we sampled triple the theoretical
diversity which should cover about 95% of all possible com-
binations). It was therefore natural to assume that 11N4-
5N3 combinations, which are not found among positive
sequences, were negative.
The dataset used in our ML computations consisted of

251 palindromic targets, all with GTAC (2N4 sequences of
the palindromic target derived from the left part of I-CreI
wild type target [39]) at their 2N4 region, screened accord-
ing to the combinatorial process. This set was used to
train/cross-validate the machine learning model and to
compare the “cross-validation performance” of various in
silico models. The average size of the combinatorial pools
was 1,160 mutants. 26 targets had associated combinatorial
pools with less than 500 mutants and 10 targets had pools
of 2,000 or more mutants. The average number of positive
mutants per target was 15, and 27 targets had only one
positive mutant (all targets had at least one positive
mutant). 19 targets had more than 40 associated positive
mutants. Since only positive mutants were sequenced at
the end of the combinatorial process, we could only be sure
about the sequences of active proteins. The rest of the
combinatorial pools are likely to have been negative and are
considered, but not guaranteed, as such.

5N3 cross-validation set
The set of p5N3 mutants used to evaluate the “activity
versus specificity trade-off” (see Section 3.3) consisted of
2,576 mutants tested on all 64 possible 5N3 DNA targets.
11,013 out of 164,864 (=64*2,576) protein-target pairs
(6.6%) were positive, giving on average 172 positive mutants
per target and 4 positive targets per mutant.

Cross-validation performance scores
As explained above, the dataset consisted of a set of
DNA targets ti and associated candidate proteins pij. We
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used in silico methods to compute an activity score A(ti,
pij) which was then used to rank candidate proteins pi1…
piK for a given target ti. A perfect score would put all
active proteins at the top of the list, but in practice we
usually had a mix of positive and negative proteins,
with the proportion of active proteins depending on the
quality of the scoring function. To assess the quality of a
ranking generated by a particular score, we used the
following measures:

� %TopN – indicated whether there is at least one
active molecule among the top N predicted; this
score makes sense only when averaged over a set of
targets; in this case it represents the percentage of
targets where an in silico method was able to
predict at least one positive in the top N (i.e. a
successful experiment);

� TopN – in practice an in silico model is usually
used to select a limited number of candidate
molecules that will later be tested in real
experiments. In this context, we used the number of
active molecules among the top N predicted as a
performance measure. In most of the figures, we
used N = 10, but relative behavior of in silico
methods was quite stable over various values of N
(see “Cross-validation experiments” Additional file 1:
Figure S1);

� AUC – area under the ROC (receiver operating
characteristic) curve, a popular measure of global
ranking quality [42]; one of the interpretations of
this score is the probability that a random positive
element (meganuclease in our case) will be ranked
higher than a random negative element from the list
of candidate proteins;

ML model
The final machine learning model was an ensemble model
combining GBM (gradient boosting machines with decision
trees as basic learning models) [43] and LASSO (least
absolute shrinkage and selection operator) models [44]. We
used the gbm package [45] to train the GBM model and
the glmnet package [44] to train the LASSO model. Clas-
sical SVM (hinge loss, L2 regularization) showed inferior
performance, but rankSVM model (optimization of the
AUC score) was competitive with LASSO and GBM. A
variant of the GBM model based on the optimization of the
AUC score lead to a slight improvement in terms of AUC,
but had a rather negative impact on Top10 and %Top10.
The final ensemble combination was restricted only to
LASSO and GBM, addition of other models had no signifi-
cant impact on the performance of the ensemble model.
Parameters of ML models were systematically estimated
from inner cross-validation loops on training folds (see
Additional file 1: Figure S2) and then used to test the final
model on the test fold. Additional file 1: Figure S3 shows
the performance of these models separately and when
combined together in an ensemble model. A detailed
description of the algorithm used to build the ensemble
model is given in Additional file 1: Figure S11.
GBM was trained on categorical features representing

mutations at 11 key positions in the protein sequence,
the DNA target sequence and cleavage activities of
starting p5N3 and p11N4 building modules (a detailed
description of the dataset is given in Additional file 1:
Figure S4 “Categorical dataset”). To train the LASSO
model, all categorical features were encoded using binary
features (with each binary feature encoding a particular
mutation of the protein sequence or nucleotides in the
DNA sequence). In addition, products of all pairs of
individual features with more than 200 non-zero compo-
nents were added to the model to encode second-order
interactions between features (detailed description of the
datasets is given in Additional file 1: Figure S4 “Bin1”
and “Bin2” dataset).
Endnote
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