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Abstract

retroviruses are likely to target.

Background: Human T-cell leukemia viruses (HTLV) tend to induce some fatal human diseases like Adult T-cell
Leukemia (ATL) by targeting human T lymphocytes. To indentify the protein-protein interactions (PPI) between
HTLV viruses and Homo sapiens is one of the significant approaches to reveal the underlying mechanism of HTLV
infection and host defence. At present, as biological experiments are labor-intensive and expensive, the identified
part of the HTLV-human PPI networks is rather small. Although recent years have witnessed much progress in
computational modeling for reconstructing pathogen-host PPI networks, data scarcity and data unavailability are
two major challenges to be effectively addressed. To our knowledge, no computational method for proteome-wide
HTLV-human PPl networks reconstruction has been reported.

Results: In this work we develop Multi-instance Adaboost method to conduct homolog knowledge transfer for
computationally reconstructing proteome-wide HTLV-human PPI networks. In this method, the homolog knowledge
in the form of gene ontology (GO) is treated as auxiliary homolog instance to address the problems of data scarcity
and data unavailability, while the potential negative knowledge transfer is automatically attenuated by AdaBoost
instance reweighting. The cross validation experiments show that the homolog knowledge transfer in the form of
independent homolog instances can effectively enrich the feature information and substitute for the missing GO
information. Moreover, the independent tests show that the method can validate 70.3% of the recently curated
interactions, significantly exceeding the 2.1% recognition rate by the HT-Y2H experiment. We have used the
method to reconstruct the proteome-wide HTLV-human PPl networks and further conducted gene ontology based
clustering of the predicted networks for further biomedical research. The gene ontology based clustering analysis of
the predictions provides much biological insight into the pathogenesis of HTLV retroviruses.

Conclusions: The Multi-instance AdaBoost method can effectively address the problems of data scarcity and data
unavailability for the proteome-wide HTLV-human PPl interaction networks reconstruction. The gene ontology based
clustering analysis of the predictions reveals some important signaling pathways and biological modules that HTLV

Background

Pathogen-host protein-protein interactions (PPI) play
important roles in the process of pathogen infection and
host response. Fast and accurate mapping of proteome-
wide pathogen-host protein interactome provides valuable
insight into the underlying pathogenesis of pathogens and
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promotes discovery of novel druggable targets. As com-
pared with labor-extensive and expensive experimental
methods, computational methods facilitate the fast recon-
struction of proteome-wide pathogen-host PPI networks at
low cost. At present, most computational methods focus
on intra-species PP network reconstruction (e.g. yeast PPI
network [1], Arabidopsis thaliana PPI network [2], human
PPI network [3], etc.) in that the experimentally-derived
intra-species PPl networks are large enough for computa-
tional modeling, though with noise and far from complete
[4,5]. In contrast, the host-pathogen PPI networks available
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are still very small. For instances, the latest HIV-human
PPI database [6] contains 3,638 interactions, the P.falcip-
arum-H.sapiens PPI dataset [7] contains 1,112 interactions,
and the smallest Salmonella-human PPI dataset [8] con-
tains just 62 interactions. Schleker et al. [9] used HT-Y2H
(high-throughput yeast-two-hybrid) to detect 166 interac-
tions between HTLV (Human T-cell lymphotropic viruses)
and human proteins. Such small pathogen-host PPI data-
sets are prone to yield model overfitting.

Most of the reported computational methods for
pathogen-host PPI prediction focus on the pathogens like
HIV-1 [10-14], P.falciparum [15], Salmonella [16-18], etc.,
and generally leverage multiple biological feature informa-
tion as shown in Table 1. Integration of feature informa-
tion truly improves the model performance to a certain
degree, but it has the two major demerits: (1) aggregation
of multiple feature information without augmenting the
training data is prone to cause model overfitting on small
training data; (2) integration of feature information poses
demanding data constraints on the computational model-
ing. When the feature information is not available to test
data, the trained model will fail to work. Thus, how to
effectively substitute for the potentially missing feature
information is a major issue of computational modeling.
In [17,19], the missing feature information such as gene
ontology (GO) and gene expression was elaborately
substituted with the homolog GO knowledge and pro-
tein sequences. The feature information of protein se-
quences, though cheap to obtain, is criticized for its
poor predictive power [20].

