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Abstract

Background: Metagenomics has a great potential to discover previously unattainable information about microbial
communities. An important prerequisite for such discoveries is to accurately estimate the composition of microbial
communities. Most of prevalent homology-based approaches utilize solely the results of an alignment tool such as
BLAST, limiting their estimation accuracy to high ranks of the taxonomy tree.

Results: We developed a new homology-based approach called Taxonomic Analysis by Elimination and Correction
(TAEC), which utilizes the similarity in the genomic sequence in addition to the result of an alignment tool. The
proposed method is comprehensively tested on various simulated benchmark datasets of diverse complexity of
microbial structure. Compared with other available methods designed for estimating taxonomic composition at a
relatively low taxonomic rank, TAEC demonstrates greater accuracy in quantification of genomes in a given microbial
sample. We also applied TAEC on two real metagenomic datasets, oral cavity dataset and Crohn’s disease dataset. Our
results, while agreeing with previous findings at higher ranks of the taxonomy tree, provide accurate estimation of
taxonomic compositions at the species/strain level, narrowing down which species/strains need more attention in the
study of oral cavity and the Crohn’s disease.

Conclusions: By taking account of the similarity in the genomic sequence TAEC outperforms other available tools in
estimating taxonomic composition at a very low rank, especially when closely related species/strains exist in a
metagenomic sample.
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Background
Metagenomics is the study of microbes by analyzing
the entire genomic contents extracted directly from
an environmental sample. Its growth has been greatly
encouraged by the rapid advances in Next Generation
Sequencing (NGS) technologies, which deliver massive
volumes of sequence data at relatively low cost and
fast turnaround time [1-3]. An essential prerequisite for
metagenomic analysis is to unriddle the taxonomic com-
position of the microbial community in a given sample.
It is generally accomplished by aligning sequencing reads
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against databases of known genomes or of phylogenetic
marker genes [4], which is known as the homology-based
approach. A challenge is that many microbes in an envi-
ronmental sample share the similarity in the genomic
sequence, and this intrinsic complexity of metagenomic
samples makes it extremely difficult, if not impossible, to
accurately estimate the taxonomic composition, especially
at low ranks of taxonomy tree, such as the species/strain
level.
One early approach to estimate taxonomic composition

of metagenomic samples is to use the Lowest Common
Ancestor (LCA) method implemented in MEGAN [5], in
which a sequencing read matching with multiple genomes
is assigned to their lowest common ancestor, lowering
the false positive rate at the cost of the specificity of
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assignment. In order to improve the specificity, various
approaches have been developed [6-11].
One recent homology-based approach, GASiC [10] uti-

lizes the similarity in the genomic sequence to estimate
taxonomic composition at the species level. To this end, it
estimates the similarity between genomes by simulating a
set of reads from each genome in a given sample and align-
ing it to the every genome in the sample individually. With
the estimated similarity in the genomic sequence, it cor-
rects the species abundance parsed from the result of an
alignment tool such as Bowtie2 [12] using a non-negative
LASSO approach [13]. However, this approach requires
prior information about genomes in a given sample in
order to construct a matrix of the similarity among the
genomes so that it can estimate the relative abundance of
the genomes. Therefore, it is not very suitable for metage-
nomic samples whose contents are usually unknown, yet
need to be identified.
Another recent homology-based approach, TAMER

[11] proposed a mixture model to estimate the propor-
tion of sequence reads assigned to each genome while
accommodating information of sequencing alignments.
The parameters of the mixture model estimated by the
EM algorithm [14] are used to assign each read to the
most probable genome. The output of TAMER is at the
species/strain level. However, estimated abundance is not
accurate for highly similar genomes (genomes sharing
high similarity in their genomic sequences) because of
their high correlation, which cannot be captured by the
mixture model.
In this paper, we propose a new homology-based

approach, Taxonomical Analysis by Elimination and Cor-
rection (TAEC). This approach consists of two main
stages: the elimination stage and the correction stage. In
the elimination stage, we remove genomes whose pres-
ence is most likely due to the presence of similar genomes
in a sample. In the correction stage, we correct the abun-
dance of each genome remaining after the elimination
stage by utilizing the similarity among the genomes in a
system of linear equations. The overall workflow of TAEC
is shown in Figure 1.
TAEC is similar to GASiC in that both methods use

