
Ramakrishnan et al. BMC Bioinformatics 2014, 15:84
http://www.biomedcentral.com/1471-2105/15/84
SOFTWARE Open Access
openBEB: open biological experiment browser for
correlative measurements
Chandrasekhar Ramakrishnan2,3, Andrej Bieri1, Nora Sauter1, Sophie Roizard4, Philippe Ringler1, Shirley A Müller1,
Kenneth N Goldie1, Kaloyan Enimanev2, Henning Stahlberg1, Bernd Rinn2,3 and Thomas Braun1*
Abstract

Background: New experimental methods must be developed to study interaction networks in systems biology. To
reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches.
The measurement of several correlative physical properties would further improve data consistency. Accordingly, a
considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent
analysis.

Results: We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition,
coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main
parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local
container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are
performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data
acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules.
An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in
sync with a central repository.

Conclusions: The versatility, the simple deployment and update mechanism, and the scalability in terms of module
integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets
three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods
and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and
mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will
inherently benefit from the “house keeping” abilities of the core program. We report the use of openBEB to
combine live cell microscopy, microfluidic control and visual proteomics. In this example, measurements from
diverse complementary techniques are combined and correlated.
Background
Systems biology aims to identify and quantify the molecular
components of dynamic biological networks, determining
interactions between the various players and integrating the
resulting information into system models [1]. This research
necessitates the use of an ensemble of correlative measure-
ment technologies. Ideally, data should be acquired from
groups of elementary samples, such as single cells, using
high throughput technologies, in order to disentangle
biological noise due to the stochastic nature of interaction
* Correspondence: Thomas.Braun@unibas.ch
1Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum,
Universität Basel, Basel, Switzerland
Full list of author information is available at the end of the article

© 2014 Ramakrishnan et al.; licensee BioMed C
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
networks [2]. An experimental environment of this type
will generate large quantities of heterogeneous but related
data. This presents many challenges, including the key
problem of tracking and integrating measurements made
on a series of related samples across diverse technological
platforms.
A number of software tools are available to handle data

originating from high throughput experimental set-ups.
These are technique specific. Examples are, Omero for
light microscopy [3], Leginon for electron microscopy (EM)
[4] and PRISM for high-throughput proteomics [5]. Dif-
ficulties arise when several instruments and/or complex
(automated) preparation steps are required for the re-
search, as is often the case in a micro-fluidic pipeline.
entral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly credited.

mailto:Thomas.Braun@unibas.ch
http://creativecommons.org/licenses/by/2.0


Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 2 of 14
http://www.biomedcentral.com/1471-2105/15/84
One way to create a multi-instrument solution would be
to amalgamate the domain-specific software systems.
The disadvantage is that combinatorial problems caused
by required interaction between and coordination of the
individual software packages, will increase rapidly with
the number and complexity of the technologies involved.
Furthermore, the correlation of individual datasets in
relation to space and time will become progressively
more difficult.
Flexible data management systems such as openBIS

(open Biological Information System) [6] offer a partial
solution, providing scalable data storage and retrieval,
metadata integration and searching, and data source
tracking. Although the platform-independent, web-based
graphical user interface (GUI) of openBIS allows user
management, authorization and configurable database
browsing, it does not allow in depth data handling and
does not support direct instrument control. These shortfalls
are overcome by the new software presented in this paper,
openBEB (open Biological Experiment Browser).
The requirements to be met become apparent when the

