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Abstract

Background: The rapid advancements in the field of genome sequencing are aiding our understanding on many
biological systems. In the last five years, computational biologists and bioinformatics specialists have come up with
newer, better and more efficient tools towards the discovery, analysis and interpretation of different genomic
variants from high-throughput sequencing data. Availability of reliable simulated dataset is essential and is the first
step towards testing any newly developed analytical tools for variant discovery. Although there are tools currently
available that can simulate variants, none present the possibility of simulating all the three major types of variations
(Single Nucleotide Polymorphisms, Insertions and Deletions and Copy Number Variations) and can generate reads
taking a realistic error-model into consideration. Therefore, an efficient simulator and read generator is needed that
can simulate variants taking the error rates of true biological samples into consideration.

Results: We report SInC (Snp, Indel and Cnv) an open-source variant simulator and read generator capable of
simulating all the three common types of biological variants taking into account a distribution of base quality score
from a most commonly used next-generation sequencing instrument from Illumina. SInC is capable of generating
single- and paired-end reads with user-defined insert size and with high efficiency compared to the other existing
tools. SInC, due to its multi-threaded capability during read generation, has a low time footprint. SInC is currently
optimised to work in limited infrastructure setup and can efficiently exploit the commonly used quad-core desktop
architecture to simulate short sequence reads with deep coverage for large genomes.

Conclusions: We have come up with a user-friendly multi-variant simulator and read-generator tools called SInC.
SInC can be downloaded from http://sourceforge.net/projects/sincsimulator.
Background
The rapid advancements in the field of genome se-
quencing is aiding our understanding of genome organ-
isation in many biological systems [1-3]. These tools are
intended to analyse high throughput next-generation
sequence (NGS) data and present biologically relevant
interpretations. Given the high throughput nature of
present day genomics, heuristic algorithms are implica-
ted to identify or predict genome variations as small as
single base nucleotide substitutions (SNVs) to insertion-
deletion events (indels) and copy number variations
* Correspondence: binay@ganitlabs.in
1Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied
Biotechnology, Biotech Park, Electronic City Phase I, Bangalore 560100, India
2Strand Life Sciences, Kirloskar Business Park, Bellary Road, Hebbal, Bangalore
560024, India

© 2014 Pattnaik et al.; licensee BioMed Centra
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
(CNVs). Hence, it is imperative for developers of NGS
data analysis pipelines to establish the limits of their pre-
dictions based on simulated data as in current practice. In
the last five years, computational biologists and bioinfor-
matics specialists have developed new algorithms for dif-
ferent types of variant calling, have implemented existing
algorithms for short-read mapping to reference genomes
and/or optimized pipelines to perform a specific type of
primary and secondary analysis [4-19]. SNVs, indels and
CNVs are the most common types of biological variations
in the genome. The tools to detect these variants have the
common objective of finding novel variations with low fre-
quency of false positives, rediscovering known variations
in the genome of interest and facilitate subsequent gen-
ome visualization and interpretation. Hence, availability of
reliable and realistic simulated dataset bearing the three
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major types of genomic variations (SNVs, indels and
CNVs) is critical to test the operational limitations of
newly developed or existing tools. This approach allows
computational biologists to generate simulated datasets
with biological meaning and sensitive to systematic error
inherent to different sequencing technology platforms.
Although, next-generation sequencing (NGS) instru-

ments generate reads of various lengths and with varying
error profiles, the most popular source of data remains
sequencing instruments from Illumina, which employs a
sequencing-by-synthesis [20] chemistry to generate short-
reads. Keeping this in mind, we have developed an effi-
cient, fast simulator and a read generator that mimics
sequencing quality generated by Illumina platform. Hence,
SInC uses a realistic error model based on base quality
values of reads generated by the most prevalent sequen-
cing platform, hence catering to the larger interest group.
Although we have used the Illumina-derived base quality
values, it can easily be adopted for any other sequencing
platform by supplying an instrument-specific error profile.
Currently available tools can either generate platform-