the similarity in the genomic sequence among genomes
to correct the abundance estimation. However, TAEC is
quite different from GASiC in that it utilizes the unique-
ness of genome to remove possible false genomes before
the correction of abundance. TAMER is fundamentally
different from the two methods: it does not consider the
similarity between genomes in the assignment of reads. It
only depends on the estimated post probability. In other
words, when a read is mapped to multiple genomes in a
BLAST output, it will be generally assigned to the most
abundant genome (obtained in the parameter estimation
step) regardless of similarity between genomes.

We tested TAEC on various simulated datasets and
compared its performance with that of the aforemen-
tioned two methods, which were already demonstrated
to outperform many other methods [10,11]. TAEC
showed consistent performance regardless of complexity
of metagenomic samples, even on a sample containing
highly similar genomes, where the other methods showed
poor performance. We also applied TAEC to two real
metagenomic samples collected from human mouth [15]
and human gut [16] and obtained their taxonomic compo-
sitions at the species/strain level, providing an interesting
insight into the samples.

Methods
Input data and reference database
As other homology-based methods, DNA sequences or
reads in a sample are compared against databases of
known genomes using a sequence alignment tool such
as BLAST in the preliminary stage. TAEC is then used
to estimate the taxonomic composition of the sample by
utilizing the similarity in the genomic sequence. In this
research, we performed sequence alignments against the
NCBI bacteria database using BLASTN to estimate the
similarity among genomes. Thus, the input data should
be an alignment result from BLASTN against the NCBI
bacteria database [17] for the current version of TAEC.
However, our approach is not restricted to BLASTN nor
the NCBI bacteria database. It can be used with any
alignment tools and reference databases.

Similarity estimation
For a reference database that contains N0 genomes, the
method described below is used to estimate the similar-
ity in the genomic sequence between any two genomes in
the database. A set of K0 random reads for each genome
gj is generated and aligned against the reference database,
where j = 1, · · · ,N0. The reads are then assigned to
genomes based on the alignment score. In cases where
a read ri is aligned to multiple genomes, ri is assigned
to the genomes whose alignment scores are greater than
or equal to α · maxj(sij), where α ∈ [ 0, 1] and sij is the
alignment score of gj for ri, i = 1, · · · ,K0. How to deter-
mine the value of α depends on the length of reads and
the complexity of sample data: shorter reads and more
complex datasets require higher value of α to distin-
guish highly similar genomes. The ratio wjj′ between the
numbers of reads assigned to gj and gj′ can present the
probability that reads originating from gj can be assigned
to gj′ , or wjj′ = nj′/nj, where nj denotes the number of
reads assigned to gj. This ratio is used as the similar-
ity in the genomic sequence between genomes to build
a similarity matrix W for all genomes in a reference
database.
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Figure 1 Flow chart of TAEC’s workflow. The light yellow colored blocks are implemented by a user and the light blue colored blocks are
internally implemented by TAEC. Note: the bacteria database could be replaced with virus or other types of databases if needed.

Elimination stage
Many genomes share more or less similarity in the
genomic sequence but each genome has its unique
regions, which differentiate it from other genomes. There-
fore, if a genome is truly present in a sample, there must
be some reads uniquely assigned to it as long as the depth
of coverage is high enough. We utilize this fact of unique-
ness to identify genomes whose presence in the result of
an alignment tool is most likely due to the similarity in the
genomic sequence to the true genomes in a sample.
To this end, each read is assigned to genome(s) with the

highest alignment score, and a binary K × N matrix A is
created with its entry aij = 1 if ri is assigned to gj and aij =
0 otherwise, where K is the number of reads and N is the
number of genomes present in the result of an alignment
tool. For example, the below is the BLAST output for a
small set of six reads:

⎛
⎜⎜⎜⎜⎜⎜⎝

G1 G2 G3 G4
R1 98 0 98 90
R2 0 99 0 99
R3 0 0 97 0
R4 98 0 98 0
R5 87 0 0 97
R6 99 0 99 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⇒ A =

