Arend et al. BMC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

BMC
Bioinformatics

elDAL - a framework to store, share and

publish research data

Daniel Arend T, Matthias Lange™, Jinbo Chen, Christian Colmsee, Steffen Flemming, Denny Hecht

and Uwe Scholz

Abstract

be deployed “out-of-the-box" as an on-site repository.

repositories, JAVA API

Background: The life-science community faces a major challenge in handling “big data”, highlighting the need for
high quality infrastructures capable of sharing and publishing research data. Data preservation, analysis, and
publication are the three pillars in the “big data life cycle”. The infrastructures currently available for managing and
publishing data are often designed to meet domain-specific or project-specific requirements, resulting in the
repeated development of proprietary solutions and lower quality data publication and preservation overall.

Results: e/DAL is a lightweight software framework for publishing and sharing research data. Its main features are
version tracking, metadata management, information retrieval, registration of persistent identifiers (DOI), an
embedded HTTP(S) server for public data access, access as a network file system, and a scalable storage backend.
elDAL is available as an API for local non-shared storage and as a remote API featuring distributed applications. It can

Conclusions: e/DAL was developed based on experiences coming from decades of research data management at
the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK). Initially developed as a data publication and
documentation infrastructure for the IPK's role as a data center in the DataCite consortium, e/DAL has grown towards
being a general data archiving and publication infrastructure. The e/DAL software has been deployed into the Maven
Central Repository. Documentation and Software are also available at: http://edal.ipk-gatersleben.de.

Keywords: Research data management, Data publication, Persistent identifier, Metadata annotation, Shared

Background

The availability of cross-domain data has increased
dramatically over the last decade, driven by forces
including systems biology, imaging for phenomics, and
high-throughput technologies such as next-generation
sequencing (NGS). As a consequence, the life sciences
have become one of the most data-intensive sciences and
a major player in the “big data” and “e-science” age [1,2].
Roos remarked over 10 years ago that “we are swimming
in a rapidly rising sea of data” and there is hardly any way
to “keep from drowning” [3]. Considering the thousands
of life-science databases that have been created [4], that
pessimistic view has not become reality, although there

*Correspondence: arendd@ipk-gatersleben.de

TEqual contributors

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT
Gatersleben, Corrensstr. 3, 06466 Stadt Seeland, Germany

() BiolVled Central

are many areas (e.g., NGS) where problems in handling
the constantly increasing amounts of data exist. In some
areas, international consortia have taken control of data
maintenance and management [5].

Scientists can choose from dozens of information
retrieval systems [6] to search for data resources. Meta-
data standards [7] and data-exchange formats have been
developed [8], and data warehouse infrastructures have
been implemented [9]. For example, the DataCite consor-
tium [10] was founded to support data citation, provid-
ing a means to increase the acceptance of research data
as legitimate contributions to scholarly records. Those
promising technologies only handle the tip of the “data
iceberg’, however [11]. The gap between the rate of schol-
arly publication and the availability of long-term research
data preservation remains an open issue [12,13].

A previous publication underpinned this motivation by
summarizing the basic requirements for primary data

© 2014 Arend et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.

http://edal.ipk-gatersleben.de
mailto:arendd@ipk-gatersleben.de
http://creativecommons.org/licenses/by/2.0

Arend et al. BMIC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

management [14]. In the absence of such management,
a scientific staff usually collects a lot of data and then
reduces them to a number of theories and conclusions
supported by aggregated graphics, tables, or selected
materials. Publications contain links that refer to exter-
nally managed, supplemental resources where data may
be found. Anderson et al. [15] showed, however, that the
older an article is, the lower is the chance that the links are
still accessible.

Relationship between data publication and long-term data
preservation

The data life cycle, from experiments to scientific publi-
cations, generally follows the schema in Figure 1. Several
billion dollars have been invested in the bottom level, the
collection of “primary data”. The definition of primary
data is not clearly fixed. For some, it is only the raw data
from a device, also called “Level 0” data, and for others,
it also includes preprocessed raw data without additional
analytic processing steps. Still others do not differenti-
ate among the degrees of processing but consider primary
data to be all data that is used for scientific publications
[16]. Here, we consider primary data to include all of
the aforementioned categories. It is important to consider
primary data as an investment in order to guarantee its
long-term preservation and prevent its being lost, and to

Page 2 of 13

ensure that it can be processed in future works including,
but not limited to, ad-hoc data-analysis workflows.

Condensed and enriched with metadata, primary data
is more valuable than data that is “re-extracted” from arti-
cles [17]. This argument is the basis for efforts like the
Open Archival Information System (OAIS), which aims
to preserve primary data and provide associated informa-
tion to designated communities [18]. Such comprehensive
models are very expensive, however, for short-term and
mid-term research projects. One promising alternative is
data publication as a separate research result in a “data
paper” [19]. In this context, it becomes essential to change
the handling and acceptance of primary data within the
scientific community. Nelson et al. [20] argued that data
publications and data publishers should be honored with
a high degree of attention and status.

In general, most scientists are willing to share their pri-
mary data, but few actually provide their data to others
[12]. Data access is often restricted to project-associated
users, or else the original data sets frequently remain in
the hands of the scientist who created them. Another
issue is the deficiency of metadata annotation. Scientists
tend to use personal metadata in the form of remarks or
smart file naming if they are not forced to use a standard
metadata format by journal or project policies. Techni-
cal aspects, such as proper backup and disaster-recovery

Data contained and
explained within a
research article

Publication with Data

Processed Data &
Data Representations

Further data explanations in any
kind of supplementary files to
articles

Data Collections and
Structured Databases

Data referenced from the article and
held in data centers and repositories

@ O
‘ » ./ Raw Data and
: Primary Data Sets

[

at the institute

Data in drawers and on disks

Figure 1 Publication Process of Research Data Sample. The data-publication process (inspired by Gray et al. [11]) expresses the different
manifestations of research data. At the top layer of the process, the journal, author, or scientist takes full responsibility for the publication, including
the aggregated data embedded in it and the way the data is presented. For data published in the second layer, as supplementary files to articles, the
link to the published “Record of Science” remains strong; but it is not always clear at what level the data is curated and preserved and if the criteria
for discoverability and re-usability are met. At the Data Collections and Structured Database layer, the publication includes a citation and links to the
data; but the data resides in and is the responsibility of a separate repository. At the bottom layer, most datasets remain unpublished and are

consequently not accessible for later reanalysis.

Arend et al. BMC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

systems, also affect the prevention of data loss. Besides
preserving data files, it is essential to preserve file-access
procedures. Here, data format migration and data format
emulation are widely used methods.

Data sharing

There are already many public primary data repositories
available free of charge, but they are very domain specific
(e.g., the Sequence Read Archive (SRA) [21] and the Gene
Expression Omnibus (GEO) [22] for raw NGS-sequencing
data and gene expression data, respectively). The common
concept is user-controlled data upload and maintenance,
but the shortcomings are the dedicated data domains and
content. The acceptance rate is quite high, particularly if
a journal forces authors to upload the primary data to a
repository to get a paper published. The major drawback
of the central repositories is clearly the limited number of
supported data domains.

