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Abstract

Background: Pulmonary acoustic parameters extracted from recorded respiratory sounds provide valuable information
for the detection of respiratory pathologies. The automated analysis of pulmonary acoustic signals can serve as a
differential diagnosis tool for medical professionals, a learning tool for medical students, and a self-management tool for
patients. In this context, we intend to evaluate and compare the performance of the support vector machine (SVM) and
K-nearest neighbour (K-nn) classifiers in diagnosis respiratory pathologies using respiratory sounds from R.A.L.E database.

Results: The pulmonary acoustic signals used in this study were obtained from the R.A.L.E lung sound database. The
pulmonary acoustic signals were manually categorised into three different groups, namely normal, airway obstruction
pathology, and parenchymal pathology. The mel-frequency cepstral coefficient (MFCC) features were extracted from the
pre-processed pulmonary acoustic signals. The MFCC features were analysed by one-way ANOVA and then fed separately
into the SVM and K-nn classifiers. The performances of the classifiers were analysed using the confusion matrix technique.
The statistical analysis of the MFCC features using one-way ANOVA showed that the extracted MFCC features are
significantly different (p < 0.001). The classification accuracies of the SVM and K-nn classifiers were found to be 92.19%
and 98.26%, respectively.

Conclusion: Although the data used to train and test the classifiers are limited, the classification accuracies found are
satisfactory. The K-nn classifier was better than the SVM classifier for the discrimination of pulmonary acoustic signals
from pathological and normal subjects obtained from the RALE database.
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Background
Auscultation is the process of listening to the internal
sounds of the body using a stethoscope. This process
provides vital information on the present state of the
internal organs, such as the heart and lungs [1]. The
stethoscope, which was invented by René Théophile
Hyacinth Laennec in 1816, has been used to perform
auscultation for several years. The auscultation process
is inexpensive, non-invasive, and less time-consuming
[2]. Computer-based respiratory sound analysis started
to appear in the literature in the early 1980s. This
method can assist medical professionals with differential
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diagnoses, which are used to diagnose the specific
disease suffered by a patient or to at least eliminate any
imminent life-threatening conditions. The sensors that
are most commonly used for computerised respiratory
sound recording are microphones, accelerometers, and
digital stethoscopes. The types and characteristics of the
respiratory sounds that are widely accepted have been
reported by Pasterkamp et al. [3]. The normal respiratory
sound dominant frequency ranges from 37.5 to 1000 Hz.
The dominant frequency of airway obstruction pathology
is less than 400 Hz, and the dominant frequency of paren-
chymal pathology ranges from 200 to 2000 Hz. The du-
ration of airway obstruction pathological conditions, such
as wheeze and rhonchi, is greater than 250 ms, whereas
the duration of parenchymal pathological conditions, such
as crackles, is less than 100 ms. These respiratory sound
characteristics provided by Pasterkamp et al. clearly
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introduced the possibility of discriminating respiratory
sounds using signal processing algorithms. However,
further studies are required before computerised respi-
ratory sound analysis can be implemented in a clinical
setting. In particularly, the development of a robust
system requires the implementation of more sophisticated
signal processing and machine learning algorithms.