⎛
⎜⎜⎜⎜⎜⎜⎝

G1 G2 G3 G4
1 0 1 0
0 1 0 1
0 0 1 0
1 0 1 0
0 0 0 1
1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Let {aj} be the columns of A, and a(j) be the column
with maxj≤l≤N ||al||1, where ||al||1 is L1-norm of al, which
corresponds to the total number of reads assigned to the
genome gl. To identify the genomes to which no reads
are uniquely assigned, with A0 = A we inductively solve
the following equation (a simple example of how Eq. (1)
works and an equivalent iterative algorithm are provided
in Additional file 1):

Aj = (
Aj−1PjSj

)
+ (1)

until we get the column j0 which satisfies ||a(j0)||1 = 0,
where (X)+ is a matrix with entries equal to max(xij, 0),
Pj a permutation matrix that permutes the column a(j)
with the column aj, and Sj a matrix that subtracts the col-
umn a(j) from each of the columns al for l > j. Now, the
genomes represented by the columns aj for j ≥ j0 can
be removed since no reads is uniquely assigned to them,
which implies that their presence is mainly due to the sim-
ilarity in the genomic sequence to the true genomes in a
sample. Thus, for the example above Aj becomes as below,
i.e., only G3 and G4 are possible true genomes.



Sohn et al. BMC Bioinformatics 2014, 15:242 Page 4 of 13
http://www.biomedcentral.com/1471-2105/15/242

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

G3 G4 G1 G2
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

In practice, reads can be assigned to some random
genomes due to sequencing and alignment errors so the
stopping criterion for Eq. (1) can be relaxed such that
||a(j0)||1 = c, where c is a user defined minimum num-
ber of reads for a genome to be included in the subse-
quent analysis. The whole elimination procedure can be
iterated using non-parametric bootstrap [18]. In the boot-
strap, the number of occurrences of ||aj||1 ≤ ||a(j0)||1 is
used as a criterion to decide whether the genome gj is a
false genome: if it exceeds a user defined number, gj is
considered as a false genome and removed.

Correction stage
In the elimination stage, the uniqueness of genomes is
utilized to remove false genomes, disregarding accuracy
in the number of reads assigned to each genome. In the
example data genomes of G1 and G2 are removed. In the
correction stage, the number of reads assigned to each
genome remaining after the elimination stage (i.e., G3 and
G4) is corrected using the similarity matrixW in a system
of linear equations.
In this stage, to be consistent with the estimation of the

similarity, we use α × maxj(sij) as a minimum alignment
score to reassign a read to the remaining genomes, where
sij is the alignment score of a genome gj for a read ri. That
is, ri is assigned to the genomes whose alignment scores
are greater than or equal to α×maxj(sij). Let bj denote the
number of reads assigned to the genome gj in this way, and
tj be the number of reads assigned to gj only due to its own
presence, which we want to find. Suppose the number of
remaining genomes after the elimination stage ism. Then,
the number of reads assigned to each genome can be given
by the following equations:

w11t1 + w21t2 + · · · + wm1tm = b1
w12t1 + w22t2 + · · · + wm2tm = b2
...

...
...

w1mt1 + w2mt2 + · · · + wmmtm = bm,

(2)

where wjj′ is the similarity between gj and gj′ , that is, the
(j, j′) entry of the similarity matrix W . Since no genome
has the perfect similarity to other genomes, or wjj′ �= 1

for all j �= j′, the inverse ofWT exists. Thus, the corrected
abundance for each genome can be obtained by solving

t = (WT )−1b, (3)

where WT is the transpose of W , t = (t1, t2, ..., tm)T and
b = (b1, b2, ..., bm)T . If tj < 0 for some j, Eq. (3) is repeated
after removing the genomes gj until tj > 0 for all j since
the number of reads cannot be negative.