As a member of the family of retroviruses, Human T-
cell lymphotropic viruses (HTLV) are divided into two
sub-types. The type 1 virus (HTLV-1) is known to in-
duce Adult T-cell Leukemia/Lymphoma (ATL), but what
diseases are caused by the type 2 virus (HTLV-2) remain
unclear [9]. The HT-Y2H (high-throughput yeast-two-
hybrid) [21,22] was used to yield 166 interactions between
HTLV and human proteins. However, this HT-Y2H study
validated only three interactions between HTLV-1 Tax
and three human proteins (Nup62, MAD1L1, Cdc23) that

Table 1 Summary of feature information extracted from
literatures

Integration of feature information Literatures
Sequence k-mer, interlog, gene ontology, metabolic [7]1
pathways

Binding motif, gene expression profile, gene ontology, [10,11]
sequence similarity, post-translational modification,

tissue distribution, PPl network topology

Protein domain profile, sequence k-mer [12]
Structural similarity [13]

Protein domain profile, gene expression, gene ontology, [15]

gene co-expression
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have been collected in the databases VirusMINT [23] and
VirHostNet [24]. Since there are 145 HTLV-human PPIs
in the two databases, this HT-Y2H study achieves only
2.1% recognition rate of experimentally derived PPIs. Such
a low recognition rate is partly caused by different sensi-
tivity of experimental methods to different types of
interaction. Computational modeling can shield the low-
level biochemical specificity (e.g. covalent modification) of
protein-protein interactions to set up a general-purpose
PPI predictor. To our knowledge, no computational
method has been developed for fast reconstruction of
proteome-wide HTLV-human PPI networks.

In this work, we propose a computational method that
addresses the problems of data unavailability and data
scarcity for reconstructing proteome-wide HTLV-human
PPI networks. The homolog knowledge, in terms of gene
ontology (GO), is treated as auxiliary homolog instances
to mingle with the target instances (the GO knowledge
of the proteins themselves), such that (1) the homolog
instances augment the training data to reduce the risk of
model overfitting; (2) the feature information is enriched
to make up for data scarcity; (3) the homolog instances
are used as substitute when the target instances are not
available. It is noted that such a way of homolog know-
ledge transfer may introduce a certain level of noise that
results from evolutionary divergence. On the basis of the
original instance reweighting AdaBoost [25,26], we propose
Multi-instance Adaboost to attenuate the noise from
homolog instances. The model performance is evaluated by
10-fold cross validation and independent test. Last, we use
Multi-instance AdaBoost to reconstruct the proteome-
wide HTLV-human PPI networks and further conduct gene
ontology based clustering analysis of the predictions to gain
insight into the pathogenesis of HTLV retroviruses.

Methods

Data and materials

The training data are collected from two sources, one
dataset is from [9] that contains 166 interactions (herein-
after called S1,,), and the other dataset is from the two
databases [23,24] that contains 145 interactions (herein-
after called S2,,,). After removing those putative/unchar-
acterized/uncurated/hypothetic HTLV proteins and those
HTLV proteins that have no corresponding accessions in
the Uniprot database (http://www.uniprot.org/uniprot/),
S1,, is reduced to 155 interactions between 9 HTLV pro-
teins and 112 human proteins. Accordingly, the negative
data of equal size are randomly sampled for S1,,, and,
called S1,.cq) S2,¢0 respectively. Then the two training data
are defined as S1 =51,V S1,,,; and S2 = 52,5, U §2,,,,, and
the whole training data is defined as S = S1 u S2. It is noted
that each training data are actually doubled in size,
because each data point is represented with two instances,
i.e., the target instance and the homolog instance.
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GO feature construction

The homologs are extracted from SwissProt database
[27] using PSI-BLAST [28] (E-value =10) and the gene
ontology (GO) terms are extracted from GOA database
[29]. To increase the coverage of homologs, we adopt
default E-value (E-value = 10) of PSI-BLAST and search
for the space of all the species available in SwissProt data-
base. For each protein i, we obtain two sets of GO terms,
one set contains the GO terms from the homologs de-
noted as homolog set S; , and the other set contains the
GO terms from the protein itself denoted as target set Si.