Besides the dedicated repositories, free data-sharing
platforms and cloud storage (e.g., Dropbox [23] and
Google Drive [24]) are becoming very popular as eco-
nomical alternatives to project level data infrastructure.
These platforms often have limited security management
and do not often support metadata management. More
comprehensive data-sharing and publication services are
available through data-file archives [25,26]. Examples of
well-accepted scientific data repositories are Dryad [27]
and figshare.com [28], which not only provide profes-
sional support for file sharing, maintenance, and publica-
tion by also support persistent identifiers (e.g., DOI and
URN). They are, however, centrally hosted by companies
that require data-publishing charges, and they do not sup-
port tool binding or use as an in-house repository on top
of one’s own storage backend.

More flexible and enterprise-sized data repositories that
provide long-term, durable access to digital assets are
DSpace [29] and Fedora [30]. Both include a variety of
preservation and management functionalities as well as
support workflows for uploading, approval, and web pub-
lication. Fedora is a digital asset-management architec-
ture. Its flexibility carries with it the expectation that users
will invest more up-front effort in creating specialized
object models and applications. DSpace is aimed to be
deployed as an “out-of-the-box” institutional repository
(e.g., in Dryad) and supports little to no customization.

There are also some mid-sized and lightweight data
repositories like Tranche [31] and CKAN [32]. Tranche is
a very flexible repository API for JAVA, and CKAN is a
web-based management system for any kind of data. Both
can be integrated into existing infrastructures, but they
provide no persistent identifiers.

Another alternative is publicly hosted version-tracking
systems [33,34]. For an in-house service, there are a num-
ber of commercial and open-source systems available

Page 3 of 13

(e.g., Subversion [35] and Git [36]). Those are excellent
for tracking file histories and preventing accidental dele-
tions, but their support for information retrieval and their
facilities for citable data publication are limited. In addi-
tion, they are not suited to storing and sharing large
binary files, because it is much more difficult to compress
and calculate the differences between binary files com-
pared with simple text files, which can strongly influence
performance and increase the required storage capacity.

Much more popular and easy to handle, but also very
risky, are private file storage, exchange via email attach-
ments, and uploading directly to partners’ in-house file
servers. Here, the major problems are unregulated data
distribution with the danger of inconsistencies, limited
support for persistent identifiers, and potential unau-
thorized access, data loss, and mess caused by missing
metadata. More reliable solutions for data storage and
exchange are Laboratory Information Systems (LIMS) [37]
like LABKey [38] and Nautilus LIMS [39]. In general,
LIMS support the case-specific design of interlab and
intralab collaborations. Their tight integration with lab
processes make them as useful as electronic lab books,
but their focus on managing lab processes and their
implementation as a closed software system make them
difficult to use as a stand-alone, public, citable storage
infrastructure.

Data annotation and citation

The metadata annotation of research data is an impor-
tant prerequisite for the interpretation and reuse of data
sets. This is reflected in the manifold metadata schemata
that are used in the life sciences. In general, we differenti-
ate between technical and semantic metadata. The latter
type has a tight relationship to the particular research
domain and comprises its own universe of several hun-
dred metadata schemata. For instance, a systems-biology
review summarized 30 standards for metadata and data-
exchange formats [40]. Technical metadata covers aspects
of the management and processing of digital research
resources. Widely used schema for technical metadata
are the Dublin Core Metadata Element Set (DCMES)
[41] and the closely related DataCite Metadata Schema
[42]. The DCMES was developed by scientists and librar-
ians to homogeneously describe digital objects using 15
elements.

Because of the missing metadata-aware file systems,
the most popular method of metadata annotation is
still the coding into file names and folder structures;
and the application of information-retrieval and search-
engine technologies is one of the most preferred meth-
ods to find relevant data [43]. Desktop search tools like
Google Desktop [44] are therefore frequently installed on
the scientists’ computers. Furthermore, frameworks like
Apache Solr [45] allow embedding a full-text search into

Arend et al. BMIC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

data repositories. Such indices are increasingly important
in information systems for life sciences, and they are often
available in primary data repositories (e.g., the DataCite
Metadata Search).

Data publication

The motivation for publishing research data is not limited
to the need to evaluate and appraise scientific results. Data
sharing in general is an essential resource for scientific
research. Research groups, straddling scientific coopera-
tion and the public, depend crucially on data sharing and
public data access. URIs and proprietary database identi-
fiers are frequently used to reference data or supplemental
material in manuscripts. Because URIs (i.e., HTTP or FTP
URLs) are short-lived in practice, they are not considered
to be reliable references. The same is true for proprietary
database identifiers (e.g., Genbank accession numbers).
Besides such archive-specific identifiers, long-term resolv-
able identifiers are used in the life sciences. Examples are
international standardized identifiers such as the Life Sci-
ences Identifier (LSID) [46] and the Digital Object Iden-
tifier (DOI) [47]. International initiatives like OAI [48],
ELIXIR [49], and DataCite [10] were founded to develop
sustainable research networks and infrastructures. Their
common aim is to coordinate the development of tech-
nologies in conjunction with standards and policies that
incorporate the major aspects of data publication:

1. controlled data formats
2. globally persistent identifiers
3. minimal commonly accepted metadata

Minimal requirements for primary-data management

The aforementioned challenges in the long-term preser-
vation of primary data and the need for a consistent
data-publication process highlight the need for a universal
software system for primary-data management and pub-
lication. The minimal requirements of such a system are
summarized in six tasks:

Version management

In order to track the history of data files and associated
metadata, an infrastructure for long-term data preser-
vation should support a version-control mechanism. In
particular, this affects deletion policy. Primary data is not
allowed to be deleted.

Metadata

To support future data access, readability, and use, anno-
tation with technical metadata is necessary. Furthermore,
metadata is essential for information retrieval, data seek-
ing, and filtering. The intension of technical metadata is to
support the automatic processing not featuring semantic
interpretation and data analysis.

Page40of 13

Information retrieval

Because a large number of files is expected, data archives
should feature an efficient search function over metadata.
This should be supplemented by a text index that supports
enhanced search functions and faceted queries.

Data publication and citation

In general, primary data cannot be included directly in
an article. Therefore, authors add links. In order to make
those links stable and resolvable in the long term, support
for persistent identifiers that fulfill international standards
is essential. This will ensure that digital objects are citable,
even if the URL moves or becomes obsolete.

Data security

In order to consolidate primary-data management, data
sharing, private archiving, and public access should be
supported in one platform. This requires permission con-
trol, secure authentication, and data-transfer systems.

Generality

A system for storing research data has to be generic in
order to be universally usable. The system should be sus-
tainable in the sense that it can be maintained and applied
across project, infrastructure, and institutional borders.
By having a user-friendly design and the capability to be
easily integrated into existing workflows and tools, a stan-
dardized system should motivate users to publish primary
data.