specific, error-profile based reads or simulate reads across
platforms [21-28]. It is also in our interest of disambigu-
ation to classify the existing simulators into two major
classes based on their functionality. First, the stand-alone
read generators (RG) like Metasim [28], Flowsim [22],
454Sim [24], Pbsim [21], GenFrag [29] and ART [25]
among others with functionality limited to read genera-
tion. The second class of simulators (SRG) include pIRS
[23], GEMsim [26], dwgSIM [30] (based on wgsim of sam-
tools), which have the option of simulating genomic varia-
tions coupled with read generation functionality. Each of
the above mentioned tools, although has its own set of
advantages, suffers from either having a simplistic error
model (in the case of GenFrag), errors that does not
model real data (in the case of dwgSIM), does not assign
quality values to reads (in the case of Metasim), does not
simulate Illumina reads (in the case of Flowsim) or does
not simulate multiple types of variations (in the case
of pIRS and GEMsim). Interestingly, none of the exis-
ting SRG simulators present the option to simulate
CNVs. Hence, we have developed and implemented a
C-program, SInC, to enable simulation of all the three
major types of genomic variations, SNVs, indels and
CNVs, coupled with a multi-threaded, error-profile based
read generator. SInC has obvious advantages over the
popular SRG simulators as dwgSIM simulates reads with
identical dummy base quality values relieving the data of
any base-quality related effects, pIRS cannot simulate
CNVs and GEMsim simulates only SNVs. SInC models er-
rors based on real data from Illumina instruments as in
pIRS and additionally presents fine tuned options to repli-
cate biologically meaningful variant simulations including
CNVs. The multi-threaded algorithm in SInC for read
generation provides substantial advantage in run time and
allows for seamless simulation of high coverage data in a
desktop environment.
Here we present an evaluation of SInC using com-

monly used SNV, indel and CNV detection tools. The
speed, accuracy and efficiency was compared against other
popular simulators and read generators.

Implementation
SInC performs two jobs; first it simulates variants (simu-
lator) and then it generates reads (read generator). SInC
simulator consists of three independent modules (one
each for SNV, indel and CNV) that can either be exe-
cuted independently in a mutually exclusive manner or
in any combination.

SNV simulation
The exact frequency of SNPs in the human genome has
not yet been determined accurately. Based on inferences
from 629 complete genomes representing several human
populations in the 1000 genome data, the current range
of frequency of SNV lies between one per 300 to 1000
bases [31]. For this purpose, we have assumed that the
substitution events in human genome are independent
and random. SInC simulator accepts a user defined per-
centage value to simulate SNVs. The algorithm identifies
this percentage value as the fraction of genome to esti-
mate the number of SNVs and simulates SNVs across
the genome. To maintain positional identities of these
SNVs with respect to their frequency, that are normally
distributed over the sequenced genome, the mean dis-
tance of separation (DAvg) between SNVs is calculated
(see Additional file 1 and Additional file 2).
This ensures that the simulated SNVs are well dis-

tributed over the genome. A positional filter is applied
to remove the outlier SNVs, which are less than 15 bases
apart. SInC simulator neglects SNVs simulated in the N-
regions of the genome (where there is no A, T, G or C).
Then the algorithm applies a user-defined transition to
transversion (Ti/Tv) metric to maintain the biological
significance of the SNVs across the genome. A Ti/Tv ra-
tio of 2.1 was maintained across the population of simu-
lated SNVs with 20% inherent heterozygosity to simulate
human genome data as previously reported [32]. The
flow chart illustrated in Figure 1A depicts the algorithm
for simulating SNVs.

Indel simulation
Insertion and deletion (indel) events have a wide range
of size-based variability. SInC simulator simulates short,
medium and large indels in the range of 1-10 bp 11-
20 bp and 21-100 bp respectively in concordance with
earlier studies [33]. The ratio of incidence of insertions
to deletions and heterozygous to homozygous indels in



Figure 1 Flowcharts indicate the algorithm implemented in simulation of A) SNP, B) Indel, C) CNV and subsequent D) read
generation process.
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human genome is set to 1:1 based on previous obser-
vations [33]. The flow chart in Figure 1B depicts the
algorithm for simulating indels.
The algorithm first randomly generates the position

