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Abstract

Background: Cancer subtype information is critically important for understanding tumor heterogeneity. Existing
methods to identify cancer subtypes have primarily focused on utilizing generic clustering algorithms (such as
hierarchical clustering) to identify subtypes based on gene expression data. The network-level interaction among
genes, which is key to understanding the molecular perturbations in cancer, has been rarely considered during the
clustering process. The motivation of our work is to develop a method that effectively incorporates molecular
interaction networks into the clustering process to improve cancer subtype identification.

Results: We have developed a new clustering algorithm for cancer subtype identification, called “network-assisted
co-clustering for the identification of cancer subtypes” (NCIS). NCIS combines gene network information to
simultaneously group samples and genes into biologically meaningful clusters. Prior to clustering, we assign weights
to genes based on their impact in the network. Then a new weighted co-clustering algorithm based on a
semi-nonnegative matrix tri-factorization is applied. We evaluated the effectiveness of NCIS on simulated datasets as well
as large-scale Breast Cancer and Glioblastoma Multiforme patient samples from The Cancer Genome Atlas (TCGA) project.
NCIS was shown to better separate the patient samples into clinically distinct subtypes and achieve higher accuracy on
the simulated datasets to tolerate noise, as compared to consensus hierarchical clustering.

Conclusions: The weighted co-clustering approach in NCIS provides a unique solution to incorporate gene network
information into the clustering process. Our tool will be useful to comprehensively identify cancer subtypes that would
otherwise be obscured by cancer heterogeneity, using high-throughput and high-dimensional gene expression data.
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Background
For a given type of cancer, there are often subtypes that
harbor unique sets of genomic changes and exhibit dif-
ferent patterns of gene expression [1-5]. Subtype infor-
mation is critically important to tailor more effective
treatments for patients, as varying subtypes often re-
spond disparately to the same treatment. In the past dec-
ade, many generic clustering-based approaches have been
developed to identify cancer subtypes based on gene
expression data. Typically, expression levels of d genes
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reproduction in any medium, provided the or
measured on n samples are presented as a d × n real-
valued matrix with the entries representing the corre-
sponding expression level. A clustering method can be
applied to partition the columns/rows of this matrix into
different clusters such that items in one cluster have
similar expression patterns. The partition of columns of-
fers clues to potential cancer subtypes, while the partition
of rows can highlight potentially relevant co-expressed
genes. The most popular clustering methods used in can-
cer subtype identification include hierarchical clustering
and k-means [6,7]. Recently, a number of other clustering
methods have also been developed. Consensus clustering
[8] is a clustering framework where the same cluster-
ing algorithm is applied to different subsets of the data
multiple times. A consensus result is then collected to
better describe the similarities between samples. This
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framework has been widely used in cancer subtype ana-
lysis [9]. To address the high-dimensional feature space
problem (which is almost always the case for gene ex-
pression analysis), the method developed in [10] uses
sparse clustering techniques to adaptively select a small
set of informative features to cluster the samples. There
are also several clustering methods that were specifically
designed for cancer subtype clustering. In [11,12],
survival time information was used to select survival-
associated genes and then the samples were clustered
using gene expression. In [13,14], an integrated approach
was developed to consider multiple types of omics data
(e.g. gene expression, mutation, copy number, methyla-
tion) to help identify cancer subtypes. However, we are
more interested in only utilizing the gene expression data
(which is much more accessible than any other types
of omics data) and getting the subtype information
of a patient (based on molecular features such as gene
expression) without using clinical features (such as sur-
vival time). More importantly, most previous studies did
not incorporate biological information, particularly mo-
lecular interactions networks, into the clustering step.
Indeed, network is key to understanding the molecular per-
turbations in cancer [15,16]. If we consider the intercon-
nection between genes during the clustering process, we
have more knowledge of gene interactions at a systems
level and may improve our ability to identify cancer sub-
types. This will in turn allow us to analyze the perturbation
of a group of genes and pathways rather than individual
ones to better understand tumor heterogeneity.
The motivation of our work is to develop a method

