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Abstract

Background: Mass spectrometry-based metabolomic analysis depends upon the identification of spectral peaks by
their mass and retention time. Statistical analysis that follows the identification currently relies on one main peak of
each compound. However, a compound present in the sample typically produces several spectral peaks due to its
isotopic properties and the ionization process of the mass spectrometer device. In this work, we investigate the extent
to which these additional peaks can be used to increase the statistical strength of differential analysis.

Results: We present a Bayesian approach for integrating data of multiple detected peaks that come from one
compound. We demonstrate the approach through a simulated experiment and validate it on ultra performance
liquid chromatography-mass spectrometry (UPLC-MS) experiments for metabolomics and lipidomics. Peaks that are
likely to be associated with one compound can be clustered by the similarity of their chromatographic shape.
Changes of concentration between sample groups can be inferred more accurately when multiple peaks are available.

Conclusions: When the sample-size is limited, the proposed multi-peak approach improves the accuracy at inferring
covariate effects. An R implementation and data are available at http://research.ics.aalto.fi/mi/software/peakANOVA/.

Keywords: ANOVA-type modeling, Bayesian modeling, Clustering, Mass spectrometry, Metabolomics, Lipidomics,
Nonparametric Bayes

Background
The study of changes in the levels of metabolites and lipids
has become essential for the comprehensive understand-
ing of human health [1]. Chromatography-coupled mass
spectrometry (MS) techniques have become the standard
method for characterizing the human metabolome [2]
and lipidome [3]. The technique generates a spectrum of
peaks describing the sample in the plane defined by the
retention time from the chromatograph and the mass-to-
charge ratio from the mass spectrometer. Each peak in
this plane is either generated by an ion arising from one
of the compounds present in the sample, or is an arti-
fact of the measurement without association to any of
the compounds. The association between the peaks and
compounds is unknown a priori. The produced peak data
are noisy: First, sample preparation introduces sources of
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uncertainty that propagate to the analysis [4]. Second, the
accuracy of the device is limited [5] and it produces biases.
Third, peak identification, annotation and pre-processing
steps produce additional layers of uncertainty [6]. The
effect of errors at all these levels is exacerbated by the
“small n, large p” problem: experiments cover a very lim-
ited number of samples, n, while the set of compounds
measured, p, is potentially large.
However, there also is strong informative struc-

ture in the data: First, each compound may gener-
ate multiple adduct peaks [7] (Figure 1) and isotope
peaks [8,9] (Figure 2), whose positions and shapes pro-
vide information about the identity of the compound.
Second, the concentrations of different compounds gen-
erated by or participating in similar biological processes
may be highly correlated [10]. An increasing number
of machine learning algorithms are being developed for
inferring such structure either from raw spectral data [11]
or from processed intensity data [12]. The inference of
covariate effects—the differences between sample groups
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Figure 1 A schematic of the positions of typical adduct peaks [7]
in the RT-m/z plane for two lipids, the ceramide Cer(d18:1/17:0)
and the sphingomyelin SM(d18:1/22:0). An adduct peak is formed
by an ion attaching to the compound. At the finer detail, each peak in
the figure consists of multiple isotope peaks few atomic units apart,
as shown for Cer(d18:1/17:0) in Figure 2. Even though the distinct
isotope peaks are not visible to the eye here, they are clearly
separable by the mass spectrometer. In the figure, adduct types and
compounds are marked by colors and characters, respectively.