Related works on respiratory sound analysis
Previous studies on computerised respiratory sound ana-
lysis have been conducted using various signal processing
and machine learning algorithms [4]. This section pro-
vides a discussion of the few recent prominent works on
computerised respiratory sound analysis. In the study con-
ducted by Güler et al. [5], normal, wheeze, and crackles
respiratory sounds were classified using their power spec-
tral density features. Electret microphones were used to
record the respiratory sounds from 129 subjects, and these
were then classified using artificial neural networks
(ANNs) and genetic algorithm (GA)-based ANNs. The
classification accuracies found for ANN and GA-based
ANN were 81-91% and 83-93%, respectively. Alsmadi et al.
[6] proposed the use of an autoregressive model for the
classification of respiratory sounds. These researchers
used an ECM-77B microphone to record the respiratory
sounds from 42 subjects and then implemented the k-
nearest neighbour algorithm (k-nn) to classify the respira-
tory sounds. The recognition rate was found to be 96%.
Dokur et al. [7] proposed an incremental supervised
neural network for the classification of respiratory sounds.
These researchers used ECM-77B Electret microphones to
acquire the respiratory sounds from 18 subjects and then
extracted the power spectrum features of the respiratory
sounds. They then used a grow-and-learn (GAL) network,
which is an incremental supervised neural network, for
the classification of the respiratory sounds and found that
their classification accuracy was promising compared with
the previously proposed methods. Sankar et al. [8] pro-
posed a feedforward neural network for the classification
of normal and pathological respiratory sounds based on
the following features: energy index, respiration rate,
dominant frequency, and strength of the dominant
frequency. These researchers used an Electret microphone
to record the respiratory sounds from six subjects and
obtained a classification accuracy of 98.7%. In the same
year, Hashemi et al. [9] proposed the use of wavelet-based
features for the classification of respiratory sounds using a
multi-layer perceptron network. These researchers used
an electronic stethoscope to record the respiratory sounds
from 140 subjects, and their experimental results show
that their system can achieve a recognition rate of 89.28%.
Flietstra et al. [10] used support vector machine for the
recognition of respiratory sounds. These researchers used
an STG 16 lung sound analyser to record the respiratory
sounds from 257 subjects and the statistical median
feature to train and test the SVM classifier. A mean classi-
fication accuracy of 84% was reported.
Even though there are studies in this field dating back to

the early 1980s, computerised respiratory sound analysis
has not yet been implemented to a level that can be used
in a clinical setting. The advancements in signal process-
ing in recent years allow us to use more sophisticated
methods for respiratory sound analysis. The literature
review revealed that both the feature extraction method
and the machine learning algorithm play major roles in
the recognition of respiratory sounds. This study com-
pares two different approaches for the recognition of the
respiratory pathologies using pulmonary acoustic signals.
More specifically, the support vector machine (SVM) and
k-nearest neighbour (k-nn) classifiers were implemented
for the differentiation of normal, airway obstructions
pathology, and parenchymal pathology conditions using
the cepstral features obtained from respiratory sounds in
the RALE database.

Methodology
The respiratory sounds used in this study were obtained
from the RALE database, which is the only commercially
available respiratory sound database and has been used by
many researchers. The proposed system includes four pro-
cessing stages, namely preprocessing, feature extraction,
classification, and performance evaluation. In the feature
extraction stage, the MFCC features are extracted from
the respiratory sound signals, and these are fed to the
SVM and k-nn classifiers separately in the classification
stage. The SVM and k-nn classifiers were used to distin-
guish normal, airway obstruction, and parenchymal
pathologies. A block diagram of the proposed work is
illustrated in Figure 1.

Respiratory sound database
The respiratory sounds that were used in this work were
obtained from the R.A.L.E database, which is the only
commercially available respiratory sound database [4].
The R.A.L.E database comprises of more than 70 record-
ings from various subjects that were recorded on the
surface of the chest wall using a contact accelerometer
(EMT25C, Siemens). These recordings were manually
categorised into three different groups, namely normal
pathology, airway obstruction pathology, and parenchy-
mal pathology. Previous studies on respiratory sound
analysis states that here is only negligible change in
frequency intensity when the age progresses. Even the
gender difference in respiratory sound analysis was of no
difference. It is not necessary to consider the age diffe-
rence or the gender difference in pulmonary acoustic
signal analysis [11,12]. A total of 68 recordings were
obtained from the database,the remaining 2 data were



Figure 1 Block diagram of pulmonary acoustic signal processing.
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collected from infants and were not considered for this
study. Of the 68 recordings that were considered in this
research work, 17 were indicative of normal pathology,
26 were associated with airway obstruction pathology,
and 25 were related with parenchymal pathology.
Figure 2 shows the respiratory sound signals associated
with normal, airway obstruction, and parenchymal
pathologies obtained from the R.A.L.E database.