Based on the denotations, we can formally define two fea-
ture vectors for a protein pair (i, i;) as follows:

i i
0,g¢ SLT: NG & Sé (i)
2,g€S8hAge St By [g] =
1, otherwise

0,g¢S); Ag&Sy
2,884 ngeSE
1, otherwise

B[] =

(1)

where B<i1’fz>[g} denotes component g of the target in-
stance BT“'”) and BQII’LZ)[g} denotes component g of the
homolog instance B(;}JZ) . In practical implementation, each
GO term g is assigned an integer index. Formula (1)
means that if the protein pair (i1, i;) shares the same GO
term g, then the corresponding component in the feature
vector B(T“’”) r BZ,“”) is set 2; if neither protein in the
protein pair possesses the GO term g then the value is set
0; otherwise the value is set 1. The above definition is
symmetrical, i.e., the protein pair (i;,i) and the protein
pair (i, i) have identical feature representation.

Multi-instance AdaBoost

In the scenario of traditional machine learning, data point
is generally represented with only one instance, whereas
only one instance is not enough to depict a biological mol-
ecule (e.g. protein, DNA, RNA) in computational studies.
For instance, a series of multi-aspect information is
needed to depict the temporal and spatial information of
DNA transcription, protein folding, etc. Moreover, evolu-
tionary information may be needed to provide abundant
knowledge about the biological molecule concerned. To
address the problem, we are motivated to explore multi-
instance learning to enrich protein information by repre-
senting proteins with more than one instance.

Here we depict each protein with two instances, one
instance called target instance is used to represent the
gene ontology (GO) information of the protein itself, and
the other instance called homolog instance is used to
represent the GO information of the homologs. The
homolog instance is used to capture the evolutionary in-
formation as well as to enrich the feature information of
the target instance. Meanwhile, the homolog instance also
plays an important role in tackling the problem of data
unavailability. When the feature information indispensible
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for prediction is not available, the homolog instance can be
treated as substitute for the target instance to guarantee
that the model still works. However, in some cases the
homolog instances are likely to carry noise because of
evolutionary divergence, thus it is not proper to treat
the two kinds of instances equally. One way to solve the
problem is to assign different weight distributions to the
two kinds of instances, so that the predictive model can
be boosted to generalize well. To our knowledge, Ada-
Boost [25,26] is a boosted ensemble classifier that itera-
tively reweight the instances according to the difficulty
of classification. AdaBoost instance reweighting [25,26]
is defined as follows:

Dy (i) =P U] eXP(*}’fm(xi))/Zm (2)

where x; denotes the i-th training instance, y; denotes its
class label, f,,(x;) denotes the decision value predicted
by the committed obtained in the m-th round of train-
ing, D,,(i) denotes the weight of the i-th training in-
stance in the m-th round of training, and Z,, denotes
the normalizer. From Formula (1), we can see that Ada-
Boost assigns high weights to those hard-to-classify in-
stances and assigns low weights to those easy-to-classify
instances for the next round of training. This idea of it-
erative reweighting of the training samples is essential
to Boosting. Intuitively speaking, the examples that are
misclassified get higher weights in the next iteration, for
instance, the noisy/outlier examples near the decision
boundary are usually harder to classify and therefore get
high weights after a few iterations [30]. In [30], it has been
theoretically proven that the boosted ensemble classifier
achieves a large margin between two-class hyperplanes
through multiple rounds of instances reweighting. From
a theoretical point of view, AdaBoost implicitly penal-
izes the £; norm [27], and the regularization technique
penalizes the impact of noise/outlier at the cost of
higher training error to achieve lower generalization
error.

The latest AdaBoost (Modest AdaBoost, [26]) combines
the distribution of instance weights and its inverted distri-
bution into a decision function to make the decision “soft”
(see Additional file 1). Based on Modest AdaBoost, we de-
velop the Multi-instance AdaBoost method to conduct
homolog knowledge transfer. As compared to single-
instance AdaBoost, Multi-instance AdaBoost shows no
much difference in the training phase, except that each

(i1,2)

protein pair is represented by two instances B and

Bg“m as defined in Formula (1). The mail difference lies
in the test phase, where the decision committee F(x)

yields two outputs F (B<Ti"i2>) , F(Bgl'b) ) for any test pair
(i1, i) (F(x) is the decision function of Modest AdaBoost,
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see Additional file 1). The final decision value for (iy, i5) is
defined as below:

]F(B(Til’iz)> , if‘F(B(Ifl-,iz)) | > |F (Bl(;lvil)> |
Decision_value(iy, ir) = o
IF(B;;' ’L2)> , otherwise

(3)

where |+ | denotes absolute value. Then the final label
for (i1, ip) is defined as below:

1,if Decision_value(iy,iz) > 0
0, otherwise

L(iy,ip) = { (4)