for indels and then uses a filter to replace any indel
within the region of the N-region of the genome (no A,
T, G or C assigned) with one in the sequenced region.
To remove duplicates, the simulated indels are coordin-
ate sorted and only the unique locations are retained.
Usually, a redundancy of 2-5% is filtered out post co-
ordinate sorting (that can result from either duplicates
or un-sequenced regions). Hence, an additional 5% of
indels are generated at the initial stage of the algorithm
to account for the loss of indels at the duplicate removal
step. In the next stage of the algorithm, the frequency of
short, medium and large indels was factored in based on
previous literature evidence for their distribution in hu-
man [33]. The indel simulation produces two output
files assuming the bi-allelic nature of human genes, each
containing allele-specific coordinate information of sim-
ulated indels. Among the total number of simulated
indels, the algorithm simulates 30% single base indels,
20% repeat expansions, 49% 2-20 bp indels, and 1% long
indels including repeat expansions (see Additional file 2
and Additional file 3).
CNV simulation
The CNV simulation constitutes the final step of the
simulation algorithm, as it can ply in a sequential man-
ner post indel simulation. Since the input files from
indel simulation may contain heterozygous indels, which
may be of unequal size, hence the CNV module takes it
into consideration and prevents the possibility of boun-
dary overlaps with indels. The flow chart in Figure 1C
depicts the algorithm for simulating CNVs.
Unlike the indel module, here the size and location of

the variants are both generated dynamically with the
flow of the program after obtaining the feed from the
user to determine the number of CNVs and their range
of size distribution (upper and lower limit). Such simu-
lated data is particularly useful to test the accuracy and
sensitivity of a new or existing CNV caller across a wide
range of CNV sizes. The algorithm then filters the simu-
lated CNVs based on its coordinates. First the span of
each of the CNVs are evaluated to ensure correspon-
dence with chromosomal boundary in either allele and
subsequently the CNV boundaries are checked for over-
lap with neighboring CNVs. The CNV is logged and the
next iteration of location and size are generated upon
meeting the aforementioned conditions. Unlike the SNV
and indel simulation modules, the annotation data for
both alleles in the CNV module is stored in the same file
in the form of a tabular data. The tool also outputs a
simplified results file (similar to a BED file), which can
be read easily by any program for visualizing CNVs.

Read generation
SInC has a read generator part that generates short
reads using a multi-threaded approach utilizing the par-
allel processing power of commonly used quad-core
desktop/laptop architecture. The process of read gene-
ration uses a quality profile distribution-based error-
model. We have used publicly available 100 bp read pair
data derived by using Illumina instrument from the SRA
database to generate the quality profile distribution and
assessed the quality distribution for both forward and re-
verse reads of the training set and data post read gener-
ation (Additional file 4). For customization purpose, the
tool is provided as a standalone tool in the SourceForge
package so that the user can generate independent error
profiles for reads with certain read lengths to be used
during the read generation stage. The read generation al-
gorithm follows a “divide and conquer” approach where
each thread spans the input sequence once and the num-
ber of reads required to obtain the user defined coverage
are pooled from the estimated number of threads. User-
specified cores utilization is implemented in the SInC read
generator to prevent over-utilization of available CPU
resources. The other major user defined parameters, in-
clude read length, error profile, insert size (inner distance)
and standard deviation of insert size (see Additional
file 2). The algorithm initially creates one thread, which
generates reads for the input fasta file. Depending on the
read pairs generated in the first run, the numbers of
threads required to obtain the desired coverage are calcu-
lated and then executed in an iterative manner based on
the number of cores specified by the user (Figure 1D).
SInC is optimized to run with 4 threads suiting a quad-
core processor.

Evaluation of SInC
Variant re-discovery
We used human chromosome 22 sequence from the
UCSC build hg19 for generating SNVs and indels using
all the four different SRG simulators. The SNV rate,
indel percentage and coverage was maintained across all
the tools and the resulting reads were aligned using
Novoalign [14]. These mapped files were subject to SNV
and indel detection by GATK [4] and Pindel [6] respec-
tively (see Results, Figure 2). The predicted SNVs and
indels from the different simulators were compared to
the actual number of incorporated variants to estimate
the percentage rediscovery. Rediscovery percentage using
Pindel has a limitation that it merges short indels within a
span of 40 nucleotides of each other leading to a slight
loss (less than 1%) of rediscovered indels across all the
simulators (see Additional file 2).



Figure 2 Variant rediscovery statistics. Percentages of simulated variants performed using GATK and PINDEL for identification are shown of
A) SNVs and B) indels respectively. The rediscovery of indels based on size specificity was also performed and is given in Additional file 3. The
rediscovery percentages of C) heterozygous and D) homozygous SNVs are compared.