Figure 2 Natural isotopic distribution of the mass of a typical
lipid, the ceramide Cer(d18:1/17:0). The presence of atomic
isotopes leads to the appearance of multiple mass spectral peaks
from the compound. Some isotopes are very similar by their mass but
still differentiable by the mass spectrometer. The isotope peaks have
distinct mass-to-charge ratios at the same retention time (Figure 1).

determined by the controlled covariates of the experi-
ment, such as an intervention—is in the core of the com-
parative analysis of spectral profiles [13]. In addition to
the controlled covariates, confounding factors may affect
the observations and are subject to the experiment design.
In this work, we focus on inferring effects of the controlled
covariates from the data.
The existence of additional peaks in the spectrum is

usually seen as a problem and only the main peak of
each identified compound is used for further analysis.
All peaks are a result of the ionisation process where
a charged particle is attached to or detached from a com-
pound. Each such compound-ion pair produces a distinct
adduct peak. Random variation in the ionisation process
leads to inconsistencies between batches of samples, per-
ceived as variation in the ratio of intensities of the peaks
associated with one compound. This is a major source
of error for all existing analysis approaches regardless of
the choice of the peak used for the analysis. On the other
hand, the distribution of the intensities of isotope peaks
is by nature well preserved across both samples and com-
pounds. Moreover, the natural isotopic distribution of
a compound is known and can be used to make peak
annotation more precise. In this way, isotope peaks pro-
vide reliable additional information about the differences
in compound concentrations between sample groups.
We propose a probabilistic approach for extending sta-

tistical analysis to all available peaks and demonstrate
that the additional peaks can provide a real benefit to
the inference of covariate effects (Figure 3). The approach
is used to cluster the peaks that are likely to arise from
a single compound together and to infer the changes in
concentrations of the compounds more accurately based
on all these peaks. By this approach, we are address-
ing the problem of inadequate sample-size by introduc-
ing additional data describing the compounds behind
the noisy measurements.
To solve the problem we introduce the following

assumptions about the generative process of the data
within a Bayesian model: First, samples carry between-
group differences in their compound concentrations and
the differences arise from responses to controlled covari-
ates. Second, multiple observed spectral peaks follow
an identical generative process and their heights are
a noisy reflection of the true concentration level of
the compound. Third, shapes of the peaks from one com-
pound are generated through an identical process follow-
ing the properties of the measurement device, and thus
these shapes are highly similar.
The approach presented in this paper consists of two

stages of computational inference: (1) peaks that share
a compound as their generative source are clustered
together, and (2) the responses to controlled covariates of
the experiment are inferred on these clusters of peaks.
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b)

Figure 3 Flow chart of the method. (a) Peaks are clustered by their shapes. (b) Covariate effects are inferred based on the intensities of
the clustered peaks.

The clustering part of the approach is based on a non-
parametric Bayesian Dirichlet process model [14]. To
improve the performance of this model, we have rede-
fined the prior distributions from a normal distribution to
a beta distribution to improve thematch to the peak shape
similarity observations.
The model for inferring the responses to covariates

operates on clusters inferred in the first part. A Bayesian
multi-way model [13] is suitable for this task. This model
itself could be used for clustering summarized mass spec-
tral intensity data, but in this work, we demonstrate that
the clustering can be done more accurately based upon
the similarity of chromatographic peak shapes.

Methods
This section describing the models consists of two parts:
clustering of spectral peaks and inference of covariate

effects. Tomaintain the mathematical rigor in the section,
we use the terms “samples,” “variables” and “clusters” to
refer to the experimental runs of the mass spectrome-
ter, the peaks in the mass spectrometry data, and the yet
unknown compounds in the experimental runs, respec-
tively. In the equations, we denote them by the indices

i =1, . . . ,N (samples, i.e., experimental runs),
j =1, . . . , P (variables, i.e., peaks),
k =1, . . . ,K (clusters, i.e., compounds), (1)

respectively, where N , P and K are their respective total
numbers. We use bold capital, bold non-capital and non-
bold non-capital symbols to refer to matrices, vectors and
scalars, respectively (e.g., V, v and v).
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Clusters of peaks based on the similarity
Following earlier work [14], we measure the similar-
ity between the shapes of two peaks by their Pearson
correlation computed over a window of retention time
after a standard peak alignment [15] across the sam-
ples. Truncating negative values to zero, this leads to
a distinct similarity matrix Qi·· ∈[ 0, 1]P×P for each sam-
ple i. In the notation, the operator “·” indicates that
the entire dimension of the array is included, not
only the single item j. Since a peak is not necessarily
observed in every sample, there may be missing values
in the matrices. Therefore, we construct an additional
mask R ∈ {0, 1}N×P×P with binary values rijj′ indicating
whether the peak pair (j, j′) in sample i appears together
within the window where the similarity is measured and
whether both of the peaks are observed. An unidentified
peak may still be present in the sample below the limit of
detection of the mass spectrometer. However, then it is
not useful for the inference of covariate effects and, thus,
is treated as missing.