Model evaluation

We design three experimental settings to validate the ef-
fectiveness of the proposed Multi-instance Adaboost.
The first setting is Single-instance AdaBoost, used as the
baseline model to evaluate the performance gain from
homolog instances. In this setting, each protein pair is

represented by the target instance B(]fl“m, without intro-
ducing homolog instance B§_’;*’2>. The second setting is
Multi-instance AdaBoost Novel, deliberately designed to
evaluate the model robustness to data unavailability. In
this setting, the training data are represented by two
kinds of instances, while the test data are represented with
homolog instances alone to simulate data unavailability.
The third setting is Multi-instance AdaBoost, designed to
evaluate the model capability of overcoming data scarcity.
In this setting, both the training data and the test data are
represented by the two kinds of instances.

We estimate the model performance for the three
settings using 10-fold cross validation and independent
test. Receiver Operating Characteristic (ROC) AUC (Area
Under Curve) (referred to as ROC-AUC), Precision recall
curve AUC (PR-AUC), Specificity (SP), Sensitivity (SE),
MCC (Matthews correlation coefficient), F1 score and
Overall Accuracy are adopted as performance metrics.
The formal definitions of the performance metrics are
given in the Additional file 1.

Results and discussion

Model performance evaluation

Before proteome-wide predictions, we first evaluate the
reliability of Multi-instance AdaBoost. In [9], the experi-
mental HT-Y2H recognized 166 interactions and vali-
dated only three interactions out of the 145 interactions
collected in the two databases [23,24]. Of the two data-
sets, the former dataset [9] is processed and named as
S1,, in this work, and the latter dataset [23,24] is named
as 82,4, Through random sampling we obtain the corre-
sponding negative datasets S1,,¢4, S2,,¢, for the two positive
datasets S1,,; and 52, respectively. Thus we obtain two
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training datasets: S1 =S1,,,US1,,e; and S2 = 52,55V 82,0,
To our knowledge, there is no existing computational
method for HTLV-human PPI prediction, so we use the
HT-Y2H recognition rate of novel PPIs [9] as the baseline
performance. To compare with HT-Y2H, we use S1 to
train Multi-instance AdaBoost and then check how many
interactions out of $2,,,; can be correctly recognized. This
evaluation is actually an independent test, ie., S2,, is
used as an independent test set to validate the model
that is trained on S1. Before validating $2,,,,, we conduct
10-fold cross validation model evaluation on the training

data S1.

10-fold cross validation model evaluation

The results of 10-fold cross validation for the three
settings on dataset SI are illustrated in Figures 1, 2 and
Table 2. We use the setting Single-instance AdaBoost as
the baseline to demonstrate the effectiveness of homolog
knowledge transfer by means of independent homolog
instances.

Multi-instance AdaBoost versus single-instance
AdaBoost. From Figures 1 and 2, we find that Multi-
instance AdaBoost significantly outperforms the baseline
setting Single-instance AdaBoost, with ROC-AUC 0.8210
versus 0.7655 and PR-AUC 0.7743 versus 0.6971, re-
spectively. From Table 2, we also find that that Multi-
instance AdaBoost shows significantly better perform-
ance than Single-instance AdaBoost with overall Accur-
acy 79.03% versus 69.58%. The results suggest that the
homolog instances are effective to enrich the feature in-
formation and solve the problem of data scarcity. Fur-
ther details in Table 2 provide additional information
about the predictions. For the three settings, the recall
rates (sensitivity, SE) of the positive class (interaction)
are generally higher than those of the negative class
(non-interaction), and conversely the specificity (SP)
values of the positive class (interaction) are generally
lower than those of the negative class (non-interaction),
suggesting that the negative class yields larger misclassi-
fication rate than the positive class. To reduce the mis-
classification rate, we need improve the quality of the
sampled negative data. At present, there is no experimen-
tally derived golden-standard non-interaction data, and
random sampling is often used as an alternative to obtain
the negative data. As we know, random sampling is prone
to sample false negative data and thus introduce a certain
level of noise. How to sample quality negative data de-
serves our future study. In this study, random sampling
seems to introduce no obvious predictive bias in the
three settings from the points of view of the MCC
values on the positive class and the negative class, e.g.,
Multi-instance AdaBoost (0.6498, 0.6397), Multi-
instance AdaBoost Novel (0.5611, 0.5416) and Single-
instance AdaBoost (0.5192, 0.5001).
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Multi-instance AdaBoost novel versus single-instance
AdaBoost. From Figures 1 and 2, we find that Multi-
instance AdaBoost Novel still outperforms the baseline set-
ting Single-instance AdaBoost, with ROC-AUC 0.7846 ver-
sus 0.7655 and PR-AUC 0.7521 versus 0.6971, respectively.
From Table 2, Multi-instance AdaBoost also shows better
performance than Single-instance AdaBoost with overall
Accuracy 72.58% versus 69.58%. The results, though not
so significant as Multi-instance AdaBoost, still suggest
that the homolog instances are effective to substitute for
the target instances and thus securely avoid model failure
when the gene ontology knowledge is not available.