Pattnaik et al. BMC Bioinformatics 2014, 15:40 Page 5 of 9
http://www.biomedcentral.com/1471-2105/15/40
Time profiling
Given the high-throughput nature of NGS data, genera-
ting the bulk of simulated data still remains a time con-
suming process. Hence, we have implemented a “divide
and conquer” approach to the read generation module
to reduce the time footprint in generating high coverage
data. This property allows user to simulate data at a high
coverage (50X – 100X) without inordinate expense of
time. SInC can utilize 1 to 4 threads for optimal func-
tion. Our comparison was set up based on default use of
1 core ranging upto a maximum utilization of 4 cores in
SInC versus the other tools (see Results, Figure 3). De-
tails are provided in the Additional file 2.

Transition/Transversion (Ti/Tv) ratio
A transition mutation involves a change from purine to
purine or pyrimidine to pyrimidine and a tranversion
mutation involves a change from pyrimidine to purine
or vice versa. This makes a transversion event twice as
favourable as a transition event for any random muta-
tion event. Hence, the Ti/Tv ratio for a random variation
resulting from systematic errors in the sequencing tech-
nology, alignment artifacts and data processing failures
should be close to 0.5. As published earlier, Ti/Tv ratio
for whole genome falls between 2.05 - 2.15 for both
known and unknown SNPs. SInC incorporates a user-
defined Ti/Tv ratio for simulation of SNVs.
All the scripts to simulate variants and generate reads

used default parameters and details of the scripts used
are given in the Additional file 5.

Results and discussion
We have developed a simulator for all commonly occur-
ring biological variants in the genome along with a read
generator. We compared the latest pick of simulators
with SInC simulator and read generator. In our model
for SNV simulation, we have limited the range of simula-
tion of SNVs using a distribution of distance between
two consecutive SNVs. Based on SNV frequency studies
in human genome [31,34], under default simulation pa-
rameters the mean distance between two consecutive
SNVs, DAvg, is set dynamically between 300 to 1000



Figure 3 Time profiles of the different simulators used. Time elapsed to perform one complete simulation with default options using single
core across different simulators. A) For chromosome 22 at 15X B) For human whole genome (hg19) at 5X.

Pattnaik et al. BMC Bioinformatics 2014, 15:40 Page 6 of 9
http://www.biomedcentral.com/1471-2105/15/40
bases depending upon user defined input for SNV rate.
In indel simulations, the complexity of simulation de-
pends on the frequency of indels in the simulated data.
In the default mode for indel simulation, the algorithm
is sensitive to the natural frequencies and size ranges as
evidenced from existing literature [33,35]. The model
for CNV simulation is an extension of the indel simula-
tion, wherein the CNVs are dynamically generated while
maintaining the allele specificity and genomic positions
of indels simulated in the prior step. The simulated vari-
ants are captured in log files, combined with input allele
fasta files and processed by a multi-threaded process to
enable fast-paced read generation.
In order to assess the number of variants post simula-

tion and read-generation in comparison to the number
of variants that a sensitive variant caller like GATK [4]
identifies, we used variant re-discovery rate as one of the
parameters of evaluation. Variant re-discovery, although
not linked with the efficiency of the simulator, can be
used as one of the parameters to judge the combined
efficiency of the simulator + read-generator + variant cal-
ling process. The process of re-discovery can be im-
pacted by the read-generation step, which incorporates
different error models and/or base quality values. Given
the fact that we used the same tool (GATK [4] for SNPs
and Pindel [6] for indels) across all the simulators +
read-generator pairs, discrepancies in the number of var-
iants rediscovered provided us with indirect evidence on
the individual tools’ efficiency. The most likely expla-
nation for varying re-discovery rate could be due to dif-
ferent methodology adopted during the process of read
generation where different error models (and quality
values) are taken into consideration. Additionally, vari-
ant re-discovery rate is a widely used parameter to assess
the quality of variant calling and analysis, including in
the 1000 genome project. In order to delineate coverage
from that of combined simulation + read-generation +
variant calling and re-discovery, we simulated reads at
10X, 20X or 30X coverage and found that the coverage
does not affect the re-discovery rate of SNPs using SInC
(Additional file 6). The SNV rediscovery percentage sug-
gested that SInC was at par with pIRS in the efficiency
of simulating SNVs and comprehensively outperformed
both GEMsim and dwgSIM (Figure 2A), suggesting the
role of similar error-profile based model during the read
generation process. Although other tools like dwgSIM
and GEMsim are close to SInC in homozygous redis-
covery rate (Figure 2D), SInC outperforms both these
tools for heterozygous rediscovery rate (Figure 2C) sug-
gesting the importance in simulating both homozygous
and heterozygous real variants. In the rediscovery of in-
dels, SInC emerges as the only simulator with the high-
est percentage of total rediscovered indels, ahead at least
by 15% from the closest contender pIRS (Figure 2B). We
further tested the accuracy of the rediscovered indels by
adding a size-based constraint and estimated the per-
centage rediscovered in the size ranges containing 1 to
6, 7 to 10, 11 to 20 and 21 to 100 nucleotide long indels.
These size ranges were simulated due to their overall
high (greater than 95%) natural prevalence in human ge-
nomes [35]. This exercise corroborated the superiority
of SInC in detecting indels while retaining the size-based
constraints implicated in the simulation algorithm in
comparison to the other tools tested (Figure 2B). The
numbers of SNVs and indels rediscovered by SInC are
especially important because the total number of SNVs
simulated by SInC is about 10-20% more than the other
tools tested and 20-40% higher for indels. Another sig-
nificant advantage of SInC is apparent from the redis-
covered heterozygous SNVs. As depicted in Figure 2C,
the difference in homozygous SNV rediscovery is rather
conserved across the simulators compared to Figure 2D,
which gives SInC an edge in conservation of zygosity of
the calls post read generation. Notably, pIRS although