Model
We assume that the peaks are generated through a
Dirichlet process [16]: there is an unknown number
of clusters and an unknown and variable number of
peaks that arise from each of the clusters. Peaks are
assumed to have a one-out-of-many association: each
peak is associated with only one of the unknown clusters.
With these basic assumptions, we can infer the P-by-K
clustering matrix V from the data Q. Value vjk = 1 in
the clustering matrix V assigns the peak j to the clus-
ter k. To make the following equations more com-
pact, we use an additional variable, εjj′ = vj·vTj′ · ∈ {0, 1},
which is an inner product of the cluster indicator vec-
tors of the peaks j and j′, to denote whether the two
peaks come from the same or different clusters (1 or 0,
respectively).
We set a spike-and-slab prior [17] for the peak shape

similarity to model the inherent sparse structure of
the data. The similarity between any pair of observed
peaks (j, j′) is assumed to follow a beta distribution, but
the shape of the distribution is assumed to depend on
whether the pair comes from the same cluster or from dif-
ferent clusters (shape parameters (ain, bin) or (aout, bout),
when εjj′ = 1 or 0, respectively). Also the probability
of a missing similarity value is assumed to depend on
the cluster assignment of the pair (pin0 or pout0 , when εjj′ =
1 or 0, respectively). The distributional assumptions are

qijj′ |εjj′ ∼
{
rijj′

(
1−pin0

)
Beta

(
qijj′ |ain, bin

)+ pin0 δ
(
rijj′

)
, εjj′ =1,

rijj′
(
1−pout0

)
Beta

(
qijj′ |aout, bout

)+ pout0 δ
(
rijj′

)
, εjj′ =0,

(2)

with the first and the second row of the equation stating
the distributions of a peak pair from the same cluster and
different clusters, respectively. The likelihood of the entire
peak shape data,

L (Q,R|V) =
N∏
i=1

P−1∏
j=1

P∏
j′=j+1

p
(
qijj′ , rijj′ |εjj′

)
, (3)

becomes a product over all peak pairs and samples follow-
ing the distributional assumption of Equation 2.
We further assume that the observed peaks are gener-

ated from an unknown finite subset of an infinite set of
clusters with an equal prior probability,

p
(
εjj′ = 1

) = 1
P − 1 + αDP

, (4)

for any pair of peaks to be generated from the same
cluster. These assumptions define the Dirichlet process,
controlled by the concentration parameter αDP, which
determines the prior probability mass outside the existing
clusters. Following from this prior assumption, the proba-
bility of assigning peak j to an existing cluster k,

p
(
vjk = 1|Q,R,V−j,·

) ∝ skL
(Q,R|V−j,·, vjk = 1

)
, (5)

becomes weighted by the current size of the clus-
ter, sk = vT−j,kv−j,k . In the notation, matrices V·,−k and
V−j,· correspond to the matrix V with the column k and
the row j omitted, respectively. Alternatively, with proba-
bility

p
(
vj,K+1 = 1|Q,R,V) ∝ αDPL

(Q,R|V−j,·, vj,K+1 = 1
)
,
(6)

the process may create a new cluster with the index K + 1
and only the peak j inside. Then, the likelihood term is
weighted by the Dirichlet process concentration parame-
ter αDP, which can be seen as a pseudo-count for the num-
ber of peaks outside the current K clusters.