Implementation

e/DAL is an implementation of a lightweight software
framework for publishing and sharing research data. e/DAL
stands for electronic Data Archive Library. It is a combined
open framework and out-of-the-box system for storing,
sharing, and publishing research data. The software com-
bines classical file-system concepts with concepts from
research-data publication. e/DAL is delivered as an API,
to be easily usable in existing data frontends, and as a
standalone data-repository server. This enables tight inte-
gration into existing infrastructures and tools as well as
standalone installation as a research-data repository.

Design and concept

The e/DAL core modules and data structure are shown in
Figure 2. The object-oriented design makes it possible to
keep the implementation scalable and easily maintainable.
Twelve JAVA classes implement the core API. Accordingly
to the six previously described, minimal requirements
for primary-data management, their implementation is
described below.

Version management
The central element of the data structure is the class
PrimaryDataEntity, which is a generalization of the

Arend et al. BMC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

Page 5 of 13

DublinCoreElements

JAAS-LoginModules

ApprovalService

| has elements authenticates
1
1 \ 4
MetaData Subject e!DAL-Permission
F z ¥ N N
described by accessed by has grants for manage
1 1
archived as
Version ¢——— PrimaryDatakntity = = = = = = = P PermissionProvider
N 1 use
provide T
A 4 |
PublicReference PrimaryDataDirectory PrimaryDataFile
approved by
v

Figure 2 The e/DAL data schema. Conceptual overview of the major entities of the e/DAL infrastructure.

sub-classes directory and file. It provides methods com-
parable to those of a file system. To implement the data
life cycle, all data and metadata updates are recorded as
individual versions. When a file is deleted, a last version
is created and tagged as “deleted”, representing the end of
the version chain. It is not possible to create a new version
for the deleted object or to undelete the last version, but
all previous versions are still accessible.

Metadata
An ISO-accepted minimal set of mandatory technical
metadata (e.g., format, creator, and file size) was defined
by the Dublin Core metadata standard [41]. e/DAL imple-
ments this standard and the suitable data types for each
element.

Information retrieval

Besides support for navigable access to the hierarchically
organized data structure, a full text index over the meta-
data was applied to provide a keyword search, which fea-
tures fuzzy queries like phonetic or partial string match-
ing. Selected metadata elements as well as the entire set of
metadata can be searched.

Data publication and citation

The PublicReference component binds to services,
which provide persistent identifiers. Because the iden-
tifiers represent scientific publications, the assignments

must be permitted by the responsible parties. Therefore,
e!DAL provides a flexible approval workflow, illustrated
in Figure 3, and allows the evaluation of data publica-
tion requests by a hierarchy of reviewer decisions. Each
request triggers a notification for the reviewers, who then
exclusively or collaboratively decide to permit or reject
it. This system is based on an asynchronous email noti-
fication system with reminder and default decisions for
unresponsive reviewers.

Data security

e/DAL features a fine-grained access control to sensible
API methods?, which is monitored by the JAVA Authen-
tication and Authorization Service (JAAS) [50]. The con-
cept is that the executing code (thread) is owned by a
particular subject (i.e., a user or group), which is assigned
by an authentication process when a connection to e/DAL
is requested. The JAVA-embedded JAAS authentication
module enables the transparent use of standard authenti-
cation services (e.g., Kerberos, Unix, and Microsoft Win-
dows logins) as well as customized user management.

Generality

e/DAL supports stand-alone and client-server architec-
tures. It can be integrated into JAVA applications as an
embedded local archive or as a central archiving system.
With support for JAVA Remote Method Invocation (RMI)

Arend et al. BMIC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

Page 6 of 13

workflow steps

elDAL - implementation

file.addPublicReference(Persistentldentifier.DOI);

set resource public

!

generate public resolvable

file.setAllReferencesPublic(“me@email.com)”;

http://edalhost.com:8085/EDAL/e2al196e5-4559-8ad6-

elDAL URL 6b8997f51f32/2
l <identifier>10.5072/IPK/TEST/2013/0</identifier>
Tequest <creators>Schmutzer, Thomas</creators>
[;Iop —— <contributors>Scholz, Uwe<contributors>

yes l no

+ generate a new DOI
* migrate e!DAL metadata to
DataCite metadata

request publication
confirmation from scientific <+
and organizational authorities

|

no

<title>file_name.txt</title>

eDAL [Please approve DOI]
eDAL-Service <noreply@ipk-gatersleben.de> [noreply@ipk-ga
Diese Nachricht wurde zum Nur-Text-Format konvertien.

Mi13.03.2013 11:14
Matthias Lange

Hello lange@ipk-gatersleben.de,
please approve the fof .
the user (UnixPrincip)

Here is a link to the| L]

15.ipk-gatersleben.de ‘_‘.][_4

8189-aca7776271ef/e2a)
AhRAA7TFS1F32/2/141696]

3 ¢'DAL - store, cite and share primary data

ublication send reject
p i >)
approved? message
yes *
+ set resource public
TR Ll e dx.doi.org/10.5072/IPK/TEST/2013/0 |§

Figure 3 Data publication workflow. To ensure a trusted release of research data, a review process has been designed. The first step for a
data-publication request is the generation of a “landing page” for the applied citable identifier. The underlying URL is served by the embedded HTTP
server. If a dataset has a release date in the future, the page locks the data download. If the user requested a DOI from DataCite, the system
generates a unique DOl and migrates the metadata to DataCite-XML format. After the reviewer approves the publication, the DOI request is sent to
the DataCite REST web service. Finally, the user gets an email notification with the accepted DOI or URL.

[51], several application-specific or even project-specific
central repositories can be easily operated.

Technology
The system architecture of the e/DAL implementation is
shown in Figure 4. The persistence of the data structure is
implemented by the H2 [52] relational database manage-
ment system with Hibernate [53] as an object-relational
mapper and Ehcache [54] as an offloading database cache.
This storage-layer implementation holds all the tech-
nical metadata, permissions, version information, and
publication metadata. Apache Lucene [55] is applied as
an implementation of the information-retrieval interface,
integrated on top of the Hibernate persistence layer by the
Hibernate Search package [56].

The data-byte stream is stored as a file in a mounted
file system. In order reduce file-system load, data files
are grouped into chunks, which are distributed into a

self-tuning directory structure. Another feature of the
storage backend implementation is easy maintainability
(i.e., copy, clone, and backup). Thus, it is sufficient for
the administrator to use file-system backup and mainte-
nance tools. The registration and assignment of citable
persistent identifiers to data entities (files or directories)
is implemented by a generic interface, which includes the
data publication-service connectors. The flexible inter-
face supports an extensible number of data citation ser-
vices. Currently, the reference implementation supports
the generation of URLs and DOIs. The latter are pro-
vided by the DataCite Consortium [10] and handled by the
e/DAL-DataCite connector. For a particular data object,
the interface:

1. migrates the e/DAL metadata to the metadata format
of DataCite,
2. generates a landing page in the e/DAL HTTP module,

Arend et al. BMC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

Page 7 of 13

remote JAVA
application

legend

Client
implementation
interface
e!DAL-RMI-

e!DAL-components

external
components

Server

WebDAV-Client
(Windows-Explorer,
KDE Dolphin...)