Implementation of methods used in TAEC
For the genomes excluding plasmids in the NCBI Bacte-
ria database, we created 4 similarity matrices, one for each
of the most common read lengths: 100 bp, 250 bp, 500
bp and 1000 bp. We used 30,000 reads for each genome
to estimate the similarity in the genomic sequence among
genomes, that is K0 = 30,000, and set 0.001 as a threshold
for the similarity between genomes (i.e., if the similarity
between two genomes is less than 0.1% , it is set to 0).
The detailed information about the selection of K0 and a
threshold for the similarity is provided in Additional file 1.
In the selection of an optimal value for α, we simulated

40 different samples, in each of which we used 100,000
reads of 250 bp originating from 5, 10 or 20 randomly
selected genomes at various relative abundance ratios,
which were randomly selected such that the ratio between
the least and the most abundant genomes can be up to
1:20. We then computed the relative root mean squared
error (RRMSE) Eq. (4), defined in the result section, for
each sample at different values of α. As shown in Figure 2,
any value α ≥ 0.90 could be chosen since there is no
statistically significant difference in the mean of RRMSE
at the 95% confidence level. We selected α = 0.96 since
the smallest mean and variance of RRMSE occurs at this
value. The value of α also depends on the length of reads
but not as much as on the complexity of a sample so the
gain of accuracy by choosing a different value of α for
a different read length is marginal (see Additional file 2:
Table S1). Thus, we used the same value of α for all the
similarity matrices.
Since we set 0.001 as the similarity threshold, we could

not determine whether the presence of a genome in the
elimination stage is due to its true presence or its unde-
tectable similarity to the most abundant genome if its
relative abundance is less than 0.1% of the most abundant
genome. However, themost abundant genome in the elim-
ination stage is overestimated unless its similarity to other
genomes in a sample is zero. Thus, we used 0.05% instead
of 0.1% as a cut-off in the decision of which genomes are
falsely present in order to minimize false elimination of
true low abundant genomes. In the bootstrap, any genome
whose abundance is less than 0.05% of the most abun-
dant genome in more than 5% of the bootstrap samples
was eliminated. The method developed for the elimina-
tion stage is implemented in C as an extension to R to
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Figure 2 RRMSE vs. α for read length of 250 bp. The mean of RRMSE for 40 samples at different α. The error bars represents 95% confidence
interval. The smallest mean and variance of RRMSE occurs at α = 0.96.

minimize the computation time, and the method for the
correction stage is implemented in R. The single run time
for an input data of 1.1 GB takes about 1 minute on a lap-
top with dual core 1.8 Ghz CPU and 4 GB of memory,
and each additional run time for the bootstrap takes about
35% of the single run time. The TAEC package is available
for download at http://cals.arizona.edu/~anling/software.
htm.

Results
We first tested TAEC on three simulated datasets to eval-
uate estimation accuracy and to compare with the other
methods. We then applied it on two real metagenomic
samples to analyze the taxonomic composition of each
sample. In the comparison, we used three commonly
used error measures [9]: relative root mean squared error
(RRMSE), average relative error (AVGRE) and maximum
relative error (MAXRE), which are given by

RRMSE =
√

1
N

∑N
i=1

(
ti−τi

τi

)2
, (4)

AVGRE = 1
N

∑N
i=1

|ti−τi|
τi

, (5)

MAXRE = maxi
( |ti−τi|

τi

)
, (6)

where N is the number of the true genomes in a sample, ti
the estimated number of reads assigned to genome i and
τi the true number of reads originating from genome i.
For each of the following studies, we used 100 bootstrap
samples in the elimination stage.

Simulation study I - FAMeS datasets
The FAMeS datasets [19] consist of three artificial
metagenomic datasets containing shotgun sequencing
reads from 113 genomes. These datasets are named
‘simLC’, ‘simMC’ and ‘simHC’ based on abundance com-
plexity: the simLC dataset contains one dominant genome
with many low abundant genomes, the simMC dataset

contains a few dominant genomes with many low abun-
dant genomes and the simHC dataset contains no dom-
inant genomes. These datasets were used in the GASiC
paper [10]. Among 113 genomes in the FAMeS datasets,
we used 106 genomes that are contained in the NCBI Bac-
teria database and compared the performance of TAEC on
these datasets with GASiC and TAMER.
In the comparison with GASiC, we ignored the p-value

that GASiC uses to determine whether a genome is truly
present in a sample because only 4 genomes have the p-
value less than 0.05 for the simLC and the simMC datasets
and 22 for the simHC dataset. The comparisons of esti-
mation accuracy are shown in Figure 3. TAEC yields the
lowest errors for all the datasets. In particular, it performs
very well on the simHC dataset in which the depth of cov-
erage for each genome is sufficiently high. GASiC, which
also uses the similarity between genomes, shows signifi-
cant improvement on the simHC dataset as well. However,
TAMER does not benefit from the increase in the depth
of coverage.