Inference
We infer the posterior distribution of the clustering via
Gibbs sampling, which results in a set of S samples of
the clustering V(s), s = 1, . . . , S, from the true posterior
distribution p (V|Q,R). The computational complexity of
a Gibbs iteration is O (

KP2
)
. Further analysis can oper-

ate on the entire posterior distribution of the clustering
through integration, or on a point estimate of the distri-
bution. We follow earlier work [18] and acquire a point
estimate of the posterior distribution of the clustering
through finding the least-squares clustering (Section 1 in
Additional file 1).

Covariate effects based on peak heights
Having inferred the grouping of similar peaks into clusters
that each correspond to a compound, we infer the dif-
ferences in concentrations between sample groups for
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each cluster given the peak height data X ∈ R
P×N and

the clustering V. Again, some values in the data may be
missing.

Model
After a peak-specific centering based on the control
group, the observed peak heights for each sample i are
assumed to be normally distributed with a cluster-specific
mean xlat·i :

x·i|V, xlat, σ 2 ∼ N
(
Vxlat·i ,�

)
, (7)

where the diagonal matrix � contains the peak-specific
variance parameters σ 2 ∈ R

P+. The cluster-specific means
are assumed to be normally distributed with a sample
group-specific prior α,

xlat·i |α, ai ∼ N (
α·ai , I

)
, (8)

where ai ∈ {1, . . . , La} is an indicator of group member-
ship (covariate level) for sample i and I is aK-by-K identity
matrix. The corresponding covariate effects are arranged
into an K-by-La matrix α and the effects are assumed to
be independent and normally distributed,

α·l ∼
{

δ (α·l) , l = 1
N (0, I) , l = 2, . . . , La,

(9)

except for the first level, l = 1, which is defined as
the baseline level and thus is fixed to zero. The model is
not limited to one covariate: the cluster-specific mean xlati·
can be expressed as a sum of effects of multiple covari-
ates and their interaction effects (Section 1 in Additional
file 1). Further, the model is readily extensible for depen-
dent covariate effects [19].
The peak-specific variance parameter,

σ 2
j ∼ Scale-Inv-χ2 (

n0, σ 2
0
)
, (10)

follows a scaled inverse-χ2 distribution with n0 prior
samples and a scale σ 2

0 .

Inference and analysis
We infer the covariate effects via Gibbs sampling. Now
the clustering matrix V has been learned earlier, and is
thus taken as known in the model. Computational com-
plexity of a Gibbs iteration is O (

NPK2). The clustering
and the covariate effects can be inferred overnight on
a standard desktop computer for a typical-sized data set.
The posterior distributions of the covariate effects α are
descriptive of the differences between the sample groups
and, thus, interesting from the analysis point of view.
To assess the significance of the difference between a sam-
ple group, c = l > 1, and the control group, c = 1, for
a cluster k, we can study the posterior probability of
the effect αkl being greater or less than zero.

Comparison methods
We call the method described above Model 1. We com-
pared the performance of the following approaches and
refer to them as Models 1, 2 and 3:

1. the multi-peak approach using both peak shape and
height information, as proposed in this
work (nonparametric clustering of peaks by their
shape similarity, inference of covariate effects on
the clusters based on the height of the peaks),

2. the multi-peak approach using peak height
information only [13] (clustering of peaks and
inference of covariate effects based on the height of
the peaks only),

3. the typical single-peak approach (inference of
covariate effects by the height of the strongest
annotated peak only).

For the studied real data sets, we discovered that peak
height information alone is not enough for clustering
the peaks into individual compounds due to the high level
of noise and strong correlations between compounds.
Thus, for real data we compared Model 1 to Model 3
and highlight the benefit gained by using peak shape
information.
Model 2 assumes the generative Gaussian latent variable

model of the Equations 7–10 for the intensity observations
X and a uniform multinomial prior for the clustering of
the peaks. The clustering is inferred by Gibbs sampling
together with the covariate effects.
Model 3 quantifies the difference between the covariate

level, c = l, and the control level, c = 1, as the difference
of their means based on the main peak j,

αj,l = 1∑N
i=1 δai,l

N∑
i=1

δai ,lxj,i − 1∑N
i=1 δai,1

N∑
i=1

δai,1xj,i.