Pattnaik et al. BMC Bioinformatics 2014, 15:40 Page 7 of 9
http://www.biomedcentral.com/1471-2105/15/40
uses a similar error-profile as SInC, it does not catalog
the simulated SNVs to facilitate rediscovery of heterozy-
gous and homozygous SNVs separately. The CNV module
of SInC simulator was used in a previous study to test a
CNV prediction tool, COPS [17], and was used to com-
pare its accuracy and sensitivity to other popular CNV
prediction tools. We were unable to perform a compara-
tive analysis of the CNV module in SInC due to the un-
availability of any published tools that can simulate CNVs.
However, as previously shown [17], the percentage redis-
covery using multiple CNV discovery tools like CNAseg
CNV-seq, CNVnator and SVDetect yielded >90% CNVs.
Next, we wanted to test the speed of SInC read gener-

ator. Figure 3 depicts the advantages that SInC provides
during read generation due to implementation of a “div-
ide and conquer” approach by efficient utilization of C
thread functions. The tool was tested for its processing
capability under a range of multi-threaded options ran-
ging from default utilization of 1 core to a maximum
utilization of 4 cores. SInC accomplished read gener-
ation at least one and a half times faster than pIRS and
three times faster than ART; the two most recent Illu-
mina read simulators (see Additional file 2). The time
profile demonstrated substantial reduction in time foot-
print using SInC in comparison to the other tools sam-
pled in our study. This difference in generation time of
simulated data is reflected clearly in generating high co-
verage datasets from large genomes, human genome in
our case as shown in Figures 3B and C.
Although there are a multitude of popular tools capable

of predicting genomic variations using high-throughput
sequence data, the generality of such tools are question-
able. In many ways, a simulated dataset is crucial towards
determining the success of predictive algorithms in the
context of real dataset. Simulators that can simulate vari-
ants and generate reads are valuable tools used for devel-
oping and testing tools for sequence data analysis. An
ideal tool that can both simulate multiple variant types
(SNVs, indels and CNVs) and generate sequencing reads
taking into account a realistic platform-specific quality-
profile of an sequencing instrument is currently lacking.
We tried filling this void by designing a versatile and fast
tool that can generate multiple types of biological variants
(SNVs, indels and CNVs) and can run on a minimalistic
quad core desktop computer using multi-threaded option.
The time advantage obtained in SInC could be attrib-
uted to the optimized algorithms and efficient use of
C thread functions to manage the I/O streams. This
advantage is also obvious in a single core, which de-
legates the bulk of the data generation to multiple
threads to ensure efficient use of memory in line with
“divide and conquer” approach. The optimization of mul-
tiple core usage is available upto 4 cores in quad-core
architecture.
Another major functional advantage of this tool is
its ability to simulate CNVs. CNVs have been shown to
contribute more towards genetic diversity than SNVs
and are conspicuous by their pervasiveness in human
genome [36-39]. The advent of NGS platforms has geared
multiple efforts to build frameworks towards identifying
CNVs and assess their penetrance in disease etiology.
However, most of these efforts are only partially ef-
fective in capturing population-based generalizations.
In order to build a robust and generic framework, it
is imperative to build exhaustive datasets with the known
signatures and explore the range of false discovery rates
inherent to the tools and subsequently improve them.
The ability to create such datasets will definitely im-
prove the approach and accuracy of predictions made
by existing tools. Hence, a flexible, user-input based
simulator has substantial application in building useful
datasets allowing for improvement of current approaches
towards variant discovery as a whole. Although there have
been efforts in the past to discovering CNVs using NGS
data, currently there are no available simulators to fine-
tune CNV detection algorithms. SInC simulator not only
fulfills the simulation of CNVs but an additional function-
ality of SInC simulator is to generate allele-specific CNVs.
This is particularly useful if one has to understand the
copy number changes at an allelic level important for
many diseases [40,41].
Production of large amount of heterogeneous data in