Simulation study II - MetaSim datasets
The MetaSim datasets [20] also consist of three metage-
nomic datasets named ‘simLC’, ‘simMC’ and ‘simHC’.
However, reads in each dataset are simulated by a
sequencing simulator, MetaSim, and the name of each
dataset is based on the number of genomes in the dataset:
the simLC dataset contains 2 genomes, the simMCdataset
contains 9 genomes and the simHC dataset contains 11
genomes. These datasets, each of which contains 150,000
reads of length 100 bp, were reproduced using the same
parameters used in the MetaSim and the TAMER papers
[11,20] to compare estimation accuracy.
All approaches, as shown in Figure 4, perform well

on the simLC and the simHC datasets in which all the
genomes are very different from each other or the simi-
larity between all genomes is very small. Even MAXREs
for all approaches are less than 5% on these datasets.

http://cals.arizona.edu/~anling/software.htm
http://cals.arizona.edu/~anling/software.htm
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Figure 3 Estimation accuracy comparison on FAMeS datasets.
The performance of three methods on the FAMeS datasets is
compared by the three error measures: RRMSE, AVGRE and MAXRE.

However, for the simMC dataset that contains two rel-
atively similar genomes, Escherichia coli str. K-12 substr.
MG1655 and Shigella dysenteriae Sd197, the performance
of all approaches deteriorate, but TAEC by the least
degree.
As shown in Figure 5, which presents the absolute dif-

ference between the true and the estimated relative abun-
dance of each genome in percentage, the common sources
of high errors for all three methods are Shigella dysen-
teriae and E. coli. It is due to the very different relative
abundance for the similar genomes (Shigella dysenteriae
is only about 5% of E. coli). For both GASiC and TAEC
a small fluctuation in the similarity can cause significant
impact on the number of reads for the less abundant
genome. The performance of TAEC is less sensitive to dif-
ference in relative abundance for similar genomes because
of the optimum value of α: the similarity between Shigella
dysenteriae and E. coli estimated by TAEC is much lower
than that estimated by GASiC, reducing the effect of
fluctuation in the similarity. This may be the same rea-
son that GASiC shows large errors on the estimation of
Pseudomonas entomophila and Pseudomonas fluorescens.
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Figure 4 Estimation accuracy comparison onMetaSim datasets.
The performance of three methods on the Metasim datasets is
compared by the three error measures: RRMSE, AVGRE and MAXRE.

Simulation study III
The last simulation study is motivated by the findings in
the preceding simulation study where genomes in a sam-
ple are highly similar. The first sub-study was conducted
to show the necessity of the similarity information to esti-
mate the taxonomic composition accurately and to show
the capacity of TAEC to perform at the species/strain
level. Two artificially simulated datasets using MetaSim
contain three strains of Escherichia coli: Escherichia coli
str. K-12 substr. MG1655, Escherichia coli 0103:H2 str.
12009 and Escherichia coli B str. REL606. Each of the
two datasets contains 150,000 reads of 100 bp from the
three strains, but one at the same relative abundance ratio
(1:1:1) and the other at different relative abundance ratios
(the ratio of 1:2:3).
As GASiC needs to create a reference database we

consider three types of database for GASiC: 1) only 3
true genomes 2) additional false genome Escherichia coli
DH1 and 3) adding another false genome Escherichia coli
DH10B. Even though TAMER and TAEC use the NCBI
bacteria database, we just display the performance results
of three methods in the same plot, Figure 6. The RRM-
SEs for TAMER are very high, showing its limitations
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Figure 5 Details of accuracy on simMC dataset. The performance of three methods on the Metasim MC dataset is compared by the absolute
difference of relative abundance in percentage between the true and the estimated composition.