Respiratory sound Pre-processing
Respiratory sound signals are subject to noise, such as
heart sound and other artefacts [1]. The RALE database
comprises recordings that have been filtered to remove
the heart sounds and artefacts. The respiratory sound
signals were high-pass filtered at 7.5 Hz to remove the DC
Figure 2 Signal plot of respiratory sounds associated with normal an
offset using a first-order Butterworth filter and low-pass
filtered at 2.5 kHz to avoid aliasing using an eight-order
Butterworth filter. The sampling rate of the respiratory
sounds was 10 kHz [13].

Parametric representation
The spectral characteristics of the pulmonary acoustic sig-
nals are vital in determining the respiratory pathology
[14]. One of the parametric representation which depicts
the spectral characteristics of signals is Mel-frequency
cepstral coefficients (MFCC). MFCC are associated with a
highly effective feature extraction algorithm used in
speech signal processing. Furthermore, some researchers
have previously implemented MFCC for respiratory sound
analysis and have obtained promising outcomes [15].
d pathological conditions.
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MFCC analysis is similar to cepstral analysis apart from
frequency wrapping. In MFCC analysis, the frequency is
wrapped in accordance with the mel scale, which more
closely approximates the human auditory system’s
response. In contrast, cepstral analysis involves linearly
spaced frequency bands using a normal cepstrum [16].
Figure 3 shows the step-by-step process used to obtain the
MFCCs. The mel-frequency cepstral coefficients are
calculated from the Fast Fourier Transform (FFT) co-
efficients, which are filtered using a triangular bandpass
filter bank known as the mel scale filter bank. The linear
frequency is mapped to the mel-frequency using Eq. (1):

Mel fð Þ ¼ 2595 log10 1þ f
700

� �
ð1Þ

where Mel(f ) is the logarithmic scale of the normal
frequency scale f. The logarithmic scale is then
converted to time through the use of a discrete cosine
transform, and the output is the set of MFCCs. The
MFCCs obtained from the respiratory sounds are then
used as features in the SVM and k-nn classifiers. In this
study, 13 MFCCs were extracted for the classification of
the respiratory sounds.
Figure 3 Block diagram of the process used to obtain the
MFCC feature vector.
Statistical test
In this study, analysis of variance (ANOVA) was used to
test the significance of the feature vector. One-way
ANOVA is used to test the null hypothesis of samples
with more than two groups. More specifically, one-way
ANOVA is used to test the equality of three or more
means at one time using the variances [17].
Classification
In this work, two different classifiers were used, namely
support vector machine (SVM) and k-nearest neighbour
(k-nn). A detailed description of the classifiers used can
be found in this section.
Support Vector Machine (SVM)
The SVM classifier is a kernel-based supervised learning
algorithm that classifies the data into two or more clas-
ses. SVM is particularly designed for binary classifica-
tion. During the training phase, SVM builds a model,
maps the decision boundary for each class, and specifies
the hyperplane that separates the different classes.
Increasing the distance between the classes by increasing
the hyperplane margin helps increase the classification
accuracy. SVM can be used to effectively perform non-
linear classification. Detailed information on the SVM
classifier can be found in [18,19]. In this study, the
MFCC feature vector was fed to the SVM classifier to
distinguish normal, airway obstruction, and parenchymal
pathological conditions. As mentioned earlier, the SVM
classifier is a kernel based classifier. A Kernel function is
a mapping procedure done to the training set to improve
its resemblance to a linearly separable data set. The pur-
pose of mapping is to increase the dimensionality of the
data set and it is done efficiently using a kernel function.
Some of the commonly used kernel functions are linear,
RBF, quadratic, Multilayer Perceptron kernel, and Poly-
nomial kernel. In this research work, linear and RBF
kernel functions were used. The linear kernel function
and RBF kernel functions were used due to their dis-
similar characteristics. The linear kernel function per-
forms well with linearly separable data set and the RBF
kernel function performs well with non-linear data set.
The linear kernel function takes less time to train the
SVM compared to the RBF kernel function. The linear
kernel function is less prone to over fitting compared to
the RBF kernel function [20,21]. The performance of the
SVM classifier relies on the choice of the regularization
parameter C which is also known as box constraint and
the kernel parameter which is also known as the scaling
factor. Together they are known as the hyperplane
parameter. The value of the box constraint C for the soft
margin was set to 1 for both linear and RBF kernel. The
scaling factor σ for the RBF kernel was set to 1.