following typical example is considered (see also results
and discussion): Eukaryotic cells growing in miniaturized
Petri dishes and are subjected to pulse chase experiments.
During the experiment, the cells are observed by time-lapse
light microscopy (LM). At specific time points, individual
cells are lysed and prepared for further analysis by EM.
Subsequently, specific features of the images, e.g., fluores-
cence signals detected by LM, are tracked over time. This
scenario has three requirements: (i) Data acquisition and
instrument control must be tightly integrated. (ii) Various
data types must be collected and handled, e.g., image data
and time-resolved “wave” data. (iii) The individual steps
of the experiment must be correlated in space and time,
e.g., EM data of an individual cell must be assigned and
correlated to series of time-lapse LM images. OpenBEB
provides a flexible, data-type agnostic core framework
that performs the tedious “house keeping” tasks demanded,
such as data management and the creation and mainten-
ance of a unified hierarchical coordinate (HC) system. The
latter establishes the relationships between experimental
results that have to be retained in multi-scale space and
time, a fundamental requirement for any correlative meas-
urement. Furthermore, openBEB provides a plug-in man-
ager that supports plug-ins for data-type specific tasks and
instrument control. An internal macro system allows the
control and coordination of these individual technology-
specific modules. Furthermore, plug-ins can be used to
connect openBEB to databases such as openBIS, facilitat-
ing data storage and synchronization.
OpenBEB furnishes the end-user with an environment

for instrument control, data acquisition, visual inspection,
advanced visualization, annotation, information correlation
and metadata management. Of advantage for the developer,
the software architecture allows the rapid integration of
new instrument-specific modules, facilitating the use of
correlative methods for systems biology, e.g., complex
micro-fluidic set-ups.

Implementation
Central goals of openBEB are to provide both an environ-
ment allowing the fast integration of correlative measure-
ments and a platform allowing the rapid development of
control-software. The extensible openBEB framework is
implemented in LabView using object-oriented “loose
coupling” principles. The latter is achieved via a plug-in
structure. The programming language, G, makes it pos-
sible for researchers with little or no programming experi-
ence to develop their own extensions with minimal effort.
The extensive libraries of the LabView environment for in-
strument control, data acquisition and signal processing
are optimal for the implementation of the automatic data
acquisition essential to realize high throughput.
OpenBEB consists of two parts (Figure 1): (i) A static

core program, responsible for data and metadata handling
and the coordination of different modules. (ii) A dynamic
plug-in architecture. Plug-ins supply the case-specific
functionality of openBEB, and are dynamically loaded
by the plug-in manager during program start-up. They
provide the tools of the browser, such as data-type specific
libraries, importers, data visualization modules (called
viewports), instrument controllers as well as database
bridges, e.g., for openBIS. This modular architecture
allows maximum flexibility and scalability.

Core program
A queued message state machine drives the core program
(Figure 1). The central message queues can receive com-
mands from several sources, such as the GUI, the macro-
parser or the application server via a TCP based protocol.
The latter allows platform-independent communication
with other software packages or remote instrument con-
trollers and computers (details are provided on the appli-
cation home-page). Complex operations can be controlled
by text-based macros that are located in the application
support folder and can be adjusted by users if needed
(Macro and Cron server). The data manager organizes the
import and management of data in a data-agnostic man-
ner and can handle arbitrary types of data. The data-types
themselves are defined in plug-ins as described below.
Furthermore, the data manager of the core program
maintains one or more local containers for data and
metadata called “bundles”. Bundles rely on a hierarchical
file structure and can be directly accessed by any program
without the need of the openBEB software. To avoid
conflicts with automated processes, access to bundles
or data collections they contain via the GUI can be blocked.
Data-management tasks are performed centrally by the



Figure 1 Overview of the openBEB software. For end-users, openBEB acts as a link between experimental biology and database systems. It is
designed to facilitate data acquisition, browsing, annotation and synchronization with databases. For developers, it provides an environment for
the fast development of data-acquisition and instrument control plug-ins, providing a core framework for data-management and coordination of
different modules by a unified macro language. OpenBEB runs locally and consists of a core program and a plug-in manager. Plug-ins are dynamically
loaded during start-up. The core program maintains a local bundle, i.e., a container structure in the file system for raw-data, metadata and cache files.
All files (except the cache files) are readable by standard programs, can be browsed in the file system, and can be directly accessed by other local
programs. The core program can be controlled by a graphical user interface (GUI) and via macros and a TCP-based protocol. The update manager of
openBEB automatically updates an application support folder containing metadata definition files and plug-ins. Plug-ins are loaded and coordinated
by the plug-in manager. The open architecture of openBEB allows plug-ins to be written to handle different types of data (data-type plug-ins, e.g., for
images or simple xy-scatter data). Data-importers or plug-ins for data visualization (called viewports) can be loaded. The plug-in manager also provides
a unified interface for instrument control plug-ins facilitating the rapid development of instrument control software. Database synchronization is also
achieved using plug-ins; the standard openBEB installation is designed to communicate with the openBIS system [6]. The error handler provides a
logging and error-processing tool for the core program as well as for the plug-ins.

Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 3 of 14
http://www.biomedcentral.com/1471-2105/15/84
data-manager, which can be reserved by a process, e.g.,
a macro (see below). The data manager calculates MD5
checksums during data import as a control measure to
check the integrity of the raw data. OpenBEB never
changes the raw data. Furthermore, the data manager
allows transparent, lossless data compression by the
ZIP algorithm [7]. The metadata manager organizes the
metadata, which are stored in an xml format. The meta-
data includes the embedded metadata of the raw data,
which can be quite extensive for some data types. In
addition, the metadata manager supports pre-defined
metadata annotations called “protocols”, based on a con-
trolled vocabulary. These predefined protocols are located
in the application support folder. This support folder is
automatically updated by the update manager during
openBEB start-up, keeping all components, e.g., plug-ins
and protocol definition files, up-to-date with a server-side
repository. Last but not least, a central error handler and
logging system monitors all activities of both the openBEB
core program and the plug-ins.
Macro control and modules
OpenBEB includes a simple macro interpreter, which also
allows unified control of the modules provided by plug-
ins. The macro language is primarily an inter-module
processing and coordination system. It supports both
the use of variables and branching and looping, provides
primitives for graphical user interaction (dialogs and user
input), and supports communication between modules. A
TCP based application server is integrated to handle appli-
cations of greater complexity or to provide an interface to
existing software.
Importantly, the macro interpreter has an open modular

architecture. Every plug-in can provide one or several
modules that can be addressed by the macro interpreter.
Every module implicitly consists of a queued state-
machine architecture and runs independently; this is
particularly important for instrument control. A module is
associated with a name and must follow specific rules for
command and error handling. Furthermore, a minimum
set of commands, e.g., for process coordination, must be



Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 4 of 14
http://www.biomedcentral.com/1471-2105/15/84
supported. The coordination of different modules is achieved
using synchronization primitives that are available in the
macro language.
A macro panel (Figure 2) simplifies the creation and

editing of macros as well as task handling; start, execu-
tion and scheduling (“cron”). The debug menu provides
information about the last run of the selected macro,
such as the variables used. The “cron “ tab entry configures
a cron-like server (part of the core program) for the
time specific execution of macros. This is useful to trigger
macros to prepare instruments ahead of usual working
times, e.g., to carry out routine cleaning procedures or
to activate temperature controls.

Local repository
OpenBEB maintains a local repository for raw-data,
metadata and cache files. This is accessible by standard
tools of the operating system. Standard formats are
used, except for the instrument dependent raw-data and
the cache files. The local repository can be browsed by a
file-browser, such as the Macintosh Finder or Windows
Explorer, therefore, the entire contents are accessible to
3rd party software.
OpenBEB organizes data in “collections”, i.e., containers

that can but do not have to host a series of raw datasets
and associated metadata files. In the simplest case, a
collection only consists of a metadata file. Collections
can contain other collections, and can thus be organized
in a hierarchical structure. The upmost collection, the root
of the collection hierarchy, is called a “bundle”. A bundle
is a collection associated with a path in a file-system. The
structure of the openBEB bundle is outlined in Figure 3.
Several bundles can be attached to and maintained by an
openBEB instance.
Note, that the collection hierarchy of a bundle does not

necessarily reflect the workflow of experiments. However,
the workflow is preserved in the database system, e.g.,
Figure 2 OpenBEB macro panel. The macro panel allows the creation an
modules. Furthermore, it provides a GUI to control the timed execution of
openBIS [6]. A bundle is a work-snapshot and can com-
bine collections from different spots in the workflow, e.g.,
a bundle can contain collections of original data obtained
by different techniques and collections that amalgamate
the results.