on the sample that contains very similar genomes; the
RRMSE by GASiC dramatically increases whenmore false
(similar) genomes are included in the database but it
performs well when only the true genomes are included
in the reference database. TAEC outperforms these two
methods in this study, showing its consistent perfor-
mance regardless of the complexity of a sample. These
results are at the strain level and can be summarized
to a higher level, e.g., species level. At the species level
(Additional file 3: Figure S1) the performances of TAEC
andTAMER are comparable, and both of them outperform
GASiC when false genomes are contained in the reference
database.
The second sub-study is about the effect of depth of

coverage on the accuracy of estimation. We simulated
samples containing the same three E. coli strains at dif-
ferent sample sizes (i.e., the number of reads) to analyze
the effect of depth of coverage on the accuracy of esti-
mation. For TAMER and TAEC, the entire NCBI bacteria
database was used for alignment while for GASiC just five
E. coli strains, the three true and two false ones (men-
tioned above), were used in the reference database. As

shown in Figure 7 and Additional file 4: Figure S2 and
Additional file 5: Figure S3, TAMER andGASiC show very
large RRMSE and do not benefit from the increase in the
sample size. On the contrary, TAEC shows small RRMSE
and benefits from the increase in the sample size.

Oral metagenomic datasets
Themicrobial communities in the humanmouth are com-
prised of many different bacterial species. Most of them
are commensal and essential to keep equilibrium in the
mouth ecosystem. At the same time, some of them are
directly involved in the development of oral diseases, such
as cavities and periodontal disease [15,21]. Thus, the accu-
rate taxonomical composition of these species in health
and disease will help us identify possible pathogenic
species.
We downloaded 4 sets of raw reads from the MG-RAST

server: two healthy control sets and two cavity sets, which
contain 454 pyrosequencing reads of 425 bp on average.
The stages of cavity development for the two cavity sets
are different: one at an intermediate stage and the other at
an advanced stage [15]. The estimated relative abundance
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Figure 6 Estimation accuracy comparison on E. Coli dataset of 3 strains. The performance of the three methods on the two samples that
contain three E. coli strains, one at the same relative abundance ratio and the other at different relative abundance ratios, is compared by RRMSE as
the number of false genomes in a reference database for GASiC increases. For TAMER and TAEC the reference database is kept same, i.e., NCBI
bacteria database.

by TAEC for each genome whose relative abundance is
greater than 1% is shown in Figure 8.
Bacilli, Betaproteobacteria, and Gammaproteobacteria

are abundant in the healthy samples, while Actinobacte-
ria, Bacteroidia, and Negativicutes are abundant in the
diseased sample. This agrees with the previous findings
[11,15]. Generally, the detected members of the Acti-
nobacteria class are abundant in the diseased group,
especially for the second cavity sample which is at the
advanced stage of disease. This finding is consistent with
the conclusion of the paper [22]. An interesting observa-
tion is that Rothia dentocariosa is plenty in the healthy
samples as well as in the advanced cavity sample. Accord-
ing to [23], R. dentocariosa is a largely benign gram
positive microbe residing in human mouth but does
very rarely cause disease, e.g., Rothia periodontal disease.
Thus, it requires a further study with more samples to
make a confirmative conclusion.
It also shows that all the detected members in the class

Bacteroidia are abundant in the disease samples, includ-
ing Tannerella forsythia ATCC 43037 and 3 strains of
Porphyromonas gingivalis, and 3 species of prevotella.
This is consistent with the previous findings [24,25], and
it is well known that Prevotella denticola is a bacterial