Table 1 Performance outcome of the SVM classifier for
binary-normalised data

Kernel Validation method Classification accuracy (%)

Linear Conventional validation 86.91 ± 1.47

RBF 89.54 ± 0.39

Linear Ten-fold cross-validation 90.13 ± 0.54

RBF 91.47 ± 1.66

Table 2 Performance outcome of the k-nn classifier for
binary-normalised data

K
value

Validation
method

Classification
accuracy (%)

Validation
method

Classification
accuracy (%)

1 Conventional
validation

94.66 ± 0.56 Ten-fold
cross-

validation

96.65 ± 0.69

2 94.81 ± 0.42 96.35 ± 0.93

3 93.92 ± 0.68 95.06 ± 0.34

4 94.53 ± 0.47 94.41 ± 0.62

5 94.25 ± 0.94 95.02 ± 1.21

6 93.95 ± 1.15 94.41 ± 1.35

7 92.70 ± 1.27 93.20 ± 1.08

8 92.57 ± 0.85 94.44 ± 1.28

9 92.49 ± 0.63 93.32 ± 0.74

10 91.77 ± 0.77 92.17 ± 1.46
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K-Nearest Neighbor (k-nn)
In pattern recognition, the k-nn algorithm is instance
based learning method used to classify objects based on
their closest training examples in the feature space. An
object is classified by a majority vote of its neighbours,
i.e., the object is assigned to the class that is most
common amongst its k-nearest neighbours, where k is a
positive integer [22]. In the k-nn algorithm, the classifi-
cation of a new test feature vector is determined by the
classes of its k-nearest neighbours. Here, the k-nn algo-
rithm was implemented using Euclidean distance metrics
to locate the nearest neighbour [23]. The Euclidean
distance metrics d(x, y) between two points x and y is
calculated using the Eq. (2). Where N is the number of
features such that x = {x1,x2,x3…xN} and y = {y1,y2,y3…yN}.
The number of neighbours (i.e., k) used to classify the new
test vector was varied in the range of 1 to 10, and its
effects on the classification performance were deter-
mined in the form of classification accuracy with standard
deviation.

d x; yð Þ ¼
XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi2−yi2

q
ð2Þ

Results and discussion
The extracted MFCC features were tested using one-way
ANOVA, and the features were found to be significantly
different between the groups (F (2, 68) = 4397.1, p < 0.001).
The MFCC features were separately binary normalised and
bipolar normalised. The normalization is done to standar-
dize the range of independent variables. Normalization also
improves the effectiveness and the performance of the
machine learning algorithms [24]. In this work, two vali-
dation schemes, namely conventional validation and ten-
fold cross-validation, were used to verify the reliability of
the outcome of the classifier. In the conventional validation
scheme, the data were partitioned into two sets, namely
the training and the testing set. The training set comprises
60% of the data, and the remaining 40% of the data formed
the testing set. The classifier was trained and tested 25
times through the conventional validation scheme using
randomly assigned training and testing sets, and the classi-
fication accuracy and standard deviation are reported. In
the ten-fold cross-validation scheme, the dataset was
divided randomly into 10 sets of size n/10, where n is the
total number of datapoints. The training was conducted
using nine sets, and the remaining set was used for testing.
This method was repeated 10 times, and the average mean
classification accuracy is reported. The performance out-
come of the SVM and k-nn classifiers for binary-normalised
features are reported in Tables 1 and 2, respectively.
The performance outcome of the SVM and k-nn
classifiers for bipolar-normalised features are reported in
Tables 3 and 4, respectively. The averages and standard
deviations of the classification accuracies are tabulated.
The standard deviation of the classification clearly reveals
the consistency of the classifier results. If the standard
deviation is higher, the classification results are considered
inconsistent, and this inconsistency also depends on the
parameters of the classifier.
As shown in Table 1, the SVM classifier with the RBF