> WebDAV-Server

local JAVA
application

P JAAS-Logi
e!DAL-MetaData-API (Windows, Unix, Kerberos...)
ImplemenationProvider | FileSystem
(abstract) ImplemenationProvider
FS FS
database oy nathon filesystem H2 database Lucene EResysiem
retrieval ¥: (Windows,Unix)

applications.

Figure 4 Architecture of e!DAL-API. The green nodes are the parts of the core e/DAL-API, the e!DAL-server, and the e/DAL-client packages. The
yellow nodes represent the implementation interface, and the blue nodes represent the backend components. The red nodes symbolize possible

3. assigns the DOI to the e/DAL URL, and
4. submits all information as XML to the DataCite web
service.

Before the DOI-registration workflow is executed, the
approval process checks whether the publication is
allowed (see Figure 3). In the implementation, three
reviewers are configured by registering their email
addresses as either a legal, scientific, or master reviewer
with veto permissions. For each publication request,
emails are sent with “accept” and “reject” links. After the
DOI or URL assignment has been accepted or rejected,
the user is informed by email.

JAAS is used to implement the API-level permission-
control system, enabling each session to run in a dedi-
cated user context where each relevant security method
is encapsulated into an authorization check. A list of user
method-permission rules is persisted in the H2 database
backend. As a default, the user who created an object is
the object’s owner and gets all permissions. Directory per-
missions are inherited by all newly created files. Further
user permissions can be granted by the object owner or by
users who have the right to set permissions. Permissions
can be set for individual users and also for user groups or
different users roles.

The user runtime context is set by calling the login
method in a JAAS-supported login module. Three default
modules are available: native Windows and UNIX logins
as well as the LDAP Kerberos authentication service. Fur-
ther customized login modules can be added. A template

is provided in the JAVA class SampleLoginModule. To
minimize the effort required to check the permissions of
dozens of API methods and to make the code robust, we
applied aspect-oriented programming using the Aspect]
framework [57]. The permission code is defined once as a
security aspect and weaved into the source code for every
public API method.

Results and discussion

e/DAL offers a flexible and efficient lightweight framework
that transparently incorporates features for research data
management, such as storage, data sharing, and data cita-
tion, into existing tools and storage infrastructures. We
released a multi-module system that can act as:

a direct-linked API for a local non-shared storage,

a remote API to enable applications transparent
access to distributed data,

an out-of-the-box data repository server for hosting
shareable data repository, and

a remote file system with enhanced features for
metadata and version control.

Features

The JAVA API

To feature JAVA applications with e/DAL, the APIP needs
to be imported into the JAVA source. For an automatic
import of the suitable dependencies, it is available as a
Maven [58] artifact® and mirrored in the Maven Central

Arend et al. BMIC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

repositories. For manual dependency management, fat
JAR archives are available for download.

The e/DAL API is designed like the JDK file-system
API with additional classes and methods for versioning,
metadata annotation, information retrieval, and data pub-
lication. Like an ordinary file system, the e/DAL backend
needs to be mounted and parameterized with:

1. storage-backend implementation (see Section
Technology),

2. the JAAS-authenticated login context, and

3. parameters for the data-publication process (i.e.,
reviewer email addresses, SMTP server, or an
optional HTTP(S) proxy).

Standalone data-repository server
In order to support shared and collaborative access, e/DAL
has a server module, which provides an RMI service to
handle native JAVA clients, a WebDAV server to offer
access as a network file system, and an HTTP server to
support access by any web browser. According to the client
capabilities, the supported e/DAL features range from
browsing and downloading published data (HTTP), to
providing a metadata-aware and version-aware remote file
system (WebDAV), to providing full-featured API access
(RMI). This wide range of functionality has been imple-
mented to support application scenarios and desktop
users that need data access in a file browser. The imple-
mented WebDAYV interface [59] allows users to mount a
connection to e/DAL repositories as a network drive. Desk-
top tools, such as Windows Explorer, Linux KDE Dolphin,
or any other WebDAV-compatible browser, are supported.
WebDAV provides functionality for versioning and
metadata, but its visualization and handling are com-
monly not implemented in file browsers. This is overcome
by virtual folders and files. In doing so, an e/DAL file is
mapped as a virtual WebDAV folder, which includes the
files of all versions. Each version is linked to a virtual XML
file, which makes it possible to inspect and edit metadata.

Software quality

Primary data is a major research asset, and any data-
managing software must fulfill basic quality criteria.
Hence, software quality was a major aspect while develop-
ing e/DAL.

Development, scalability and code-quality control

Besides platform independence, the major advantage
to implementing e/DAL in JAVA is the availability of
open-source standard frameworks, like authentication
services (JAAS), persistence frameworks (Hibernate),
code-weaving tools (Aspect]), and build-management and
dependency-management systems (Maven). Furthermore,
JAVA is widely used in bioinformatics to develop graphical

Page 8 of 13

user interfaces, data management infrastructures, and
web applications.

Following lessons learned in the past decade of active
software development in research projects, published
studies [60], and guidelines for agile software development
[61] and consequent automated testing (using JUnit), we
focused our development on the core code and perfor-
mance optimization. On the one hand, this guaranteed
the use of modern, best-performing frameworks, and
on the other hand, it prevented us from wasting time
on developing proprietary, error-prone code for compo-
nents such as security, database connection, and user
management.

Performance benchmarking

We ran several performance tests to evaluate the effi-
ciency of the example implementation. Here, we explain
two tests and compare the results of e/DAL with those
of a native file system. The benchmarks show the per-
formance of e/DAL while storing and reading objects and
while searching for a fixed number of objects, depending
on the number of stored objects. All results are summa-
rized in Figure 5. All tests were executed with a local
embedded e/DAL system as well as with the server-client
architecture.

In the first test, the time the API needed to store and
read 10,000 objects was nearly linear and depended only
on the file size, because the read and write operations of
the file system needed more time. In general, the read
function is faster than the write function, as there are
fewer database operations necessary. Furthermore, it is
clear that all the tests over the server-client architecture
needed a bit more time, because all the data had to be seri-
alized and transferred over a network connection. While
supporting more features than an ordinary file system, fin-
ished the storage of 10,000 files, each about 0.1 MB in size,
in about 2 minutes, which is close to the performance of
a Windows NTFS or Linux EXT4 file system. The per-
formance in client-server mode was comparable to that
of network-based file transfer protocols such as CIFS
or NFS.

The second test showed the performance of the e/DAL
search functions, which clearly outperformed those of
local or network file systems. As expected, the perfor-
mance was independent of the number of stored objects,
thanks to the use of the text index. The small differences
between the values for the local tests and the tests over
the server-client architecture were caused by fluctuations
in the network latency.