Annotating metadata, hierarchical coordinate system and
graphical annotations
The metadata handling system is an important aspect of
openBEB. Every collection and dataset contains separate
metadata. The XML-based metadata files are organized in
several sections (Figure 4): (i) Protocols; provide domain
and technique specific information. Protocol templates
based on a controlled vocabulary are organized centrally
in the application support folder and are automatically
updated during program start-up. (ii) User descriptions;
contain additional user information, such as free text
annotations and a rating system. (iii) Database ID (col-
lection only) and coordinates; indicate the relationship
between collections and the data sets they contain. The
hierarchical coordinate system (see below for details)
defines the physical relationship between different ex-
periments and datasets in space and time (if needed).
(iv) Dataset properties (see below).
In addition, openBEB supports graphical annotations

by creating portable network graphics files (png). This
metadata includes representations required for each
dataset; both a thumbnail and a preview file are created.
Further, graphically annotated views can be stored (see
Results and discussion, Figure 5).
Metadata entries can be added in various ways, e.g., by

using the GUI (see Results and discussion). Automatic
annotation is of importance for high throughput mea-
surements and can be performed either by directly
accessing the XML metadata-files through openBEB,
or by writing an attribute file to accompany the raw
data. The latter allows the transfer of embedded metadata
d editing of macros controlling the core program and the plug-in
tasks by a cron-like server.



CollectionName.bundle

RawData Annotations Cache

Dataset

Dataset.md5

Dataset CollectionMetadata.xml

Dataset metdata

metadata.xml

embedded.xml

browserSettings.xml

Representations

Legend

Folder

File

Multible 
instances

Collections

Subcollection

File-system path

Figure 3 Data organization of the local repository maintained by openBEB. Data are organized hierarchically in collections. The
uppermost level (root collection) is called a bundle. Bundles contain collections, and collections can contain other collections: The
collection root is denoted collectionName.bundle, where collectionName is the bundle name. A bundle defines the file system location
(file-system path) where the collection hierarchy is stored. A collection contains four folders: Folder one, RawData, contains the raw-data.
The raw data is never changed by openBEB, however, openBEB calculates an MD5 check sum to monitor the data integrity and allows data
compression by a lossless algorithm. Folder two, Annotations, contains metadata information, preview and graphically annotated representations
of the data. It also contains the embedded metadata of the raw files in a standardized xml format. Folder three, Cache, contains cache
information. This information stores cache files for faster browsing or stores processing results. All of the cache information is redundant
and can be recalculated at any time from the information contained in folders one and two. Consequently, the information in the cache folder is
not synchronized with the database. Folder four, Collections, is a container hosting sub-collections, allowing an arbitrary hierarchical, tree-like structure
of collections to be built.

Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 5 of 14
http://www.biomedcentral.com/1471-2105/15/84
information from the raw-data file into the explicit meta-
data of a dataset.
The metadata file also contains a description of the

dataset properties. These data properties are very flexible
and support an arbitrary number of dimensions. They are
designed to describe equally spaced data, but are not
limited to this. A dimension contains a name, a type (e.g.,
numeric or index), a unit, a start and spacing (only for
equally spaced data) and a length (number of data points
in the direction of the axes). The data elements themselves
are described by the data-type; consisting of a name, unit
and type (e.g., numeric or category) and a precision that
indicates the memory structure of the data, e.g., 64 bit
floating point.
The coordinate system is hierarchical (see Table 1) and

allows the correlation of different experiments, each
measuring a specific property of the same subject. Col-
lections or datasets can define the root of a coordinate
hierarchy, or can be at a specific point in the coordinate
system relative to the parent collection, e.g., using a differ-
ent scale (see description in Table 1). Note: the coordinate
systems are linear and the coordinate vectors are additive
(illustrated in the Results and discussion, Figure 6). An
internal timer that uses an NTP (network time protocol)
client for calibration provides a clock for absolute time
stamps. As long as the same NTP server is used, this allows
the synchronization of measurements made using different
instruments.