Multi-instance AdaBoost versus other pathogen-
host PPI predictors. We can not conduct direct model
comparison because no computational model has been
developed for HTLV-human PPI prediction thus far. For
rough knowledge about the reliability of Multi-instance

AdaBoost, we conduct indirect comparisons with two
representative pathogen-host PPI predictive models.
One model is the semi-supervised multi-task learning
method for HIV-human PPI prediction [11] and the
other model is the random forest for Salmonella-human
PPI prediction [17]. The model for HIV-human PPI pre-
diction is trained on large data (2,277 interactions) and
achieves 0.919 ROC-AUC score, whereas the model for
Salmonella-human PPI prediction is trained on rather
small data that contains only 66 interactions and achieves
0.52 F1 score. We can see that the size of training data is
one of the factors that have large influence on the model
performance. Comparatively, the proposed Multi-instance
AdaBoost achieves 0.8210 ROC-AUC score and 0.80 FI
score. In terms of training data size, the Multi-instance
AdaBoost model trained on 155 interactions is much
closer to the Salmonella-human PPI prediction model

precision

H — Multi-instance AdaBoost (PR-AUC=0.7743)
Multi-instance AdaBoost Novel (PR-AUC=0.7521)
Single-instance AdaBoost (PR-AUC=0.6971)

0 01 02 03
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Single-instance AdaBoost) on the dataset S1.

Figure 2 Precision-recall curves for three experimental settings (Multi-instance AdaBoost, Multi-instance AdaBoost Novel,
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Table 2 10-fold cross validation performance estimation on the dataset S17

Multi-instance AdaBoost

Multi-instance AdaBoost Novel

Single-instance AdaBoost

sp SE mcc 4 SE mcc sp SE Mmcc
Positive (interaction) 0.7647 0.8387 0.6498 0.7011 0.7871 05611 06784 0.7484 05192
Negative (non-interaction) 0.8214 0.7419 0.6397 0.7574 0.6645 0.5416 0.7194 0.6452 0.5001
[Acc; MCC] [79.03%; 0.6426] [72.58%; 0.5487] [69.58%;0.5080]
[ROC-AUC; PR-AUC ] [0.8210; 0.7743] [ 0.7846; 0.7521] [ 0.7655; 0.6971]
F1 score 0.80 0.74 0.71

(66 interactions) than to the HIV-human PPI prediction
model (2,277 interactions). Nevertheless, Multi-instance
AdaBoost achieves a significantly higher FI score than
the Salmonella-human PPI prediction model (0.80 ver-
sus 0.52). Moreover, Multi-instance AdaBoost achieves
at least 0.7419 SE on the positive class, also significantly
higher than the Salmonella-human PPI prediction model
(SE 0.407). These rough comparisons, though based on
different data, suggest that the proposed Multi-instance
AdaBoost performs well on small data.

Independent test on the data from recent databases

As mentioned above, the experimental HT-Y2H [9]
reproduced only three interactions out of the 145 inter-
actions collected from VirusMINT [23] and VirHostNet
[24], accounting for 2.1% recognition rate. The result sug-
gests that HT-Y2H is effective to some specific protein-
protein interactions (e.g. transient interaction) but is
prone to vyield rather high false negative rate for other
types of interaction. Furthermore, not only is the overlap
between different experimental results rather small, but
also the overlap between the computationally recon-
structed network and the experimentally derived network
is neither large. As reported in [11], the semi-supervised
multi-task learning model validated only 10% HIV-human
PPIs derived by siRNA screen. The low network overlap
may suggest two points: (1) different experimental tech-
niques should be treated as mutual complements to detect
different types of protein-protein interaction, or (2) the
computational methods need further improvement to
generalize well.