Use cases

Although e/DAL is a generic framework for research-
data management, some specific use cases demonstrate its
manifold applicability.

Arend et al. BMC Bioinformatics 2014, 15:214 Page 9 0of 13
http://www.biomedcentral.com/1471-2105/15/214
local performance test RMI performance test
o o
& — store 1 GB ’g L p— store 1 GB *g
—— store 5 GB - — store 5 GB
---- store 10 GB ---- store 10 GB
24 — read1GB S+ — read1GB
_ -— read5GB | © —_ —-— read5GB |
£ ---- read 10 GB S € ---- read 10 GB P E-
c @ - —— search 10 objects 2 c © - —— search 10 objects 4 2
o o 2 8 o 9
= o L~ ® = L~ ®
o c 3 o c 3
e o =] o
o © o ®
(=] o
o ¥ £ o E
£ -8 1= s
[=] o
~
o (=]
o Fe Fe
T T T T T T o T T T T T T o
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
number of objects number of objects
Figure 5 Performance benchmark. Performance tests for local embedded (left) and server-client architecture (right). We used data sets with
10,000 files in 100 folders, but with different file sizes (0.1, 0.5, and 1.0 MB). The left y-axis shows the time required to store all of the objects and read
them again to a new directory. The right y-axis shows the performance of the index-based search. Using the read/store test set, we sent queries,
which gave exactly 10 results each. All tests were executed on a Linux system with a six-core AMD Phenom Il X6 1055T Processor at 2.8 GHz and
64 MB heap space for the JAVA virtual machine. The system had a 1-GB ethernet connection and a SATA hard disk (7200 Rpm).

GUI support and demo

In order to support seamless integration into graphical
JAVA user interfaces, a file-chooser dialog was imple-
mented, with functionality and handling like the default
file open/save dialog, but with enhanced features. As illus-
trated in Figure 6, it behaves like a basic file explorer,
allowing users to browse and select e/DAL objects, edit
metadata, and manage permissions for stored objects,
and it features a search box to use e/DAL’s information-
retrieval functionality.

For the purpose of demonstrating e/DAL’s features and
supporting a quick-start guide for the API, a multipur-
pose “e/DAL-Installer” Webstart application is available
at the project website. The initial wizard panel makes it
possible to either install an e/DAL server and generate
startup scripts or run through a demo, allowing users to
test the different modules and functions like the Edal-
FileChooser dialog or the publication process. The e!DAL
demo includes an NGS dataset, giving an impression of
the importance of metadata handling. e!DAL uses the
Dublin core to provide metadata for stored files. That
allows users not only to provide information such as the
title or the author but also to provide useful information
like taxonomic identifiers or file descriptions that help
users to find data. An example for an NGS metadata set is
given in Table 1.

Systems biology
To enable the community-based development and shar-
ing of biological models, a sustainable data-sharing

infrastructure must be provided. Several approaches exist.
For example, BioModels [62] reflects the need for an inte-
grated repository of curated models. That approach does
not, however, support community-based editing and ver-
sioning. The COMBINE archive [63] is a data format for
storing models, associated data, and procedures, but it
does not provide a storage infrastructure for collaborative
data sharing or publication. WikiPathways [64] is a col-
laborative platform for curating biological pathways, but
it focuses on graphical pathway representation and not on
SBML [65] models.

To address those shortcomings, we applied e/DAL as a
repository for systems biology data that supports collabo-
rative editing and access to models among different part-
ners. In doing so, we developed a plug-in for the systems
biology framework VANTED [66]. The ordinary SBML
file-storage dialog has been enhanced towards being an
extended model-sharing infrastructure. The user has the
option to select a local or shared e!DAL repository. Ver-
sion control, technical metadata, as well as a within-model
searches are supported.

DOl resolving and HTTP(S) server

Finally, data can be published as URLs using the embed-
ded HTTP(S) service or as DOIs using the DataCite
infrastructure. The embedded HTTP(S) server provides
direct access to published e/DAL objects via a browser
by rendering landing pages that comprise all relevant
metadata and download links. To get an impression

Arend et al. BMIC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

Page 10 0f 13

r
3 Open File

S

Path:

'%[

//SampleData/RYE-Chrom/SFF/sortedRyeB/F3YNPZK02.sff

TMLE DATE

;5: 6: | [Search l

| FORMAT |

v [E‘ SampleData
¥ (& RYE-Chrom
¥ (& sFF

> ﬁ sortedRyeAll

» (& sortedRyeB

» (& WGSRye0B

» (B WGSRye4B

» (B XMLFiles4Submission

F3LWPDNO03.sff MODIFIED : TimePoint: Mon Jun 24 14:12:16 CEST 2013 application/octet-stream
F3YNPZK01.sff MODIFED : TimePoint: Mon Jun 24 14:12:16 CEST 2013 application/octet-stream

F3YNPZK02.sff MODIFEED : TimePoint: Mon Jun 24 14:12:16 CEST 2013 application/octet-stream

F7P2YGS01.sff MODIFIED : TimePoint: Mon Jun 24 14:12:17 CEST 2013 application/octet-stream
F7P2YGS02.sff MODIFIED : TimePoint: Mon Jun 24 14:12:17 CEST 2013 application/octet-stream

2

—

Version Information

Version 0 :

1 Schmutzer et al.: F3YNPZKO02.sff Japplication/octet-stream/ (2013-06-24) A
CHECKSUM: MDS : 5£8£30247a4fld3cS5ac CONTRIBUTOR: Scholz, Uwe, Gatersleben,
COVERAGE : empty CREATOR: Schmutzer, Thomas, Gaters
DATE: Event: event,CREATE : Ti DESCRIPTION: sortedRyeB
FORMAT: application/octet-stream IDENTIFIER: F3YNPZKO1
LANGUAGE: en PUBLISHER: Schmutzer, Thomas, Gaters
RELATION: none RIGHIS: empty
SIZE: 98,7 KB SOURCE : Leibniz Institute of Plan
SUBJECT: empty TITLE: F3YNPZK02.sff

L
TYPE: TEXT :3J

2013/06/24 14:12:16

»

Version 1 : 2013/06/24 14:12:16

Version 2

: 2013/06/24 14:12:16

-
L Change Connection J L Change Permissions chanqe Metadata J Ok Cancel

4

sl Server is connected

| & localhost:2000 | 23 SampleUser | 2013/06/26 09:57:18

Figure 6 EdalFileChooser dialog. The eDAL-FileChooser dialog comprises several components as follows: (1) a file tree to navigate through the
stored directories, (2) a window to display all files and subdirectories in the chosen folder, (3) textfields to display the meta information of the
chosen version (to change the meta information, the user has to double click on a textfield), (4) a table to show all stored versions of a digital object
(the user has to switch between the versions by marking a field), (5) a textfield to show the complete path of the current object, (6) a textfield for
search function, and (7) open dialogs to change permissions or metadata.

of the service and how it looks, we set up a test
instance of the API over a secured web server and pro-
vided some of the NGS data sets that we used for the
demo application. The dataset is available under the
DOI: 10.5072/IPK/Test/2013/0, which can be directly
accessed over the DOI resolver (http://dx.doi.org).