Error handling
OpenBEB implements centralized, system-wide error
handling (Figure 7). A log server maintains a log of all
events taking place in all running modules, i.e., in both
the core program and the plug-ins. A central error handler
reacts to errors. Optionally, errors can be reported to an
issue tracker and viewed via a GUI. Different levels of
error tolerance can be set to allow automation.

Plug-in manager
The experiment-specific functionality of openBEB is
provided by plug-ins. A plug-in can provide functional-
ity to the core program in two ways: (i) By using func-
tions to override standard core routines, e.g., importing
a dataset by an importer. (ii) By using so called “mod-
ules”, i.e., a queued state machine that can be addressed
by the macro interpreter as described above. Plug-ins



Protocol templates (application support)

Protocol
Collection 

Dataset

Hierarchical 
coordinates

Viewport

Dataset

Representations

Metadata

Protocol

Coordinates

Data Properties

Embedded MD

Stack MD

User description

Collection

Dataset metadata 
template

Metadata

Database ID

Protocol

Coordinates

User description

Datasets

openBIS plug-in

Representations

View

Viewport

User description

Thumbnail

Preview

3rd party 
software

Plug-in

Figure 4 Metadata system of openBEB. All metadata for the collection and the associated raw-data are stored in the annotation folder of a
collection. See text for details.

Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 6 of 14
http://www.biomedcentral.com/1471-2105/15/84
are instantiated during program start-up and destructed
when openBEB quits. Before loading, a plugin.ini file is
read to confirm compatibility and provide plug-in de-
scriptions for the user. The plug-in is then initialized, e.g.,
standard settings are read from the file-system or plug-
in-specific modules are started. Note that either plug-ins
that function as stand-alone programs or plug-ins that call
other 3rd party software can be written for instrument
control. The homepage of openBEB provides specific
information and tutorials on how to write plug-ins.
The available plug-ins are distributed together with their
source code and can thus easily be studied or changed
locally.
The openBEB plug-ins are organized hierarchically

(Table 2): (i) ViewportType plug-ins are libraries provid-
ing data-type definitions (e.g., for images, or time re-
solved “wave” data). (ii) Library plug-ins do not provide
data-type definitions but basic functionalities, such as
data-manipulation routines or basic instrument control
functionalities. Other plug-ins can be dependent on
viewportTypes or libraries. (iii) Viewports are plug-ins
for data visualization. They are always linked to a data-
definition library and provide a module called “viewport”
which must understand specific commands such as ‘display
data’ or ‘unload data’. Note that every data-definition library
can have several linked viewports allowing the visual
representation of different aspects of a data type, e.g., the
display of an image in real or Fourier space (demonstrated
in Results and discussion, Figure 8).
The plug-in manager (Figure 9) displays information

about all installed plug-ins and allows them to be acti-
vated/deactivated at will (needs an openBEB restart).
Every plug-in also owns a preferences GUI that can be
accessed by the plug-in manager.

Results and discussion
The use of openBEB is first demonstrated for administra-
tors and plug-in developers. A typical scenario describing



Figure 5 Metadata subsystem GUI of openBEB. Data can be annotated by pre-defined “protocols” (A and B) and graphically (D and E). A)
Collection metadata. B) Dataset metadata. C) Embedded metadata of the raw-data file, here the embedded information of a Gatan dm3 file. D)
Views list: “Views” of the graphical representations of each file in a dataset. E) User interface to create and annotate views; graphical annotation is
possible. F) User interface to perform batch annotations.

Table 1 Hierarchical Coordinate (HC) fields

Parameter Description

Rootflag Boolean. True if this entity is the coordinate system root.

x, y, z Cartesian. Internally the coordinates are stored as picometer
(pm) values in a signed 64-bit integer. These coordinates are
relative to the parent coordinates (i.e., for collections, the
parent collection; for datasets, the containing collection).

Scale Multiplication factor for Cartesian coordinates; for better
readability, e.g., set the scale to 1000 if nanometer values
should be displayed.

dx, dy, dz Estimated standard error of Cartesian coordinates (in pm).

t Time stamp in seconds since 1.1.1904 00:00:00 Universal Time
ignoring leap seconds. The time stamp is represented in a
128-bit fixed-point number with a 64-bit radix. The first 64
bits are a signed integer for the seconds, the second 64 bits
are unsigned fractions of a second.

dt Estimated standard error of the time stamp (in fractional seconds).