species found in the human mouth that causes infec-
tions of the oral cavity and adjacent structures [26]. We
also noticed that the species Leptotrichia buccalis in the
class of Fusobacteria is more abundant in the cavity sam-
ples than in the healthy controls, which is not surprised
since it is the first species in the genus Leptotrichia found
in human dental plaque [27]. The both detected species
Selenomonas sputigena and Veillonella parvula in the
class of Negativicutes are ample in the diseased samples.
The fact that Veillonella parvula is gram-negative and
normally occurs as a harmless parasite in the mouth cavi-
ties explains why we observe a large amount of V. parvula
in both healthy and cavity samples [28]. Although it is con-
sidered non-pathogenic, V. parvula has been linked with
rare cases of periodontal disease [28]. In addition, S. sputi-
gena is the most frequently detected bacterial species in
the genus of Selenomonas in the cavity/periodontal sam-
ple [29]. The species Treponema denticola which belong
to the class of Spriochaetia has been identified from the
oral cavity of humans [30].
In Figure 8 it shows that two strains, Aggregatibac-

ter aphrophilus NJ8700 and Haemophilus parainfluen-
zae T3T1, and the members of Neisseria are depleted
in the cavity samples and the members of Streptococcus
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Figure 7 RRMSE vs. Number of reads: Three E. coli strains at the relative abundance in the ratio of 1:5:10.

are less common in the cavity samples, which belong
to Gammaproteobacteria, Betaproteobacteria and Bacilli,
respectively. As for the strains in Betaproteobacteria their
abundance could be due to biological variation or bias
from sample collection since only one healthy control
sample shows this pattern. For the Streptococcus strains
in Bacilli and two species of Aggregatibacter aphrophilus
and Haemophilus parainfluenzae, they are greatly boun-
tiful in healthy oral samples. Actually they have been
used as antagonistic microorganisms to control/reduce
the adhesion of periodontal pathogens [31].
Of particular interest is the difference in relative abun-

dance between the two cavity samples. The species of
prevotella have very high relative abundance for the inter-
mediate stage cavity sample, which is labeled as “Cavity1”
in Figure 8, compared to the healthy control samples and
even to the other cavity sample. Their active role in the
early development of cavities is confirmed by the fact of
they are oxygen tolerant [32]. Similarly, the abundance
of Prophyromansa gingivalis and Treponema denticola in
the advanced cavity sample can be explained by their
anaerobic characteristic [32].

Human gut datasets
The human gut is inhabited by a large number of bacterial
species [33-35], and it is widely accepted that Crohn’s

disease (CD) is associated with changes in microbial com-
munities of human gut [16,36]. We downloaded 11 sets
of raw reads - seven healthy control sets and four CD
sets - from the NCBI to estimate the difference in taxo-
nomic composition between two groups [16]. The whole
genome reads were produced by the Illumina, and the
average length is 119 bp. The average estimated relative
abundance by TAEC for genomes whose relative abun-
dance is greater than 0.01 is shown in Figure 9.
It shows that the four major bacterial phyla in healthy

people are Firmicutes, Bacteroidetes, Proteobacteria, and
Actinobacteia, which agrees with the previous findings
[11,16,36]. Interestingly, we detected another phylum -
Verrucomicrobia - which is represented by a species
Akkermansia muciniphila with relatively high abundance
in both diseased and healthy samples. Actually, Ver-
rucomicrobia can be occasionally observed in human
gut [37].
The species Eggerthella lenta in the phylum Acti-

nobacteia shows higher value in the CD patients than in
the healthy controls, which is confirmed by the finding in
a study of bacteremia for a CD patient [38]. Generally, the
phylum Firmicutes depletes in the CD patients than in the
healthy controls, largely due to the depletion of Clostridi-
ales [39]. However, the genus Steptococcus shows a clear
pattern that it is over represented in the CD patients,
which concurs with the antigens findings in CD [40].
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Figure 8 Taxonomic composition of human oral microbiota. The estimated relative abundance of genomes whose relative abundance is
greater than 1% in at least one of four oral samples is shown in the bar plot, and the taxonomic tree structure of the detected genomes is attached
accordingly. The four samples consists of two healthy control sets and two cavity sets. The cavity set labeled “Cavity1” is at an intermediate stage of
cavity development, and the other “Cavity2” at an advanced stage.