Delimitation to existing software

In Table 2, a comparison to a popular primary data-
management system is given. The focus of e/DAL was
to meet a set of minimal requirements for primary-data
management but not to create a comprehensive reposi-
tory or information system. This principle enables e/DAL
to serve as a component of full-feature data repositories or
as an embedded module in single tools. In summary, the

major benefits of e/DAL compared with existing systems
are its lightweight embeddable design, customizable data
publication and DOI registration workflow, and the seam-
less integration of data storage, sharing, and publication in
one thin, reusable APL

Outlook

Planned future development of new features

Currently, e/DAL has limited support for remote API
access for programming languages other than JAVA. In
the current release, only JAVA-RMI is supported. The
extension towards a RESTful API is planned for the next
release. The support of this platform-independent proto-
col will enable direct access to the e/DAL-API for a wide
spectrum of programing languages and infrastructures.

Arend et al. BMC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

Table 1 Metadata of an e/DAL managed Next Generation
Sequencing test data set of shortened sequence files (DOI:
10.5072/IPK/Test/2013/0)

Metadata element

Value

Scholz, Uwe, IPK Gatersleben, Corrensstr.3 OT
Gatersleben, 06466 Seeland, Germany

Contributor

Coverage Sequences of pooled flow sorted rye A
chromosomes (1R-7R)

Creator Schmutzer, Thomas, IPK Gatersleben,
Corrensstr.3 OT Gatersleben, 06466 Seeland,
Germany

Description Individual rye chromosomes were isolated
by flow sorting and shotgun sequenced by
454 Titanium pyrosequencing

Identifier ERS077775

Publisher Leibniz Institute of Plant Genetics and Crop
Plant Research Gatersleben

Rights http://www.ebi.ac.uk/about/terms-of-use

Size 98.7 KB

Source Secale cereale L.; Col tax ID 9793059

Subject NGS, Rye

Title F32CY7KO1 sff

Another future e/DAL extension will be the use of scalable,
distributed architectures, such as JAVA clustering solu-
tions, and distributed file systems like Apache HDFS [67].
For this, the next release will virtualize the backend file-
system access. One promising framework is the Apache

Page 11 of 13

Commons Virtual File System [68]. Using the high number
of available drivers, e!DAL will be able to support cloud
storage and distributed file systems as well as local file
systems as the storage backend.

Hosting data repositories

Besides e!DAL’s application to sharing systems biology
data, the aim is to use the e!DAL technology platform as
a host for data repositories. An example is its application
in the German Plant Phenotyping Network. The consor-
tium is developing novel concepts and technologies in the
field of high-throughput plant phenotyping. One task is
to find a standardized exchange format that comprises
primary data, analysis results, and technical and seman-
tic descriptions. One promising solution is the ISA-TAB
[69] format, which is a general format for the annotation
of experiments that supports several ontologies. e/DAL is
planned for use as a repository for published ISA-TAB for-
matted DPPN experiments. A first data set was published
under the DOI http://dx.doi.org/10.5447/DPPN/2014/0.
More e/DAL-hosted data repositories are underway and
will be announced at the e/DAL project web site.

Conclusion

e/DAL is a lightweight software framework for the man-
agement, publication, and sharing of research data. It is
designed to turn sets of primary data into citable data
publications. This is particularly important for the life
sciences, where there is a big gap between the rate of
data collection and the rate of data publication. e/DAL is

Table 2 Comparison e!DAL with selected primary data management system

Persistent Generality Metadata Information Data publication & Data Version

identifier retrieval citation security managment
elDAL v v v v v v v
SRA[21] v v v V) V)
GEO [22] v v v V) V)
CKAN [32]) v v v V) v
Tranche [31] \/ \/ \/ (\/) \/
Figshare [28] v (\/) v v v
DSpace [29] / Dryad [27] v v v v v
Fedora [30] (\/) v v (\/) v v
SUN [35]) V) v v
GIT [36] V) v') v v
Google Drive [24] (\/) v (\/) v v
Dropbox [23] (\/) v (\/ v v
Nautilus LIMS [39]) v v v) v
LABKey [38] V) v v) v

This overview summarize the implementation of the minimal requirements for primary data management in those systems that are mentioned in section Data
sharing. When a system fullfill a requirement completely, it is marked by v". If basic features are implemented the field is marked by (v"). If no concrete information is
available or the requirement is not met, the field is left blank.

http://www.ebi.ac.uk/about/terms-of-use
http://dx.doi.org/10.5447/DPPN/2014/0

Arend et al. BMIC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

available as a local API, a remote file system, or a server for
individual data repositories. Its well-defined API supports
seamless integration into existing data-management soft-
ware and infrastructures. In addition, e/DAL can be used
as a supplement to manage primary data; for instance,
the examples presented showed its application to sys-
tems biology, genomics, and phenotyping. Furthermore,
e/DAL’s modular architecture and incorporated standards
ensure version management, documentation, information
retrieval, persistent identification, data security, and data
publication. Developed within a context for the life sci-
ences, e!DAL has many generic features that make it easily
and readily applicable to other areas of science faced with
similar needs.

Availability and requirements

® Project name: e/DAL
Project home page: http://edal.ipk-gatersleben.de
Operating system(s): Platform independent
Programming language: JAVA
Other requirements: JAVA 1.7 or higher
License: GNU General Public License (GPL) v2
Any restrictions to use by non-academics: none

Endnotes

2Sensible API methods are those related to actions for
creation, modification, read, store, metadata change,
permission change, and publication. Details are
listed in the documentation for the JAVA class
GrantableMethods.

bFor the most recent versions and documentation,
please refer to http://edal.ipk-gatersleben.de/.

¢The Maven artifacts for e/DAL are published in Maven
Central with the group id de . ipk-gatersleben. A
template for project integration is available at http://edal.
ipk-gatersleben.de/download/maven.html.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

ML initiated the project. DA, ML, SF, and CC designed the data structure and
tested the software. DA and ML implemented the core API. DA implemented
the server and client APl as well as the demo showcase, HTTP(S) handler, and
installer. DH designed the approval workflow for the data publication. JC
implemented the EdalFileChooser GUI. ML and DA drafted the manuscript. US
supplied the use cases and NGS test data sets and supervised the project. All
authors read and approved the final manuscript.

Acknowledgements

We thank Joscha Joel Benz for the initial WebDAV code and Thomas Miinch,
Heiko Miehe as administrator of the project website, code, and artifact
repositories. This work was supported by the European Commission within its
7th Framework Program, under the thematic area “Infrastructures”, contract
number 283496, by the Leibniz Association in the framework “Pakt fir
Forschung”. Part of this work was performed within the

Page 12 0f 13

German-Plant-Phenotyping Network, which is funded by the German Federal
Ministry of Education and Research (project identification number: 031A053).