Description Description of the coordinate system (string); field to
provide additional, ‘human readable’ information.

Fields that are not applicable must be described as NaN (not a number). Error
estimates can be provided for every parameter.

Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 7 of 14
http://www.biomedcentral.com/1471-2105/15/84
how openBEB is used to combine live cell microscopy,
microfluidic control and a new approach for visual pro-
teomics called “spread and lyse” [8,9], is then presented.
Installation, administration and plug-in development
Installation and update
OpenBEB is installed in two steps: First, a standard
installer (Mac or Windows) installs the runtime library
and the core program (Figure 10). Second, the core pro-
gram downloads and installs the application support folder
containing the plug-ins, metadata template definitions,
macros and libraries. This folder is different for every user
and is located in a directory with full user access. During
openBEB start-up, the application support folder is up-
dated to the newest version from a server-side repository
(Figure 10). This allows the metadata templates and plug-
ins to be updated in a centralized way for a workgroup.
Different repositories can be specified for different work



LM Live cell imaging

"Pule chase" 
experiment

Single cell 
lysis

EM

EM Grid 
prepration

EM imaging
Cell 

culturing

openBEB

LM Imaging & Single cell lysis plug-in"Cell culturing" plug-in
EM data importer or 
instrument control

Cell 
culture

Live cell images of 
culture

Single cell 
lysis

B

C

D

Legend Collection tree Collection stack

EM Prepration 
& images

A

E

1

2

3

4

5
6

7

8

9

10

Figure 6 Creation of a new collection, instrument control and data-acquisition. A) Dialog to create a new collection. Importantly,
a collection protocol (1) must be chosen, and an importer can be selected if needed (2). B) Example workflow for biological
experiments and single cell “lyse and spread” visual proteomics. C) openBEB plug-ins employed to control the instrument, perform
time-lapse imaging of the cells, prepare samples from individual cells for EM (i.e., dialysis/staining and deposition on EM grid) and
subsequently import EM images for analysis by visual proteomics. D) Tree-like structure of collections containing datasets and metadata created
by openBEB. The relationship between the workflow and openBEB components is indicated by red arrows (3). The blue arrows (4)
show the relationship between the openBEB components and the collection-tree. Note that the cell culture LM images define a
coordinate system, and the coordinates of subsequent EM images define a sub-coordinate system (HC system, see text). Instrument
control and data acquisition plug-in combining LM and single cell lysis. This plug-in contains different modules communicating via
the openBEB macro system. (5) Live cell imaging. (6) Stage control. (7) Control optics. (8 to 10) Pump-system and electroporation
control.

Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 8 of 14
http://www.biomedcentral.com/1471-2105/15/84
environments. An administration plug-in facilitates the
management of the application support folder (see below
and Figure 11).
Protocol management
Protocols are managed by a GUI provided by the adminis-
tration plug-in (Figure 11). Protocols are created in two



Macro

Module

sendLog
Entry

Execute 
command

Error?command

Log 
handler

Error handler

Analyse

Warning

Error

Reporting
Tool

Figure 7 Error and logging subsystem of the openBEB core program. The individual modules receive commands from the macro-parser and
execute them in a ‘first in first out’ order (queued state machine). Immediately before execution, the command is sent to the log handler, which
writes it directly to the log file. After execution, if a warning or error occurred the module sends an error report to the error handler. Optionally, a
reporting tool is triggered for error reporting. A log file viewer is provided in the form of a plug-in.

Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 9 of 14
http://www.biomedcentral.com/1471-2105/15/84
steps: First, a controlled vocabulary library is defined;
the same vocabulary is used for all protocols. Second,
the protocols are assembled from the controlled vo-
cabulary. An entry in a protocol can be modified; the
parent title can be changed as well the standard value of
the entry. Note, that every vocabulary entry is associated
with a unique identifier, which allows protocols to be
automatically updated if a controlled vocabulary entry is
changed.