Meanwhile, the increase of Veillonella parvula in the CD
patients can be confirmed by a metagenomic study of CD
[41]. For the phylum Proteobacteria its increases in the
CD patients is mainly due to the high relative abundance
of three strains of E. coli [40,41]. Regarding the phylum
Bacteroidetes the findings on the CD patients are incon-
sistent [42]. Most studies showed that it is more prevalent
in CD patients compared with healthy controls [42,43]. By
contrast, Frank et al. found that Bacteroidetes are signifi-
cantly depleted in CD patients [44] by using q-PCR. Our
analysis results are consistent with the later.

Discussion
Many genomes share similarity in the genomic sequence,
which is difficult to be captured from analyzing short
sequence data alone. Currently, it is still very challeng-
ing to accurately estimate the taxonomic composition of
a metagnomic sample containing similar species, with-
out utilizing the genomic similarity. TAEC employs the
similarity in the genomic sequence in addition to the

quality of alignment to estimate the relative abundance,
enabling accurate estimation of taxonomic composition at
the species level in the taxonomy tree and even lower level
if the depth of coverage is high enough.
In addition to its accuracy, TAEC could provide a way

to check the reliability of outputs: the estimated relative
abundance along with the similarity between genomes
allows us to identify which genomes are susceptible to
high errors. For instance, if a genome shares very low sim-
ilarity with other genomes in a sample, the accuracy of
its estimated relative abundance is not affected by the rel-
ative abundance of the others. On the other hand, if a
genome shares high similarity with other genomes, the
accuracy of its estimated relative abundance is depen-
dent on the relative abundance of the others and the
depth of coverage as shown in Figure 7 and Additional
file 4: Figure S2 and Additional file 5: Figure S3. Thus,
with the information of relative abundance along with
the similarity between genomes, we can narrow down
which estimation of relative abundance is more reliable
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Figure 9 Taxonomic composition of human gut microbiota. The average relative abundance for the genomes (with greater than 1% in either
health group or Crohn’s disease group) is plotted with the corresponding standard error in the bar plot, and the taxonomic tree structure of the
detected genomes is attached accordingly.

without any extra steps, like bootstrap suggested in
TAMER.
TAEC has two limitations: 1) genomes that are not in

a reference database cannot be correctly detected even if
their true abundance is very high, and 2) very low abun-
dant genomes, specifically their relative abundance is less
than 0.05% of the genome with most abundance, can-
not be detected regardless of their genomic similarities to
the most abundant genome. The first limitation is com-
mon to all homology-based approaches, and generally the
second limitation pose no problems since we usually are
interested in genomes whose relative abundance is greater
than 1%.
The length of reads in a real metagenomic sample

varies, and this variation can change the number of reads
assigned to a genome. However, the change mostly occurs
on false genomes since the probability that a read origi-
nating from a genome can be assigned to the true genome
is barely affected by the change in read length. Therefore,
small variation in read length does not cause significant
errors in the estimated relative abundance of possibly
true genomes. However, a proper similarity matrix should
be used for the accurate estimation. For instance, if the

averaged length of reads is 110 bp, a similarity matrix cre-
ated with the read length close to 110 bp should be used.
It could cause significantly high errors, otherwise.

Conclusion
TAEC is developed as a new homology-based approach
to improve the estimation of taxonomic composition of
metagenomic samples. Its performance is very consistent
as demonstrated in various simulation studies. Particu-
larly, it outperforms other existing methods when there
exist closely related genomes in a sample. Moreover, it is
also reliable in a sense that it could provide a way to check
the reliability of outputs, which is critical in the analysis of
many metagenomic projects, especially related to human
health.

Additional files

Additional file 1: Supplementary Notes: An example of the
elimination algorithm. An equivalent elimination algorithm in while
loops. The selection of a similarity threshold and K0.

Additional file 2: The choice of α value on various length of reads in
terms of RRMSE.
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Additional file 3: Estimation accuracy comparison for three methods
on the dataset with three E. Coli strains at the species level. The
performance of the three methods on the two samples that contain three
E. coli strains, one at the same relative abundance ratio and the other at
different relative abundance ratios, is compared by RRMSE as the number
of false genomes in a reference database for GASiC increases. For TAMER
and TAEC the reference database is kept same, i.e., NCBI bacteria database.

Additional file 4: Estimation accuracy comparison for three methods
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