Received: 7 January 2014 Accepted: 12 June 2014
Published: 24 June 2014

References

1. Craddock T, Harwood CR, Hallinan J, Wipat A: e-Science: relieving
bottlenecks in large-scale genome analyses. Nat Rev Microbiol 2008,
6(12):248-954.

2. Brooksbank C, Bergman MT, Apweiler R, Birney E, Thornton J: The
european bioinformatics institute’s data resources 2014. Nucleic
Acids Res 2013, 42:D18-D25. doi:10.1093/nar/gkt1206.

3. Roos DS: Computational biology: bioinformatics-trying to swimina
sea of data. Science 2001, 291(5507):1260-1261.

4. Ferndndez-Sudrez XM, Galperin MY: The 2013 nucleic acids research
database issue and the online molecular biology database
collection. Nucleic Acids Res 2013, 41(D1):1-7.

5. Kodama Y, Shumway M, Leinonen R: International nucleotide
sequence database collaboration: the sequence read archive:
explosive growth of sequencing data. Nucleic Acids Res 2012,
40(Database issue):D54-D56. doi:10.1093/nar/gkr854.

6. LuZ PubMed and beyond: a survey of web tools for searching
biomedical literature. Database 2011. doi:10.1093/database/baq036.

7. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ,
Eilbeck K, Ireland A, Mungall CJ, OBI Consortium, Leontis N, Rocca-Serra P,
Ruttenberg A, Sansone S-AA, Scheuermann RH, Shah N, Whetzel PL,
Lewis S: The OBO foundry: coordinated evolution of ontologies to
support biomedical data integration. Nat Biotechnol 2007,
25(11):1251-1255.

8. Sansone S-A, Rocca-Serra P, Field D, Maguire E, Taylor C, Hofmann O, Fang
H, Neumann S, Tong W, Amaral-Zettler L, Begley K, Booth T, Bougueleret
L, Burns G, Chapman B, Clark T, Coleman L-A, Copeland J, Das S, de
Daruvar A, de Matos P, Dix I, Edmunds S, Evelo CT, Forster MJ, Gaudet P,
Gilbert J, Goble C, Griffin JL, Jacob D, et al.: Toward interoperable
bioscience data. Nat Genet 2012, 44(2):121-126.

9. Zhang J, Haider S, Baran J, Cros A, Guberman JM, Hsu J, Liang Y, Yao L,
Kasprzyk A: BioMart: a data federation framework for large
collaborative projects. Database 2011,2011(0):038.

10. DataCite. [http://datacite.org]

11. Gray J: Jim Gray on eScience: a Transformed Scientific Method.
[http://research.microsoft.com/en-us/collaboration/fourthparadigm/
4th_paradigm_book_jim_gray_transcript.pdf]

12. Smith VS: Data publication: towards a database of everything. BMC
Res Notes 2009, 2:113.

3. Wallis JC, Rolando E, Borgman CL: If we share data, will anyone use
them? Data sharing and reuse in the long tail of science and
technology. PLoS ONE 2013, 8(7):67332.

14. Arend D, Lange M, Colmsee C, Flemming S, Chen J, Scholz U: The e!DAL
JAVA-API: store, share and cite primary data in life sciences. In In
Proceedings of IEEE International Conference on Bioinformatics and
Biomedicine (BIBM); 2012:511-515. doi:10.1109/BIBM.2012.6392737.

15. Anderson NR, Tarczy-Hornoch P, Bumgarner RE: On the persistence of
supplementary resources in biomedical publications. BVC
Bioinformatics 2006, 7:260.

16. Neuroth H, OBwald A, Scheffel R, Strathmann S, Huth K: nestor
Handbuch: Eine kleine Enzyklopadie der digitalen
Langzeitarchivierung (Version 2.3). [http://nestor.sub.uni-goettingen.
de/handbuch/nestor-handbuch_23.pdf]

17. Jameson D, Garwood K, Garwood C, Booth T, Alper P, Oliver S, Paton N:
Data capture in bioinformatics: requirements and experiences with
Pedro. BMC Bioinformatics 2008, 9(1):183.

18. Consultative Committee for Space Data Systems: Reference Model for an
Open Archival Information System (OAIS). Washington: Blue Book, CCSDS
650.0-B-1; 2002.

19. ChavanV, Penev L: The data paper: a mechanism to incentivize data
publishing in biodiversity science. BMC Bioinformatics 2011, 12
(Suppl 15):2.

20. Nelson B: Empty archives. Nature 2009, 461(7261):160-163.

21. The Sequence Read Archive. [http://www.ncbi.nim.nih.gov/sra]

22. The Gene Expression Omnibus. [http://www.ncbi.nlm.nih.gov/geo]

http://edal.ipk-gatersleben.de
http://edal.ipk-gatersleben.de/
http://edal.ipk-gatersleben.de/download/maven.html
http://edal.ipk-gatersleben.de/download/maven.html
http://datacite.org
http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_jim_gray_transcript.pdf
http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_jim_gray_transcript.pdf
http://nestor.sub.uni-goettingen.de/handbuch/nestor-handbuch_23.pdf
http://nestor.sub.uni-goettingen.de/handbuch/nestor-handbuch_23.pdf
http://www.ncbi.nlm.nih.gov/sra
http://www.ncbi.nlm.nih.gov/geo

Arend et al. BMC Bioinformatics 2014, 15:214
http://www.biomedcentral.com/1471-2105/15/214

23.
24.
25.

26.

27.
28.
29.

30.

31.

32.
33
34,
35.
36.
37.

38.

39.

40.

41.

42.

43.

44,
45.
46.

47.
48.
49.

50.

51.

52.
53.
54.
55.
56.
57.

58.
59.

Dropbox. [https://www.dropbox.com]

Google Drive. [https://drive.google.com]

Van Noorden R: Data-sharing: everything on display. Nature 2013,
500(7461):243-245.

Meckel H, Stephan C, Bunse C, Krafzik M, Reher C, Kohl M, Meyer HE,
Eisenacher M: The amino acid’s backup bone - Storage solutions for
proteomics facilities. Biochim Biophys Acta Protein Proteonomics 2014,
1844(1)2-11.

Dryad. [http://datadryad.org]

FigShare. [http:/figshare.com]

Branschofsky M, Chudnov D: DSpace: durable digital documents. In
JCDL 02: Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital
Libraries. New York: ACM; 2002:372. [http://www.dspace.org]

Lagoze C, Payette S, Shin E, Wilper C: Fedora: an architecture for
complex objects and their relationships. Int J Digit Libr 2006,
6(2):124-138.