The results of 10-fold cross validation shows that the
proposed Multi-instance AdaBoost achieves better per-
formance on small data than other existing pathogen-
host PPI predictor [17]. Here we further conduct an
independent test to compare with the experimental HT-
Y2H [9] by examining how many interactions out of the
145 interactions (S2,,;) can be correctly recognized by
Multi-instance AdaBoost. The independent test is actually
a validation on the positive data S2,,,, with negligence of
the negative data S2,,.,, as we are more concerned about
the recognition rate of the known PPIs. For this reason,

we train Multi-instance AdaBoost on the dataset S and
use the model to predict S2,,. Notably, Multi-instance
AdaBoost can correctly recognize 102 interactions out of
the total 145 interactions (52,,,), accounting for 70.3% rec-
ognition rate, much larger than HT-Y2H 2.1% recognition
rate [9] and 10% overlap between predictions and siRNA
screen [11]. The overlap between the networks predicted
by Multi-instance AdaBoost and derived by HT-Y2H is
given in Additional file 2.

Proteome-wide PPIs prediction and gene ontology based
clustering analysis

Proteome-wide PPIs prediction

In this section we exploit the PPI data available [9,23,24] to
train Multi-instance AdaBoost for proteome-wide HTLV-
human PPI networks reconstruction. Before predictions,
we also conduct 10-fold cross validation model evaluation
on the whole dataset S. The results are equivalent to the
10-fold cross validation performance on the dataset S1 (see
Additional file 1: Figure S1, Figure S2 and Table S1).

In the dataset S, there are 9 HTLV proteins that have
corresponding reviewed accessions in the Uniprot data-
base. The human proteins are taken from the file uni-
prot_sprot_human.dat.gz available at ftp://ftp.uniprot.
org/pub/databases/uniprot/ current_release/knowledge-
base/taxonomic_divisions/. After removing those uncu-
rated/putative/uncharacterized proteins and those proteins
that are already used as training data, we finally obtain
20,334 human proteins as the candidate targets of the 9
HTLV proteins. Hence there are totally 183,006 (9 x 20,334)
protein pairs to be predicted. We use the trained Multi-
instance AdaBoost to predict all the 183,006 protein pairs
and detect 61,846 novel interactions (see Additional files 2
and 3), accounting for 33.79% predicted positive rate.
Among the 20,334 human proteins, there are totally
10,445 human proteins predicted to interact with the 9
HTLV proteins, that’s to say, about 50% of the known
human proteins are predicted to be potentially targeted
by HTLV proteins. The result suggests that the pro-
posed Multi-instance AdaBoost yields a certain degree
of false positive predictions. The risk of false positive is
a hard problem to both computational modeling and
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high-throughput biological experiments [11]. The prob-
lem seems to be more serious when the training data is
very small. The Salmonella-human PPI predictor [17]
set the decision probability threshold at 0.7 and pre-
dicted 22,651 human proteins out of 22,654 human
proteins to interact with 25 Salmonella proteins. The
percentage of interacting human partners is up to
99.99%, suggesting a much higher risk of overprediction
than the proposed Multi-instance AdaBoost. Compara-
tively, Multi-instance AdaBoost is much more reliable
than the Salmonella-human PPI predictor [17] in terms
of false positive rate. If we further add a threshold of deci-
sion value to Formula (4), i.e., |Decision _value(iy, i>)| > 5,
the risk of false positive predictions would be greatly
reduced. The threshold § is at the discretion of users
for choosing reliable predicted interactions. Through
comparison with the existing pathogen-host PPI pre-
dictors, the proposed Multi-instance AdaBoost, though
yielding a certain degree of false positive predictions,
is reliable to reconstruct the proteome-wide HTLV-PPI
networks valuable for biological research and can be
used as baseline model for further computational
modeling.

Gene ontology based clustering analysis

In this section, we further study the predicted interac-
tions to gain biological insight into the general patterns
that HTLV viruses attack human proteins. We simply
cluster together the HTLV targeted human proteins that
fulfil identical molecular functions, participate in the
same biological processes, collaborate within the same
signaling pathways or reside in the same cellular com-
partments. Thus each cluster defines a biological mod-
ule, within which all the human proteins share a specific
biological character. As regards with clustering algo-
rithm, how to define the biometric distance is an im-
portant concern. Here we use gene ontology term (GO
term) as distance metric, i.e.,, the interacting human part-
ners that possess the same GO term are assigned to the
same cluster. Thus each GO term corresponds to a clus-
ter or biological module.