(11)

The Kronecker delta function δai,l selects the samples
that have the covariate level l by receiving the value 1,
when ai = l, and 0, otherwise. When the data are log-
transformed, the mean difference corresponds to the fold
change computed in many analysis platforms such as
MZmine [15] and XCMS [6].

Experiments
Wedemonstrate the performance of the proposedmethod
through three experiments: a simulated data experiment,
a spike-in benchmark experiment with known changes
in concentrations, and a gene silencing experiment with
measurements of the lipidome of cancer cells.
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Evaluationmeasures
Evaluation of the performance on real data sets is not
a trivial task, as there is no ground truth available: nei-
ther the identity of the peaks nor the true effect sizes are
known. Thus, we also used spike-in data, where the true
covariate effects are known, although only a small number
of the peaks are annotated.
For the simulated and benchmark experiments, we com-

puted the mean squared error (MSE) between inferred
and true covariate effects as an evaluation metric.
As a result of the log-transformation of the intensity
data, we were quantifying relative changes between sam-
ple groups, independent of the average height of each
peak. In the model, we thus assumed that the change
is preserved across the peaks of one compound, in rela-
tive terms. The significance of the difference in the MSE
of the proposed approach and the comparison method
was tested by the paired one-sided t-test. The false dis-
covery rate was controlled by the Benjamini-Hochberg
step-up procedure [20]. Additionally for the simulated
experiment, we studied the inference of the statistical sig-
nificance of effects, since the true distribution of the data
was known.
To assess the sensitivity of the approaches to noise in

natural lipidomic data lacking a ground truth, we used
two types of indirect evaluation: First, we studied the con-
sistency of the inferred covariate effects given a prior
assumption about their similarity. Second, we examined
the robustness of the inferred covariate effects to noise.
Finally, we demonstrated differences between the multi-
peak and single-peak approaches through examples of
qualitative analysis of annotated peak clusters.

Simulated data
We started by investigating the performance of the pro-
posed approach on synthetic data, where the true covari-
ate effects are known. We focused on a usual task
in exploratory analysis of biological data: the detection
of significant non-zero covariate effects. We measured
the performance by the accuracy at this task—the ratio
of true positive and true negative significant differences
among all effects. We used the 95% posterior quantiles
to determine the significance. Additionally, we compared
the approaches by the MSE to the true effects and studied
the performance of the two clustering models by com-
puting the normalized information distance (NID) [21] to
the true clustering.
The approaches were tested across a set of potential

experimental settings to study how the observation of
additional peaks and samples affects the performance.
Simulated data were generated by assuming the latent
structure of Model 1. The following data parameters were
varied on a grid: sample-size N = 2 × {3, 7, 15} and peak-
specific noise σ 2 = {1, 5}. Additionally, the number of

peaks per cluster was varied between 3, 7 and 15. Covari-
ate effects α·2 =[ 2,−1, 0.5, 0, 0, 0, 0] were generated for
each data set. The experiment was repeated 100 times
with independent data sets. The results are reported in
the Results and discussion section.

Benchmark datawith known changes in concentrations

The benchmark data set of apple samples [22] includes
a set of annotated spike-in compounds with increases
of 20, 40 or 100% in concentrations. We started with
the raw spectral data [23] in order to acquire the shapes
of the peaks in addition to their heights. The mass spec-
tra were pre-processed using MZmine 2 [15] (Section 4
in Additional file 1). We used standard pre-processing
methodology also used in the original publications of
the data sets, thus maintaining the focus of the work
on the potential benefit gained from the multiple peaks.
The compared approaches were on the same line in terms
of the data.
We evaluated the approaches by the MSE between

inferred and true covariate effects. If the cluster con-
tained multiple annotated peaks, the effect of each anno-
tated peak was evaluated separately for the single-peak
approach. Clusters with no annotated peaks were consid-
ered to have a 0% true effect and the effect of the single-
peak approach was inferred based on the strongest peak
of the cluster.