Smith B, Hill J, Gjukich M, Andrews P: Tranche distributed repository
and ProteomeCommons.org. In Data Mining in Proteomics, Methods in
Molecular Biology. Volume 696. Edited by Hamacher M, Eisenacher M,
Stephan C. New York: Humana Press; 2011:123-145.
[http://dx.doi.org/10.1007/978-1-60761-987-1_8]

CKAN. [http://ckan.org]

GitHub. [https://github.com]

Google Code. [http://code.google.com]

Subversion. [http://subversion.tigris.org]

Git. [http://git-scm.com]

Stephan C, Kohl M, Turewicz M, Podwojski K, Meyer HE, Eisenacher M:
Using laboratory information management systems as central part
of a proteomics data workflow. Proteomics 2010, 10(6):1230-1249.
doi:10.1002/pmic.200900420.

Nelson E, Piehler B, Eckels J, Rauch A, Bellew M, Hussey P, Ramsay S, Nathe
C, Lum K, Krouse K, Stearns D, Connolly B, Skillman T, Igra M: LabKey
Server: an open source platform for scientific data integration,
analysis and collaboration. BMC Bioinformatics 2011, 12(1):71.

Kohl K, Basler G, Alexander L, Selbig J, Walther D: A plant resource and
experiment management system based on the Golm Plant
Database as a basic tool for omics research. Plant Methods 2008, 4(11).
doi:10.1186/1746-4811-4-11.

Brazma A, Krestyaninova M, Sarkans U: Standards for systems biology.
Nat Rev Genet 2006, 7:593-605.

Dublin Core Metadata Element Set, Version 1.1. [http://dublincore.
org/documents/dces]

DataCite Metadata Schema 3.0. [http://schema.datacite.org/meta/
kernel-3/index.html]

Lange M, Henkel R, Muller W, Waltemath D, Weise S: Information
retrieval in life sciences: a programmatic survey. In Approaches in
Integrative Bioinformatics. Edited by Chen M, Hofestadt R. Berlin
Heidelberg: Springer; 2014:73-109. doi:10.1007/978-3-642-41281-3_3.
Google Desktop. [https://desktop.google.com]

Apache Solr. [http://lucene.apache.org/solr]

Clark T, Martin S, Liefeld T: Globally distributed object

identification for biological knowledgebases. Brief Bioinform 2004,
5.1:59-70.

The DOI System. [http://www.doi.org]

Open Archives Initiative. [http://www.openarchives.org]
pan-European Research Infrastructure for Biological Information.
[http://www.elixir-europe.org]

JAVA Authentiction and Authorisation Service. [http://docs.oracle.
com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html]
Java Remote Method Invocation. [http://docs.oracle.com/javase/
tutorial/rmi]

H2 Database. [http://www.h2database.com]

Hibernate. [http://www.hibernate.org]

Ehcache. [http://ehcache.org]

Apache Lucene. [http://lucene.apache.org/core]

Hibernate Search. [http://www.hibernate.org/subprojects/search.html]
Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG:
Proceedings of the 15th European Conference on Object-Oriented
Programming. London: Springer; 2001.

Apache Maven. [http://maven.apache.org]

Milton-API. [http://milton.io]

60.

61.

62.

63.

64.

65.

66.

67.
68.

69.

Page 13 of 13

Rother, Kristian and Potrzebowski, Wojciech and Puton, Tomasz and
Rother, Magdalena and Wywial, Ewa and Bujnicki, Janusz M: A toolbox
for developing bioinformatics software. Brief Bioinform 2012,
13(2):244-257.

Kane D, Hohman M, Cerami E, McCormick M, KuhImman K, Byrd J: Agile
methods in biomedical software development: a multi-site
experience report. BVC Bioinformatics 2006, 7(1):273.

Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li
L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M: BioModels
Database: a free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular systems.
Nucleic Acids Res 2006, 34(suppl 1):689-691.

The COMBINE Archive. [http://co.mbine.org/documents/archive]

Pico AR, Kelder T, van lersel MP, Hanspers K, Conklin BR, Evelo C:
WikiPathways: pathway Editing for the People. PLoS Biol 2008,
6(7):184.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP,
Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED,
Ginkel M, Gor V, Goryanin Il, Hedley WJ, Hodgman TC, Hofmeyr J-H,
Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N,
Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, et al.: The systems
biology markup language (SBML): a medium for representation and
exchange of biochemical network models. Bioinformatics 2003,
19(4):524-531.

Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H,
Klapperstick M, Czauderna T, Klukas C, Schreiber F: VANTED v2: a
framework for systems biology applications. BVC Syst Biol 2012,
6(1):139.

Apache Hadoop Distributed File System. [http://hadoop.apache.org].
Apache Commons Virtual File System. [http://commons.apache.org/
proper/commons-vfs]

Rocca-Serra P, Brandizi M, Maguire E, Sklyar N, Taylor C, Begley K, Field D,
Harris S, Hide W, Hofmann O, Neumann S, Sterk P, Tong W, Sansone S-A:
ISA software suite: supporting standards-compliant experimental
annotation and enabling curation at the community level.
Bioinformatics 2010, 26(18):2354-2356.

doi:10.1186/1471-2105-15-214
Cite this article as: Arend et al.: elDAL - a framework to store, share and
publish research data. BMC Bioinformatics 2014 15:214.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

* Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

() BiolMed Central

https://www.dropbox.com
https://drive.google.com
http://datadryad.org
http://figshare.com
http://www.dspace.org
http://ckan.org
https://github.com
http://code.google.com
http://subversion.tigris.org
http://git-scm.com
http://dublincore.org/documents/dces
http://dublincore.org/documents/dces
http://schema.datacite.org/meta/kernel-3/index.html
http://schema.datacite.org/meta/kernel-3/index.html
https://desktop.google.com
http://lucene.apache.org/solr
http://www.openarchives.org
http://www.elixir-europe.org
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/JAASRefGuide.html
http://docs.oracle.com/javase/tutorial/rmi
http://docs.oracle.com/javase/tutorial/rmi
http://www.h2database.com
http://www.hibernate.org
http://ehcache.org
http://lucene.apache.org/core
http://www.hibernate.org/subprojects/search.html
http://maven.apache.org
http://milton.io
http://co.mbine.org/documents/archive
http://hadoop.apache.org
http://commons.apache.org/proper/commons-vfs
http://commons.apache.org/proper/commons-vfs

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Relationship between data publication and long-term data preservation
	Data sharing
	Data annotation and citation
	Data publication
	Minimal requirements for primary-data management
	Version management
	Metadata
	Information retrieval
	Data publication and citation
	Data security
	Generality

	Implementation
	Design and concept
	Version management
	Metadata
	Information retrieval
	Data publication and citation
	Data security
	Generality

	Technology

	Results and discussion
	Features
	The JAVA API
	Standalone data-repository server

	Software quality
	Development, scalability and code-quality control
	Performance benchmarking

	Use cases
	GUI support and demo
	Systems biology
	DOI resolving and HTTP(S) server

	Delimitation to existing software
	Outlook
	Planned future development of new features
	Hosting data repositories

	Conclusion
	Availability and requirements
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