All the GO terms of human proteins are classified into
thee major classes, i.e., biological processes (P), molecular
functions (F) and cellular compartments (C). For each
major class, we further discuss the two cases: (1) all the
9 HTLV proteins are involved in the biological module,
denoted as P1, F1 and C1, respectively; (2) NOT all the
9 HTLV proteins are involved in the biological module,
denoted as P2, F2 and C2, respectively. P1, F1 and Cl1
are given in Additional files 4, 5 and 6, respectively. P2,
F2 and C2 are given in Additional files 7, 8 and 9, re-
spectively. For the sake of large number of biological
modules (clusters), we only demonstrate two biological
modules here as examples, interested readers are
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referred to Additional files 4, 5, 6, 7, 8 and 9 for other
biological cues.

PPI sub-network GO:0000187 - activation of MAPK
activity. The predicted PPI sub-network GO:0000187 is
extracted from Additional file 4 and illustrated in Figure 3.
As shown in Figure 3, the 9 HTLV proteins are predicted
to interact with the human proteins that are involved in
the biological processes “activation of MAPK activity”
(GO:0000187). In the predicted PPI sub-network, some
human proteins are predicted to be targeted by all the 9
HTLV proteins (e.g. P49023, P49137, Q8N5C8, P28482,
Q9Y4K3, 075914, Q15759, P62979, etc.). two proteins
(P18545, Q5T686) are predicted to interact with only one
HTLV protein, and the other human proteins are pre-
dicted to interact with 2 ~8 HTLV proteins. From the
definition of GO:0000187- the initiation of the activity of
the inactive enzyme MAP kinase by phosphorylation by a
MAPKK, we can infer that the 9 HTLV proteins are likely
to interfere with host MAPK signaling pathways.

PPI sub-network GO:0003743 - translation initi-
ation factor activity. The predicted PPI sub-network
GO0:0003743 is extracted from Additional file 5 and il-
lustrated in Figure 4. From Figure 4, we can see that the
human partners within the predicted PPI sub-network
generally interact with multiple HTLV proteins that fulfil
the molecular function “translation initiation factor ac-
tivity” (GO:0003743). According to the definition of
GO:0003743-functions in the initiation of ribosome-
mediated translation of mRNA into a polypeptide, we
can infer that the 9 HTLV proteins are likely to interfere
with host mRNA translation.

It is noted that not all the 9 HTLV proteins are neces-
sarily involved in the same biological module (cluster).
We also extract the PPI sub-network GO:0000187 from
Additional file 7 (see Additional file 1: Figure S3) and PPI
sub-network GO:0003743 from Additional file 8 (see
Additional file 1: Figure S4) as illustrative examples.

Discussion

Human T-cell lymphotropic virus (HTLV-1) is a known
retrovirus that can induce Adult T-cell Leukemia (ATL)
and Tropical Spastic Paraparesis (TSP). At present, the
HTLV-human PPI networks are so small to limit our
knowledge about the underlying mechanism of HTLV
infection and human response. The small overlap between
networks derived by different experimental techniques
suggests that each experimental technique has strong
specificity to specific types of protein-protein interaction.
Computational modeling is a good complement to highly
specific experimental methods to fast and cheaply recon-
struct the proteome-wide HTLV-human PPI networks.
However, computational modeling on small data is prone
to model overfitting. How to overcome the bottleneck of
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denotes HTLV protein and the red node denotes human protein.

Figure 3 The predicted HTLV-human PPI sub-network GO:0000187 (biological process: activation of MAPK activity). The green node

small training data is the major concern of computational
modeling.

In this work, we propose Multi-instance AdaBoost to
address the problems of data scarcity and data unavail-
ability for proteome-wide HTLV-human PPI networks
reconstruction. In this method, the gene ontology know-
ledge of the homologs is treated as independent homolog
instance to augment the training data, so that the feature
information is enriched to make up for data scarcity and
reduce the risk of model overfitting. Meanwhile, the
homolog instances are treated as substitute for the poten-
tially missing target instances to address the problem of
data unavailability. However, since the homolog instances
are likely to carry a certain level of noise due to evolution-
ary divergence, we resort to AdaBoost instance reweight-
ing to attenuate the impact of noise. AdaBoost has been
theoretically proven to maximize the margin between
two-class hyperplanes by penalizing the impact of noise/
outlier. As compared to other existing pathogen-host PPI
predictive models [17,18], the proposed Multi-instance
AdaBoost has several advantages: (1) the homolog know-
ledge is used to augment the training data and thus to

reduce the risk of model overfitting; (2) the homolog
knowledge is used as substitute to address the problem of
data unavailability; (3) the noise from homolog knowledge
transfer is attenuated by AdaBoost instance reweighting
algorithm. Comparatively, a drawback of Multi-instance
AdaBoost is that the other feature information except gene
ontology is not integrated into the model. We should
achieve balance between data constraint and data enrich-
ment in the future research.