that effectively incorporates molecular interaction net-
works into the clustering process to improve cancer
subtype identification. To this end, one previous work
employed information of biological networks during the
clustering [17]. The method first defined a network dis-
tance based on the proximity of two genes in the network
and an expression distance of two genes, and then con-
structed the overall distance metric as a function of net-
work and expression distance metrics for hierarchical
clustering. Another recent work incorporated network
information to cluster genotypes and phenotypes based on
phenotype-gene association matrix [18]. The authors did
so by adding penalty and regularization terms into the
clustering objective to keep the final results consistent
with clusters obtained from prior knowledge on the dis-
ease phenotype similarity network. However, these two
approaches are not appropriate for our cancer subtype
identification. First, as our goal is to cluster cancer
patients (not genes as in [17]), we cannot add a network-
based distance in the distance metric defined for patients.
Second, network-derived clusters [18] are also difficult to
define for patients since there is no network structure link-
ing all the patients (like the phenotype similarity network).
Finally, simply combining network proximity-defined gene
clusters directly with gene expression clusters may be mis-
leading, since neighboring genes can have entirely different
expression patterns.
In this work, we introduce a new co-clustering algo-

rithm to effectively integrate network information with
expression variation across samples. We call our method
“network-assisted co-clustering for the identification of
cancer subtypes” (NCIS). The method first learns a
weight for each gene as an indicator of its importance to
be used in the clustering. The key idea is that genes
regulating many other genes and showing highly variable
expression patterns will be considered as more inform-
ative in the clustering process. Another important con-
tribution of this work is that we embed the gene weights
directly into the co-clustering objective function.
Co-clustering simultaneously clusters both samples and

features [19,20]. In co-clustering, similarity is a measure of
the coherence of features (e.g. genes) and samples in a bi-
cluster, rather than a function of feature pairs or sample
pairs. Consequently, it considers the local context and is
able to automatically select subsets that share similar attri-
butes [21,22]. The method we utilize in NCIS is based
on Semi-Nonnegative Matrix Tri-Factorization (SNMTF)
[23,24], a member of the matrix factorization-based clus-
tering family. A common underlying assumption of such
co-clustering methods is that there exist cluster centroids
that characterize the behavior and trend of cluster mem-
bers, which is mathematically formed as matrix tri-
factorization. Matrix factorization has simple formalization
when compared to other methods, and was shown to be
useful in gene expression analysis [25,26]. To our know-
ledge, NCIS is the first method to apply SNMTF to achieve
weighted co-clustering in cancer subtype identification.

Methods
Method overview
We developed a clustering method that incorporates the
gene network (i.e. the interactions between genes) as prior
knowledge and simultaneously cluster samples and genes
into distinct groups. Adding network structure to the clus-
tering step will help us better select representative genes
for clustering. We expect that such a method will generate
more biologically informative clusters. The main scheme of
our method is shown in Figure 1. Note that we assume the
input expression data has already been pre-processed such
that the batch effects and technical artifacts are already
removed. We implemented the algorithm in MATLAB.
Source code and users’ manual can be found at http://
bioen-compbio.bioen.illinois.edu/NCIS/.

Assigning weights to genes
Feature selection is essential for successful pattern rec-
ognition from the high-dimensional data. In many previous

http://bioen-compbio.bioen.illinois.edu/NCIS/
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Figure 1 Schematic diagram of our algorithm.
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studies, genes were selected based on their median abso-
lute deviation (MAD) or coefficient of variation (CV)
[9,27]. The cutoff was set rather arbitrarily and typically
only a small subset of genes was retained for subsequent
analysis, which drastically reduces the amount of in-
formation used in clustering. Other dimension-reduction
methods such as principal component analysis (PCA)
[28] are useful, but the biological interpretation is not al-
ways straightforward as expression vectors of the samples
are projected to a low-dimensional principal component
space [29,30]. On the other hand, incorporating add-
itional biologically relevant information as prior know-
ledge could help resolve ambiguities in the data because
it provides, to a certain extent, insight into how the gene
expression profiles were generated. Therefore, we utilize
the gene network as well as expression information to
select genes that both play more important roles in the
network and show larger variations among samples.
Our method assigns a weight to each gene; genes with
higher weights will be prioritized during the weighted co-
clustering.
We use a modified PageRank algorithm to assign

weights to genes. The original PageRank [31] views the
web as a directed graph. Suppose there are N nodes
(web pages), then E is a N×N matrix denoting the con-
nections among the nodes. A link from page i to page j
is shown by an edge pointing from node i to node j, and
in the matrix form denoted by Eij = 1. More links to
node j raises its confidence level. The algorithm ranks all
the nodes based on the iterative formula:

rnj ¼ 1−αð Þ þ α
XN
i¼1

Eijrn−1i

degi
; 1≤ j≤N ;

where rn is the confidence level in the nth iteration and
degi ¼ ∑N

j¼1Eij , referring to the total number of web
pages that i points to; α is a parameter representing the
extent to which the ranking depends on the structure
of the graph. In our case, we have a similar network
representing the molecular interactions among genes.
Our method that assigns weights to genes is similar to a
gene ranking method, GeneRank [32], which extended
the idea of PageRank to microarray gene differential ex-
pression analysis. However, we use a directed graph (ra-
ther than undirected graph in GeneRank), because we
believe the direction of edges that models gene regula-
tion is important. Additionally, rather than using differ-
ential expression, we use an alternative method to
consider gene expression variation across samples as de-
scribed below.
In our graph, a directed edge from node i to node j

means that gene i regulates the expression of gene j.
Genes with larger variations among samples tend to have
more distinguishing power. We incorporate such variation
into the model to assign weights to genes. Our main idea is
that genes having a lot of heavy-weight downstream targets
should be assigned large weights – a rationale similar to
the confidence vote in the original PageRank, except that
outgoing edges increase a gene’s weight while incoming
edges increase a web page’s weight. Our weight-training
approach is:

wn
j ¼ 1−αð ÞNMADj þ α

XN
i¼1

Ejiwn−1
i

degi
; 1≤ j≤N ;

where degi ¼
XN

j¼1
Eji is the total number of genes

that regulate gene i; wn is the weight vector of genes in
the nth iteration and NMAD is the normalized median
absolute deviation (MAD):

NMADi ¼ MADi

max MADð Þ ;

where max(MAD) is the maximum of vector MAD.
We use MAD as a measurement of the expression

variation of a gene among all the samples. The values
are normalized by the maximum value in all MAD’s to



Table 1 Main notations used in this paper

Notation Description

n Number of samples

d Number of genes

c Number of sample clusters

m Number of gene clusters

X Gene expression matrix of size d × n

X∙i
The ith column of X, representing the expression
of the ith sample

Xi∙
The ith row of X, representing the expression of
the ith gene

F
Sample partition matrix of size n × c; Fij ∈[0,1]:
Fij = 1 if X∙i belongs to sample cluster j and
Fij = 0 otherwise

G
Feature partition matrix of size d ×m; Gij ∈[0,1]:
Gij = 1 if Xi∙ belongs to gene cluster j and Gij = 0
otherwise

S A m× c matrix

W
A d × d diagonal matrix; entries are the weights
of the genes
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make the weight-training mechanism stable and compar-
able with different overall expression levels. In each iter-
ation, every gene i is evaluated by its own MAD as well
as the weights and connections of the genes that i regu-
lates. The final weight of each gene reflects both its im-
pact in the network and its ability to separate the
samples.
The convergence of this iterative algorithm is guaran-

teed for any 0 < α < 1 [32,33]. Let wn+1 = wn, we have

wn
j ¼ 1−αð ÞNMADj þ α

XN
i¼1

Ejiwn
i

degi
; 1≤ j≤N :

We can write in the matrix form as

wn ¼ 1−αð ÞNMADþ αED−1wn;

where D is a diagonal matrix with entries degi, 1 ≤ i ≤N.
The final weight for all the genes can be represented as:

w ¼ 1−αð Þ � I−αED−1� �−1 � NMAD;

where I is the N ×N identity matrix.
To make weights trained with different parameters

more comparable, we normalized w such that the
maximum of w is 1. We chose a relatively large α value
(α = 0.85) to make the weights rely more on the network
structure.

Weighted co-clustering algorithm
After assigning weights to genes, our input data include
the gene expression profile of each sample and the
weights for all the genes from the previous step. We de-
veloped a new weighted co-clustering method to simul-
taneously separate samples into subtypes and group
genes into functionally relevant subclasses. Our method
is based on Semi-Nonnegative Matrix Tri-Factorization
(SNMTF), where the nonnegative constraint on the data
matrix imposed on Orthogonal Nonnegative Matrix Tri-
Factorization (ONMTF) is relaxed to make it suitable for
general dataset.