Lipidomic data froma gene silencing study

The data come from a recent experiment [24] to study
the effects of gene silencing treatments on lipidomic pro-
files and growth of breast cancer tissue. Driven by the lack
of ground truth about the covariate effects, we evaluated
the inferred effects indirectly in two ways: (1) by quanti-
fying the consistency of the effects within a lipid family
and (2) by quantifying the robustness of the magnitudes
of the inferred effects across the lipidome in presence of
additional noise. Additionally, we investigated the stabil-
ity of the inferred clustering on the data and qualitatively
analyzed differences between the covariate effects of sin-
gle peaks and the effects inferred on clusters of peaks by
Model 1.
The data included 32 lipidomic profiles of breast can-

cer cells from the ZR-75-1 cell line.We inferred the effects
of seven distinct silencing interventions on metabolism-
regulating genes (Section 5 in Additional file 1) at two
time points. The raw spectra were pre-processed with
MZmine 2 as described in the original publication [24],
in addition to which the shape similarities of the peaks
were computed.

Consistency of effect signs. In the first task, we quan-
tified the consistency as the accuracy at predicting
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the covariate effect of a test lipid given the model on
the covariate effects of other lipids of the same family.
For instance, we predicted the effect of a gene silenc-
ing treatment on the sphingomyelin SM(d18:1/22:0) based
on the sphingomyelin compounds in the training set. We
examined the sign of the effect instead of the absolute
effect, since evenwithin a family of lipids the changes have
a high variance and thus cannot be reliably predictedwith-
out imposing additional information about the biological
system.
We predicted the signs of the covariate effects for test

lipids in a three-fold cross-validation setting with 100 ran-
domizations. The examined lipids included the annotated
members from the three most abundant families of lipids
that had two or more peaks identified with the clustering
model (Section 5 in Additional file 1).

Further, we studied the influence of noise to the con-
sistency by adding independent normally distributed
noise (from σ = 0 to σ = 10) on the peak intensity
observations. Added noise variance σ = 1 was equal
to the existing original variance in the data, and
the upper bound for the signal-to-noise ratio then was 0.5
(Additional file 1: Table S4).

Robustness of effect magnitudes. To evaluate the
inferred effects at the scale of the entire observed
lipidome, we examined the consistency of inferred covari-
ate effects between the original and noise-added data
sets. This experiment simulated the situation where
the true effects are known (effects from the original
data set), but the data based on which the effects are
inferred are noisy (the added-noise data set). To measure

Figure 4 The use of data frommultiple peaks and the peak shape information increased the accuracy at detecting significant covariate
effects on simulated data. Accuracy of Models 1, 2 and 3 for simulated data is shown as a function of the sample-size in two settings: normal and
high level of noise (left: σ 2 = 1, and right: σ 2 = 5, respectively). Top (a-b): Accuracy at inferring the significance of the generated covariate effects.
Bottom (c-d): Normalized information distance (NID) between the inferred and the true clustering. An entirely random and an exactly correct
clustering correspond to a NID of 1 and 0, respectively.
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the consistency, we computed the Spearman correlation
between the covariate effects inferred from the origi-
nal and the added-noise data sets. We studied all clus-
ters with two or more peaks, constituting 20% of the
clusters.