kernel obtained the maximum classification accuracy of
89.54% with a standard deviation of 0.39 for the binary-
normalised data with the conventional validation method.
Similarly, as shown in Table 2, the k-nn classifier with a k
value of 2 gave the maximum classification accuracy of
94.81% with a standard deviation of 0.42 for the binary
normalised data with the conventional method. Table 3
shows that the SVM classifier with the RBF kernel gives
the maximum classification accuracy of 91.36% with a
standard deviation of 1.69 for the bipolar-normalised data
with the conventional validation method. Similarly, as
shown in Table 4, the k-nn classifier with a k value of 2
obtained the maximum classification accuracy of 97.62%
with a standard deviation of 0.58 for the bipolar-
normalised data with the conventional validation method.
The data shown in Table 1 reveal that the SVM classifier

with the RBF kernel gives the maximum classification
accuracy of 91.47% with a standard deviation of 1.66 for the
binary-normalised data with the ten-fold cross-validation
method. Similarly, Table 2 shows that the k-nn classifier
with a k value of 1 gives the maximum classification



Table 3 Performance outcome of the SVM Classifier for
bipolar-normalised data

Kernel Validation method Classification accuracy (%)

Linear Conventional validation 89.17 ± 1.32

RBF 91.36 ± 1.69

Linear Ten-fold cross-validation 89.91 ± 2.39

RBF 92.19 ± 1.58

Table 5 Confusion matrix for the SVM classifier (Best
results: kernel = rbf; normalisation = bipolar)

Predicted

N A P Accuracy

N 16 0 1 94.12%

Actual A 1 25 0 96.13%

P 2 1 22 88.00%
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accuracy of 96.65% with a standard deviation of 0.69 for
the binary-normalised data with the ten-fold cross-
validation method. Table 3 reveals that the SVM classifier
with the RBF kernel obtains the maximum classification
accuracy of 92.19% with a standard deviation of 1.58 for the
bipolar-normalised with the ten-fold cross-validation
method. Similarly, as shown in Table 4, the k-nn classifier
with a k value of 1 gives the maximum classification accu-
racy of 98.26% with a standard deviation of 0.32 for the
bipolar-normalised data with the ten-fold cross-validation
method. The results obtained demonstrate that the k-nn
classifier outperform the SVM classifier in the discrimi-
nation of respiratory pathologies. The classification accu-
racies show that the SVM classifier with the RBF kernel
and the ten-fold cross-validation method yields the
maximum classification accuracy for the diagnosis of
respiratory pathology. Similarly, the k-nn classifier with a k
value of 1 and the ten-fold cross-validation method yields
the maximum classification accuracy. Both of these ma-
chine learning methods achieve the maximum classification
accuracy when the data are bipolar normalised.
The approximation in the classification accuracies are

due to the multiple trials conducted using random train-
ing and testing set. In the case of conventional validation
scheme the machine learning algorithm (SVM and
KNN) were trained and validated for 25 times (trials).
Each of these 25 trials has random samples for training
and testing data which results in the approximation in
Table 4 Performance outcome of the k-nn Classifier for
bipolar-normalised data

K
value

Validation
method

Classification
accuracy (%)

Validation
method

Classification
accuracy (%)