Objective
Suppose our gene expression matrix X contains d genes
and n samples, and we would like to group the genes
into m clusters and group the samples into c clusters
(subtypes). For convenience, the main notations used in
the rest of the paper are presented in Table 1. Our method
can be specified as minimizing the following objective,

∥X−GSFT∥ 2
W ¼

Xd
i¼1

∥Xi⋅− GSFT
� �

i⋅∥
2 �Wii

¼ tr XTWX−2XTWGSFT þ FSTGTWGSFT
� �

:

Here, G denotes the cluster each gene belongs to and F
denotes the cluster of every sample. Entries of matrix S can
be treated as centroids of the blocks generated. The afore-
mentioned weights are presented in the diagonal matrix
W, and we incorporate an “importance indicator” by multi-
plying the weights to the row (gene) norms. This is to
prioritize genes with large weights in the optimization step.
Due to difficulties in minimizing the objective with the
binary-value constraint on F and G, we relax F and G into
continuous nonnegative domain as in previous related

work [24]. We only require
Xm
j¼1

Gij ¼ 1;
Xc

j¼1

Fij ¼ 1 . Thus

our objective is to minimize:

J ¼ tr XTWX−2XTWGSFT þ FSTGTWGSFT
� �

;

s:t:G≥0; F≥0;
Xm
j¼1

Gij ¼ 1;
Xc

j¼1

Fij ¼ 1:

Optimization
We set:

∂J
∂S

¼ 0;

Then we have:

S ¼ GTWG
� �−1

GTWXF FTF
� �−1

:

We can get a clearer understanding of S from this
expression. If G and F are defined as in Table 1, i.e., 0/1-
valued partition matrix, FT F should be a c × c diagonal
matrix, whose entries represent the number of samples
belonging to each sample cluster. GTWG should be a
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m ×m diagonal matrix, with entries equal to the total
weights of the features (genes) belonging to each of the
m feature clusters. Similar to the interpretation of FT F,
GTWG can be considered as the weighted total number
of features in each feature cluster (taking feature i as wi

features when counting the total number). Therefore,
(GTWG)-1 GTWX represents the feature cluster centroids
on the sample space (n-dimension) and XF(FT F)-1 repre-
sents the sample cluster centroids on the feature space
(d-dimension). The difference is that all the samples are
assumed to have the same weight of 1, while features
are assigned different weights W. Entries of S can be
viewed as feature cluster centroids on the sample-centroids
space (c-dimension) or as sample cluster centroids on the
gene-centroids space (m-dimension). Therefore, S gives the
centroids information of the bi-clusters after partitioning.
Now, assume S and G are fixed. Let β ∈ℝn × c be the

Lagrangian multiplier for F, then Lagrangian function
for F is

L Fð Þ ¼ J−tr βFT
� �

:

We set:

∂L Fð Þ
∂F

¼ 0;

Using Karush-Kuhn-Tucker condition [34], we have

−Aþ þ A− þ FBþ−FB−ð ÞijFij ¼ 0;

where A =XTWGS, B = STGTWGS; M+ and M- are the
positive and negative of matrix M defined as Mþ ¼ Mj jþM

2 ;
M− ¼ Mj j−M

2 , respectively. Therefore, we obtain the iterat-
ing formula for F:

Fij←Fij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ þ FB−ð Þij
A− þ FBþð Þij

s
:

Similar derivation leads to the iterative formula of G:

Gij←Gij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cþ þWGD−ð Þij
C− þWGDþð Þij

s
;

where C =WXFST, D = SFT FST.
The iterations decrease the value of the objective func-

tion J. Convergence of the algorithm can be shown using
a typical approach for the convergence proof of NMF-
based methods. For more details, see the proof in the
(Additional file 1: Supplementary Materials).
Our algorithm is as follows:

� Initialize F and G.
� While not convergent and iterations less than a

pre-defined value
Update S by
S = (GTWG)− 1GTWXF(FTF)− 1;
Update F by

Fij←Fij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AþþFB−ð Þij
A−þFBþð Þij

r
;