Results and discussion
Simulated data
On a normal level of noise (σ 2 = 1), the multi-peak
approaches (Models 1 and 2) always performed better
at detecting significant covariate effects than the single-
peak approach (Model 3; Figure 4a) and only with enough
samples the performance of Model 2 became compa-
rable to Model 1. The inferred clustering of Model 1
was perfect while the clustering performance of Model 2
heavily depended on the number of samples available
(Figure 4c).
On a high level of noise (σ 2 = 5), only Model 1

worked (Figure 4b). The reason for the failure of Model 2
was the imperfectly inferred clustering (Figure 4d).
The good performance of Model 1 resulted from the clus-
tering step, which is robust to noise in the peak heights.
The peak shape similarity gave strong evidence for infer-
ring the clusters already from a single sample.
The MSE between the inferred and true covariate

effects for Model 1 was smaller compared to Model 3
in all the 24 setups of the experimental grid (Additional
file 1: Table S1). The difference was statistically signifi-
cant in 22 setups and in all setups at the high level of
noise.
The performance of Model 1 clearly improved,

when more peaks from a cluster were present in
the data (Figure 5). This was pronounced at a high level
of noise, when the observation of a single peak is unre-
liable for inferring the covariate effects. In a similar way
as in averaging over samples, the model is able to over-
come peak-specific noise also by averaging over multiple
peaks.

Benchmark data with known changes in concentrations
In the first demonstration on real UPLC-MS data [22], we
show that Model 1 can infer the artificial perturbations
in a spike-in experiment more accurately than the single-
peak approach.
In the positive ion mode, the model inferred 794 clus-

ters, among which 135 clusters included more than
one peak. Seven clusters included annotated peaks from
the spike-in compounds, four of which included more
than one annotated peak (Additional file 1: Table S2).
Peaks from two compounds were distributed to two and
four clusters, respectively. In the negative ion mode,
themodel inferred 367 clusters, among which 113 clusters
were non-singletons. Three clusters included annotated
peaks from the spike-in compounds, all of these clusters

Figure 5 The performance of Model 1 improved whenmore
peaks per compoundwere available in the simulated data.
The curves show the accuracy as a function of sample-size for
simulated data with 15, 7 and 3 peaks per compound.

included more than one annotated peak and all peaks
from one compound were clustered together. In both
the ion modes, all clusters with annotated peaks were
specific to one compound.
Model 1 had a lower error than Model 3 at all

magnitudes of the true effect with the strongest rel-
ative improvement occurring at the small magni-
tudes (Figure 6). The difference was statistically significant
for covariate effects from 0 to 40% (Additional file 1:
Table S3).

Lipidomic data from a gene silencing study
In the second demonstration on real UPLC-MS data [24],
we show that Model 1 can infer more consistent covari-
ate effects in two ways even though the true effects are
unknown.

Consistency and robustness of effects
When examining the consistency of effects within a lipid
family, Model 1 was more consistent than Model 3 at all
levels of noise (Figure 7). When no noise was added and
also at moderate levels of noise, both approaches per-
formed clearly better than expected by random chance.
When noise was added, Model 3 suffered more and its
performance reduced to the random level more rapidly.
Given the assumption about the general similarity of lipids
within a family is true, Model 1 inferred the covariate
effects more consistently.
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Figure 6Model 1 had amore accurate quantification of
the covariate effects for the spike-in compounds as well as for
the unchanged non-annotated compounds in the benchmark
experiment. Root-mean-square error (RMSE; y-axis) between
the inferred and true covariate effects is smaller for Model 1 (All
peaks) than for the single-peak approach (Single peak) at all
the magnitudes of the true effect (x-axis). Differences were statistically
significant for changes of 0 to 40% (Additional file 1: Table S3).

Figure 7Model 1 (All peaks) had a better accuracy at
the prediction of signs of covariate effects for previously unseen
lipids in the lipidomic gene-silencing data set compared to
Model 3 (Single peak). The difference became pronounced when
simulated noise was added to the data. The prediction was based on
the inferred covariate effects of compounds from the same lipid family
and was done in a cross-validation setting. In the task, the effects of
the seven gene-silencing treatments were predicted on the three
most abundant families of lipids in two time points. Points σ = 0
and σ > 0 on the x-axis show the prediction accuracy (y-axis) for
the original data and the data with added noise, respectively.