To validate the assumptions that the homolog instances
are effective to address the problems of data scarcity and
data unavailability, we design three experimental settings,
i.e. Multi-instance AdaBoost, Multi-instance AdaBoost
Novel and Single-instance AdaBoost, and conduct 10-fold
cross validation experiments & independent tests for each
setting, using multiple performance metrics (SB SE, Ac-
curacy, MCC, ROC-AUC, PR-AUC). The experimental
results demonstrate these points: (1) Multi-instance
AdaBoost significantly outperforms the baseline Single-
instance AdaBoost, suggesting that the homolog instances
are effective to augment the training data; (2) Multi-
instance AdaBoost Novel still outperforms the baseline
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node denotes HTLV protein and the red node denotes human protein.

Figure 4 The predicted HTLV-human PPI sub-network GO:0003743 (molecular function: translation initiation factor activity). The green

Single-instance AdaBoost, suggesting that the proposed
Multi-instance AdaBoost can still work well when the fea-
ture information of the proteins to be predicted is not
available; (3) Multi-instance AdaBoost correctly recognize
70.3% of the known PPIs, significantly higher than HT-
Y2H 2.1% recognition rate; (4) Indirect comparisons show
that Multi-instance AdaBoost outperforms the existing
pathogen-host PPI predictive models that were trained on
small datasets.

Lastly, we apply Multi-instance AdaBoost to recon-
struct the proteome-wide HTLV-human PPI networks
and conduct gene ontology based clustering analysis of
the predicted networks. The clustering analysis gains
much insight into the pathogenesis of HTLV retrovi-
ruses and provides valuable clues for further experimen-
tal studies.

Conclusion

The computational modeling for pathogen-host PPI net-
works reconstruction needs to address the major con-
cerns of data scarcity and data unavailability. In this
paper, we propose a novel method Multi-instance Ada-
Boost to augment the training data. Experimental results
show that the homolog knowledge transfer by means of

independent homolog instances is effective to enrich the
information abundance and to help the model work
properly when the feature information is not available.
Moreover, the gene ontology based clustering of the
proteome-wide predicted HTLV-human PPI networks
provides valuable clues for further biomedical research.

Additional files

Additional file 1: Brief description of Modest AdaBoost [26]. Formal
definitions of SP, SE, MCC, overall accuracy (Acc) and F1 score. Figure S1
ROC curve for three experimental settings (Multi-instance AdaBoost,
Multi-instance AdaBoost Novel, Single-instance AdaBoost) on the dataset
S. Figure S2 Precision-Recall curve for three experimental settings
(Multi-instance AdaBoost, Multi-instance AdaBoost Novel, Single-instance
AdaBoost) on the dataset S. Table S1 10-fold cross validation
performance estimation on on the dataset S. Figure S3 The predicted
HTLV-human PPI sub-network GO:0006120 (biological process:
mitochondrial electron transport, NADH to ubiquinone). The green node
denotes HTLV protein and the red node denotes human protein.

Figure S4 The predicted HTLV-human PPI sub-network GO:0005344
(molecular function: oxygen transporter activity). The green node denotes
HTLV protein and the red node denotes human protein.

Additional file 2: Text file contains the overlapped interactions
between Multi-instance AdaBoost and the experimental technique
HT-Y2H [9].

Additional file 3: Text file contains the predicted interactions.
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Additional file 4: Text file contains the biological processes
modules that all the 9 HTLV viruses are involved in.

Additional file 5: Text file contains the molecular functional
modules that all the 9 HTLV viruses are involved in.

Additional file 6: Text file contains the cellular compartments
modules that all the 9 HTLV viruses are involved in.

Additional file 7: Text file contains the biological processes
modules that NOT all the 9 HTLV viruses are involved in.

Additional file 8: Text file contains the molecular functional
modules that NOT all the 9 HTLV viruses are involved in.

Additional file 9: Text file contains the cellular compartments
modules that NOT all the 9 HTLV viruses are involved in.
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