Update G by

Gij←Gij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CþþWGD−ð Þij
C−þWGDþð Þij

r
:

m and c selection
A question raised in almost all clustering methods is
how to determine the cluster numbers. There is no
agreed-upon solution. Here we utilize an approach that
takes advantage of the stochastic property of our algo-
rithm: although NCIS may not converge to the same so-
lution on each run with different initiations, we could
expect the results to be very stable if the clustering is
strong enough [8,35]. As in [8,35], we ran NCIS 50 times
with randomly selected initiations and defined a sample
consensus matrix �Ms and a gene consensus matrix �Mg . For
each run, a n × n sample connectivity matrix Ms and a
d × d gene connectivity matrix Mg are obtained:

Ms i; jð Þ ¼ 1; if Sample i and Sample j belong to the same cluster
0; otherwise

;

�

Mg i; jð Þ ¼ 1; if Gene i and Gene j belong to the same cluster
0; otherwise

:

�

Consensus matrices �Ms and �Mg are the averages of
Ms’s and Mg’s over 50 runs respectively. The entries
range between 0 and 1, where 0 indicates that the corre-
sponding samples (or genes) belong to different clusters
in every run and 1 indicates that they belong to the same
clusters in all the cases. Therefore, 1− �M offers a new
distance metric between the items ( 1− �Ms for samples
and 1− �Mg for genes). Similar to [35], we used 1− �Ms and
1− �Mg to hierarchically cluster samples and genes, and
then we define an average cophenetic correlation coeffi-

cient
ρ �Msð Þþρ �Mgð Þ

2 to evaluate the stability. Cophenetic
correlation coefficient ρ(C) is defined as the Pearson cor-
relation between distance matrix 1-C and the distance
matrix induced by the linkage used in hierarchical clus-
tering for re-ordering C. If a clustering is stable, the en-
tries would be close to 0 and 1 (two modes), and in the
ideal case (only 0 and 1) ρ(C) would be exactly 1. We
observe how the cophenetic correlation coefficients
change as m and c change and select values where the
averaged coefficient starts to decrease.

Results and discussion
We applied NCIS to two large-scale datasets from
TCGA as well as simulated datasets to evaluate the ef-
fectiveness of our method. We built the network using a



Figure 2 NCIS result of the TCGA breast cancer expression data.
Genes listed are the first 50 genes shared between the ordered p-value
list (based on ANOVA test of each gene’s expression across the five
subtypes) and the ordered gene weight list.
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variety of sources, including the network used in [36] as
well as our up-to-date curated information from Reac-
tome [37], the NCI-Nature Curated PID [38], and KEGG
[39]. The network from [36] consisted of inferred gene-
interaction from sources of information such as protein
interactions, gene co-expression, protein domain inter-
action, and text-mined interaction described by [40]. To
aggregate all of the networks together, all redundant
edges were collapsed to single edges. We combined the
edges of each of the databases such that a link between
any two nodes A and B exists in the aggregated network
if a link between A and B exists in any of the databases
we used. The resulting aggregated network consisted of
11,648 genes and 211,794 edges. Our method assumes
that the network is an aggregation of different biological
networks, such as protein-protein interaction network,
transcriptional regulatory network, and signaling network
etc. In the MATLAB implementation of our program, we
also allow users to provide other network information
as needed.

Application to TCGA breast cancer dataset
The first dataset we used is from a recent large-scale
breast cancer study from TCGA [41]. This dataset con-
tains the expression levels of 17,814 genes across 547
samples. We first integrated the gene expression profile
with the aggregated network information mentioned
above, and trained weights for 8,726 genes included in
both of these resources (for genes that are not included
in either expression profile or network information, we
ignored them). We set α = 0.85 (α is a tuning parameter
that represents the extent to which gene weights rely on
network structure; see Methods part). The 8,726 weighted
genes and 547 samples were the input of NCIS. Figure 2
shows the heatmap with genes and samples rearranged
according to the NCIS’s clustering result. Based on the
cophenetic correlation coefficient calculated from 50 runs
(see Methods part), we chose number of patient clusters
c = 5 and number of gene clusters m = 8 (Additional file 1:
Table S1).
Since we did not know the true class each sample be-