When examining the robustness of effect magnitudes,
Model 1 was more consistent than Model 3 when noise
was added to the data (Figure 8). The confidence intervals
from the 100 randomizations did not overlap at all at
moderate levels of noise.

Stability
Since the proposed approach is sensitive to the inferred
clustering of the data, we analyzed the stability of
the inferred clustering on biological data, using
the lipidomic gene silencing data as a case study. We
tested the influence of the concentration parameter αDP
in the Dirichlet process clustering model. The clustering
result for the lipidomic gene silencing data was robust to
changes in the magnitude of the concentration parame-
ter (Additional file 1: Figure S2). As expected, the number
of clusters increased, when the preset value of the con-
centration parameter increased, but the relative change
was small.

Qualitative analysis
Finally, we give concrete examples of potential findings
that the approaches can uncover and demonstrate how
analysis based on a single peak may lead to a different
outcome depending on the choice of the peak.
The intervention-driven changes of individual peaks

from two lipids along with the covariate effects inferred

Figure 8 The covariate effects inferred by Model 1 (All peaks)
were more robust to noise compared to Model 3 (Single peak).
At moderate levels of noise, which is the regime of many biological
experiments, the confidence intervals over 100 randomizations did
not overlap at all. The robustness was quantified as the Spearman
correlation (y-axis) between the effects inferred from the noisy and
noise-free versions of the lipidomic gene silencing data set as
a function of the level of noise (x-axis).
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by Models 1 and 3 are shown in Figure 9. In the case
of the sphingomyelin SM(d18:1/22:0), there were strong
covariate effects inferred by Model 3 but many of these
effects became weaker when inferred based on multiple
peaks byModel 1. On the contrary, Model 3 inferred weak
covariate effects for the ceramide Cer(d18:1/17:0) but
based on multiple peaks and Model 1, one of the effects
was actually among the top-5% strongest effects across
the observed lipidome.

Conclusions
We have empirically demonstrated that a model-based
integration of multiple peaks can lead to an improved
accuracy in the inference of covariate effects, and
we introduced a novel method for this task. While
the sample-size is always restricted by external constraints
such as the experiment budget or the availability of

suitable patients, the inference based on multiple peaks
gives a shortcut to extracting more information from
the limited set of samples, thereby directly addressing
the “small n, large p” problem. However, some types
of systematic measurement error, such as some batch
effects, escape this treatment and can only be reduced by
introducing independent replicates. Based on the results
presented in this work, we argue that additional peaks
are especially useful when the signal-to-noise ratio is
low and the differences between sample groups are
small.
We suggest that all the detected peaks that can be asso-

ciated with a compound should be taken into account in
the comparative analysis. This is possible through the two-
step generativemodeling approach presented in this work:
(1) by identifying the peaks that can be associated with
one compound through clustering the peaks based on

a)

b)

Figure 9 Example clusters of peaks from the lipidomic gene silencing data with differences in the covariate effects inferred based on
a single peak andmultiple peaks. The heat maps show changes in the lipid concentrations driven by the gene silencing interventions (columns).
Covariate effects inferred by Models 3 and 1 using a single peak and all peaks, respectively, are shown on the two bottom rows of each heat map.
The log2 fold changes of each peak associated with the compound are shown on the top rows. Changes that by the magnitude fall to the top-5%
across the entire observed lipidome are highlighted by the symbol ”T.“ Top (a): The sphingomyelin SM(d18:1-22:0)with three peaks. Many strong
changes for SM(d18:1-22:0) became weaker when they were inferred based on all three peaks. Bottom (b): The ceramide Cer(d18:1-17:0) with six
peaks. The effect of the SCAP silencing for Cer(d18:1-17:0) at 72 hours became strong when it was inferred based on all six peaks.
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their shape similarity and (2) by the inference of covariate
effects on the clusters, each representing one compound.

Additional file

Additional file 1: Supplementarymaterial.More details of
the experiments.
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