1 Conventional
validation

97.53 ± 0.29 Ten-fold-
cross

validation

98.26 ± 0.32

2 97.62 ± 0.58 97.11 ± 0.75

3 97.56 ± 1.25 97.52 ± 0.97

4 96. 23 ± 1.36 97.67 ± 0.46

5 96.92 ± 2.54 97.53 ± 0.48

6 95.25 ± 1.27 97.82 ± 0.62

7 95.51 ± 1.58 96.65 ± 0.96

8 95.88 ± 1.69 96.41 ± 1.19

9 95.88 ± 0.58 96.65 ± 1.36

10 95.14 ± 1.69 96.25 ± 0.85
accuracy. Similarly for the 10 fold cross validation
scheme the models were trained and validated for 10
times. In the ten-fold cross-validation scheme, the data-
set were divided randomly into 10 sets of size n/10,
where n is the total number of data points. The training
was conducted using nine sets, and the remaining 1 set
was used for testing. This method was repeated 10 times
by altering/shifting the 1 set used for testing. Tables 5
and 6 depict the evaluation of the performance of the
SVM and k-nn classifiers using the confusion matrix
technique. In these tables, N refers to the normal data,
A is the airway obstruction pathology, and P refers to
the data associated with the parenchymal pathology. The
results obtained using the confusion matrix (Table 5)
show that a normal respiratory sound was misclassified
as parenchymal pathology in one instance. In addition,
an airway obstruction pathology was misclassified as a
normal respiratory sound in one instance, and a paren-
chymal pathology was misclassified as normal in two
instances and as an airway obstruction pathology in one
instance. Similarly, the results obtained using the confu-
sion matrix shown in Table 6 demonstrate that a paren-
chymal pathology was misclassified as airway obstruction
pathology in one instance.
This comparative study shows that the generalisation

capability of the k-nn classifier is higher compared with
that of the SVM classifier in the diagnosis of respiratory
pathologies from the RALE database. However, the com-
putational complexity of the k-nn classifier is high com-
pared to SVM classifier [25]. The results obtained using
the k-nn classifier shows that when the k value is less, the
classifier performs better. If we have a dataset with n data-
points, then the n-nearest neighbor classifier will always
use all datapoints in the dataset to classify new points,
since the k-nearest neighbor classifiers uses a majority
voting scheme. In view of this when k = 1, only the nearest
Table 6 Confusion matrix for the k-nn classifier (best
results: k value = 1; Normalisation = bipolar)

Predicted

N A P Accuracy

N 17 0 0 100%

Actual A 0 26 0 100%

P 0 1 24 96%
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one data point is chosen. Increasing the k value increases
the number of neighbors which may lead to a decrease in
performance because the chances of including a data
point from a different class becomes higher with the
increase of nearest neighbours [26]. The incremental
property of the k-nn machine learning algorithm is better
than the SVM classifier [25]. This property allows the k-
nn classifier to perform better than the SVM classifier in
classifying the pulmonary acoustic signals. The pulmonary
acoustic signals are non-linear and non-stationary signals
[14]. The k-nn classifier is a non-linear classifier and the
SVM is both linear and non-linear [25]. When the linear
kernel function is used the SVM acts as a linear classifier
and when the RBF kernel is used the SVM acts as the
non-linear classifier. The classification accuracy of the
SVM with linear kernel is low compared to other classi-
fiers because of the non-linear and non-stationary proper-
ties of the pulmonary acoustic signals. The limitation of
this study is the number of data used. The number of data
used in this study is very low and the data collection was
carried out in a controlled environment. The analysis of
data with respect to clinical settings should be carried out
in future with a larger database. The analysis can be
further extended to other feature extraction techniques
and machine learning algorithms.
Conclusion
This study compared the performance of the SVM and k-
nn classifiers for the classification of respiratory patholo-
gies from the RALE lung sound database. To do so, the
MFCC features of respiratory sounds obtained from the
RALE database were extracted. The extracted feature
vectors were analysed through one-way ANOVA and were
found to be highly significantly different (p < 0.001). The
maximum classification accuracies for the SVM and k-nn
classifiers were found to be 92.19% and 98.26%, respec-
tively. The maximum classification accuracy of the SVM
classifier was obtained with the RBF kernel, the ten-fold
cross-validation method, and bipolar-normalised data.
Similarly, the maximum classification accuracy of with the
k-nn classifier was obtained for a k value of 1, the ten-fold
cross-validation method, and bipolar-normalised data.
These findings show that the generalisation capability of
the k-nn classifier is higher compared with that of SVM
for the classification of respiratory pathologies from the
RALE lung sound database.
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