longs to or the number of subtypes, we used clinical fea-
tures to evaluate the effectiveness of the clustering
algorithm. The underlying idea was that patients in dif-
ferent subgroups were expected to have some different
clinical characteristics. We used the following available
clinical information to evaluate subtypes identification
result: survival time, AJCC staging information (neo-
plasm disease lymph node stage, neoplasm disease stage
and tumor stage) and tumor nuclei percentage. AJCC
neoplasm disease lymph node stage represents the stage
of cancer based on the lymph nodes present. Neoplasm
disease stage represents the extent of a cancer, especially
whether the disease has spread from the original site to
other parts of the body. Tumor stage is a class assigned
to a malignancy which allows for the grouping of similar
cancer types based on the extent of disease in the pri-
mary tumor, regional lymph nodes, and metastatic sites.
Tumor nuclei percentage represents the percentage of
tumor nuclei in a malignant neoplasm specimen (from
TCGA data dictionary). Table 2 gives the significance
level of the difference among all subtypes for each fea-
ture. Given p-value threshold 0.05, we conclude that the
NCIS (α = 0.85)-defined subtypes successfully separated
the patients according to these clinical features.
We also set α = 0 (no network information was used)

in the co-clustering process to show the impact of net-
work information. Similar statistical tests were performed
(Table 2). In general, NCIS (α = 0.85) showed better
p-values in separating the patients in terms of clinical fea-
tures than NCIS (α = 0).
In the original TCGA paper [41], the authors per-

formed a hierarchical clustering using a subset of genes
(most varied across samples) and identified 13 subtypes
(test results for clinical features are shown in Table 2 as
TCGA/BRCA paper). Since consensus hierarchical clus-
tering generally performs better than the traditional



Table 2 P-value of the dependence test for different clinical features and breast cancer subtypes

Method Survival Neoplasm disease lymph node stage Neoplasm disease stage Tumor stage Tumor nuclei percentage

NCIS (α = 0.85) 0.0444 2.03 × 10-3 1.68 × 10-3 2.33 × 10-3 6.17 × 10-3

NCIS (α = 0) 0.0442 6.22 × 10-3 3.84 × 10-3 2.67 × 10-3 6.24 × 10-3

Consensus (k = 3) 0.497 0.123 0.266 0.175 5.90 × 10-3

Consensus (k = 5) 0.359 3.29 × 10-3 2.08 × 10-4 0.187 8.35 × 10-3

TCGA/BRCA paper 0.831 0.396 0.337 0.999 0.0780

For survival time, we used logrank test; for AJCC neoplasm disease lymph node stage, AJCC neoplasm disease stage, and AJCC tumor stage, we used Chi-squared
test; for tumor nuclei percentage, we used ANOVA. Note that we did not use the normal-like subtype in this comparison.
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hierarchical clustering, we also applied a consensus average
linkage hierarchical clustering [8,42]. To make a fair com-
parison, we used all 8,726 genes. The program was run
over 1,000 iterations and the resampling rate of the sample
was set to 0.8. The distance metric was 1 minus Pearson’s
correlation coefficient. The algorithm suggested 3 subtypes.
However, in Table 2, we listed the tests’ p-values for both
3-subtypes and 5-subtypes conditions to make it easier to
compare with the results of NCIS. The results indicated
that in general, clusters generated by consensus clustering
were not as informative as those from NCIS. We think the
most important reason is the lack of effective feature selec-
tion in consensus clustering when there are a large number
of genes as input.
The advantage of NCIS is the incorporation of the net-

work and assigning an “importance indicator” to each
gene. Therefore, in addition to generating the subtypes,
we also obtained a bi-product – the gene weights, which
describe the genes’ roles in the network and their abil-
ities to distinguish the patient samples. We further per-
formed ANOVA tests for each gene’s expression level
across the five subtypes. In the heatmap in Figure 2, we
showed the first 50 genes that are shared between the
ordered p-value list and the ordered gene weight list
(p-values are ordered from smallest to largest and gene
weights are ordered from largest to smallest). To illustrate
the difference for specific genes in the five subtypes at net-
work level, we extracted the subnetwork of ABCC8 as an
example (Figure 3). There are 9 genes targeted by ABCC8
in the network we used. We chose this subnetwork be-
cause it has a small size and is easily and clearly presented.
Although we did not find literature studying the effect of
ABCC8 in breast cancer, MRP has been reported to be
highly associated with breast cancer tumor progression
and treatment outcomes [43-45]. As shown in Figure 3,
ABCC8 is highly expressed in Luminal A and Luminal B
subtypes. Several of its downstream genes have very similar
expression pattern. Such examples demonstrate the differ-
ential expression pattern between subtypes at the network
level and the advantage of prioritizing genes with higher
impact in the network.
The running time of NCIS (α = 0.85, c = 5, m = 8) on an