high-throughput biology requires sophisticated compu-
tational tools for efficient analysis, storage, sharing and
archiving. This requires resources, both software and
hardware, and interoperability of computational re-
sources. A common practice among computational bio-
logist is to use simulated data to test the efficacy of
the tools before applying them to real dataset. Al-
though there are many simulators available currently,
there is none that suits the need of every computa-
tional biologist wanting to make tools for short-read
sequence data. Keeping this in mind, we have deve-
loped a tool to help computational biologists create
simulated datasets using only one simulator that can
span across sequencing platforms and variant types
(SNVs, indels and CNVs). Although, SInC simulator
was tested with human genome, it is versatile to ad-
dress the complexity of any genome, its substitution
rate, variant frequency and transition to transversion
ratio. Large genomes, like that from many plants,
need time to generate simulated reads at high cover-
age and this is where the multi-threaded capability of
SInC scores high in comparison to other tools. By
using a standalone quality-score distribution model of
real dataset, SInC provides an opportunity to individ-
ual user to generate reads at different read lengths but
with realistic quality.
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Conclusions
We report a tool called SInC that can simulate and gen-
erate short sequence reads with different types of bio-
logical variants. The ability of SInC to generate realistic
fastq reads based on Illumina read quality profiles along
with its capacity to simulate multiple biological variants
and generate reads concurrently makes it a powerful op-
tion in a variety of simulation studies and a part of com-
putational biologists’ essential toolkit.
Availability and requirements
Project name: sincsimulator
Project home page: http://sourceforge.net/projects/
sincsimulator
Operating system(s): Linux
Programming Language: C
Other Requirements: GNU Scientific Library(gsl library),
pthreads library
License: Creative Commons Attribution Non-Commercial
License V2.0
Any restrictions to use by non-academics: License
needed
Additional files

Additional file 1: SInC SNP distribution. A) A Gaussian distribution
was implemented to dynamically allocate distance between two SNVs.
Under default conditions, which follows a SNV rate of 0.001, the mean
distance, DAvg, between two SNVs was set to 1000 as evidenced by
studies from 1000 genome project. Also, a lower limit of DAvg was set to
300 based on these studies allowing us to dynamically simulate SNVs of
biological relevance. B) Normalized frequency distribution of simulated
SNVs per chromosome in hg19 assembly.

Additional file 2: Time profiles of SInC, and variant re-discovery
numbers. Time elapsed to perform one complete simulation with
default options using 1–4 cores A) For chromosome 22 at 15X B) For
human whole genome (hg19) at 5X. SNPs were re-discovered using GATK
and indels with Pindel.

Additional file 3: SInC indel distribution. A) The size based frequency
distribution of indels used in SINC based on literature evidence from
Millis et al. B) Normalized frequency distribution of simulated indels per
chromosome in hg19 assembly.

Additional file 4: Illumina-derived base quality score distribution
used to generate reads by SInC. Quality score distribution of reads
from training sets vs reads simulated using SInC; A) for forward read B)
for reverse reads. Top panel: training set, bottom panel: reads simulated
using SInC.

Additional file 5: Scripts used to run various tools.

Additional file 6: Coverage verses SNP re-discovery rate. Effect of
coverage on combined process of simulation + read-generation + variant
calling and re-discovery.
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SNP: Single nucleotide polymorphism; Indel: Insertions and deletions;
CNV: Copy number variations.
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