8GB memory desktop for this dataset is about 5 minutes.
Application to TCGA GBM dataset
The second dataset we used was from a recent large-
scale TCGA Glioblastoma Multiforme (GBM) subtype
identification work [9]. This dataset contains the ex-
pression of 11,861 genes on 200 GBM and 2 normal
brain samples. In the original paper, the authors first
selected 1,903 variably expressed genes according to
the MAD and applied consensus hierarchical clustering
with agglomerative average linkage [8]. Four subtypes were
detected.
We integrated the gene expression data with the net-

work information to train a weight for each of the 7,183
genes included in both sets (network and expression).
Tuning parameter α was set to 0.85. After obtaining the
weights, these 7,183 weighted-genes and the 202 samples
were used in NCIS (result in Figure S1). We set m = 7
and c = 4 (Additional file 1: Table S2).
We again used clinical characteristics to evaluate the

effectiveness of our method. We used survival time,
tumor necrosis percentage, and tumor nuclei percentage.
Tumor necrosis percentage represents the percentage of
cell death in a malignant tumor specimen (from TCGA
data dictionary). Additional file 1: Table S3 provides the
significance level of the difference among all subtypes
for each feature. We also ran consensus average linkage
hierarchical clustering [8,42] on the 7,183-gene dataset.
The program was run over 1,000 iterations and the re-
sampling rate of the samples was set to 0.8. The distance
metric is 1 minus Pearson’s correlation coefficient. We
identified 4 subtypes. Overall, NCIS (α = 0.85) performed
the best. Interestingly, we observed that Subtype Pro-
neural has a much higher survival rate than the other
three subtypes (Additional file 1: Figure S2). The under-
lying mechanism requires more study. In the heat-
map in Figure S1, we also showed the first 50 genes
that are shared between the ordered p-value list (based
on ANOVA test of each gene’s expression across the four
subtypes) and the ordered gene weight list. Figure S3
shows the subnetwork of C1QA, which is involved in
immune response, to illustrate the difference among sub-
types at network level.
The running time of NCIS (α = 0.85, c = 4, m = 7) on

an 8GB desktop for this dataset is about 2 minutes.



Figure 3 Expression patterns of ABCC8 subnetwork in breast cancer subtypes. Genes directly connected to ABCC8 and genes targeting
ABCC8's downstream genes are included. Color of circle corresponds to gene expression level; size of circle corresponds to gene weight. (a) Subtype
Luminal A; (b) Subtype Basal; (c) Subtype Luminal B; (d) Subtype HER2-enriched; (e) Subtype Normal-like.

Liu et al. BMC Bioinformatics 2014, 15:37 Page 8 of 11
http://www.biomedcentral.com/1471-2105/15/37
Evaluation by simulation
To further assess the performance of NCIS, we simu-
lated a dataset with 300 samples and 3 subgroups. We
designed a method to simulate gene expression data
based on network interaction structure (see Additional
file 1: Supplementary Method). For the 3 subtypes we
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simulated, the mean expression levels of each gene were
estimated from the gene expression profiles of Luminal
A, Luminal B, and Basal subtypes in the breast cancer
dataset. The final datasets contained 300 samples and
8,726 genes.
To make the simulated datasets more realistic, noisy

genes were added. We first trained a weight for each
gene based only on the network structure and then chose l
genes with lowest weights as “uninformative” genes. We
randomly permutated the expression levels of these genes
across the samples. l was set to 1000, 2000, 3000, 4000,
and 5000 (we generated 5 datasets for each l).
We set m = 8 and c = 3 in NCIS. The results for mul-

tiple trials of the simulation studies were shown in the
Figure 4. The running time of NCIS (α = 0.85, c = 5, m = 8)
on an 8GB desktop is about 3 minutes for each simulated
dataset. We found that when the number of “noisy” genes
is small (1000 and 2000), both NCIS (α = 0.85) and
consensus-clustering have 100% accuracy. When the num-
ber of noisy genes is increased to 3000, NCIS (α = 0.85)
starts to perform better than consensus clustering. As
expected, once the number of noisy genes becomes exces-
sive (5000 out of 9000), neither method can achieve high
accuracy. Overall, our simulation result indicated that
NCIS is a more robust method than consensus clustering
to tolerate noise.
Figure 4 Accuracies on simulated datasets. NCIS (α = 0.85) vs.
NCIS (α = 0) vs. consensus clustering on simulated datasets. Height
of the solid boxes reflects the average accuracy in each setting
(over 5 independent datasets simulated under the setting) and the
bar indicates the standard deviation. P-value of paired one-sided
t-test (25 data points for each group) for H0: Accuracy (NCIS
(α = 0.85)) ≤ Accuracy (NCIS (α = 0)) is 0.0057. P-value of paired
one-sided t-test (25 data points for each group) for H0: Accuracy (NCIS
(α= 0.85))≤ Accuracy (Consensus clustering) is 0.0019.
We also observed that NCIS (α = 0.85) outperformed
NCIS (α = 0) significantly in our simulated dataset
(Figure 4). However, in the two real datasets, the advan-
tage is marginal. We think the main reason could be
that in our simulated datasets, the expression levels are
strongly related to the network structure we collected
(i.e. the interaction network well reflects how the gene
expression is generated), while in real datasets there are
more uncertainties and the network information we
used is incomplete.

Conclusions
Cancer subtype information is of critical importance in
designing better treatment strategies. We developed a
novel clustering method, called NCIS, to identify cancer
subtypes from high-throughput gene expression data.
NCIS incorporates the network information within the
clustering step to detect more informative sample sub-
types. NCIS assigns a weight to each gene based on its
connection in network and its distinguishing ability in
expression level across all samples. Our approach avoids
excluding a large number of genes, which results in
much information loss for subsequent analysis in previous
methods. In addition, we utilize a weighted co-clustering
method to capture the duality of gene expression data, i.e.
similarity is treated as a level of coherence of the samples
and genes in the bi-cluster.
The future directions of this problem should ideally

address three key challenges. First, the network we used
is assumed to be a generic molecular interaction net-
work; it is not specific for the particular type of cancer
or the tissue-type. Second, the network does not contain
all the genes. Third, many edges in our current network
do not have a high confidence level and the directions of
many edges are unclear. These three problems can be
addressed as we gain more complete understanding of
the network.
Further research is needed to design better approaches

to choose the optimal parameters in NCIS, including α,
c, and m. Since there is often no gold standard available
for the clustering problem of a specific type of cancer, it
is difficult to find the optimal parameters of α, c, and m.
In our study, we use α = 0.85 to keep the balance be-
tween network information and gene expression infor-
mation. We did test the results using different values of
α, such as 0.8 and 0.7, and the results were comparable
with minor differences in the clustering result. We be-
lieve the problem of choosing the optimal α may require
further studies when more data is collected through
large-scale projects with detailed clinical features in the
future. Such knowledge can be utilized to help select α.
Additionally, how to determine the number of clusters
(c and m) remains a difficult problem in clustering algo-
rithms. In our work, we utilized cophenetic correlation
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coefficients used in [35]. We compared the results using
different m and c combinations where the cophenetic
coefficients are slightly lower than the optimal combin-
ation (Additional file 1: Table S1 and S2). For both
BRCA and GBM data, we observed that the subtypes
identified were very similar (i.e., they had high correl-
ation with the results from optimal combination) based
on the p-values of a Chi-squared test between subtypes
identified in the optimal combination. Therefore, the
small variation in the choices of m and c results in very
similar clustering here. However, further research is still
needed to develop better approaches to automatically se-
lect the most appropriate m and c.
We believe our new NCIS algorithm will be useful to

comprehensively identify cancer subtypes, which would
otherwise be obscured by cancer heterogeneity, using
high-throughput and high-dimensional gene expression
data. Results from NCIS are expected to enhance our
ability to discover important subtype patterns and key
genes involved in each subtype, which will in turn help
us better understand important network perturbations
in a subtype-specific manner.

Additional file

Additional file 1: Supplementary materials. Available at BMC
Bioinformatics online.
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