Plug-in development
Templates and tutorials are provided on the software
homepage www.openBEB.org. A helper program called
“openBEB DevCenter” (openBEB development center)
that facilitates the batch compilation of plug-ins and
editing of the plug-in initialization file, is also down-
loadable (Figure 12).
To create a plug-in, a LabView project is created in-

cluding the openBEB core and any other openBEB
library required. A plug-in must provide a minimal set
Table 2 List of plug-in types

Type Dependency Description

ViewportType Provides a data-
manipulations to

Library (ViewportType) Libraries; can be
definitions.

Viewport ViewportType Data visualizatio
multiple viewpo

Collection (ViewportType, Library) Plug-in for data

Importer ViewportType, (Library) Imports data.

Tool (ViewportType, Library) Small subprogra

Database (ViewportType, Library) Plug-in for datab

Module (ViewportType, Library) Plug-in providin

The plug-ins are loaded during program start-up, the position in the table indicates
of override functions, which are called during execution.
The specific functions that must be present depends on
the type of plug-in (see the development section of the
openBEB software home-page).

Example: Live cell imagining and “Lyse and spread” visual
proteomics
The use of openBEB together with our recent hardware
developments that connect micro-fluidics to EM for visual
proteomics [8,10] is reported. In the demonstration ex-
periment adherent eukaryotic cells are cultured, and
monitored by time-lapse LM throughout. At specific
time points, pulse chase investigations are performed
and, after a chase time, individual cells are lysed by
electroporation [10]. Subsequently, the cell lysate is trans-
ferred into a microcapillary, prepared for EM and imaged
for analysis by “lyse and spread visual proteomics” [8,9].
The presentation focuses on the application of openBEB
using the GUI, and demonstrates some typical aspects of
the program.
type definition and also a library containing routines allowing specific
be carried out for the defined data-type. Are loaded first.

dependent on ViewportTypes. Are loaded immediately after ViewportType

n plug-ins. A specific data-type (defined in the viewportType) can have
rts. Viewports are presented in the main window (see Figure 13A).

import or instrument control.

m. Can be invoked with the tool menu in the main window (Figure 13B).

ase connection. The standard plug-in synchronized with openBIS [6].

g a module (commands) for the macro-interpreter.

the load order. (): optional.

http://www.openbeb.org


Figure 8 Different viewports visualizing the same image. A) Standard view of the image in real-space. A look-up color table has been added
and can be adjusted (top right), as can the greyscale histogram (bottom right). B) Power spectrum of the image. C) Surface view of the image.
The different views can be saved as new files at will and are thus called “views” (see Figure 5D). Note that you can easily switch between the
different views (Figure 13, B5).

Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 10 of 14
http://www.biomedcentral.com/1471-2105/15/84
Main window of the openBEB GUI
OpenBEB can be run headless and controlled via the
application server, or by a GUI (Figure 13). The main
window of the GUI has three panels namely the viewport
(Figure 13A), the tools and navigation panel (Figure 13B)
and the management and metadata panel for core pro-
gram control (Figure 13C).

Creating and managing collections, instrument control and
data acquisition
Bundles and collections are managed using the manage-
ment panel of the metadata tab control (Figure 13, C7
1

3

Figure 9 Plug-in manager of the core program. When the ‘Manage act
on the left (1). The plug-in information panel and a GUI for the plug-in spe
plug-ins can be activated or deactivated using the second subpanel (3).
and 8). Figure 6 depicts the user interface that allows a
new collection to be initiated (A). A typical workflow
combining cell culturing, time-lapse LM imaging and
visual proteomics by EM is shown (B). The responsible
plug-ins are indicated (C), and the resulting collection
hierarchy is depicted (D). The plug-in controlling live
cell imaging and sample preparation for EM, is shown
as an example (E).
Note, coordination between the different measurement

domains is crucial, and is achieved by the HC system: As
an example, the cell culture defines a (root) coordinate
system in x and y and the LM images can be calibrated
2

ive Plug-ins’ subpanel is selected, a list of all active plug-ins is shown
cific settings are displayed when a plug-in is selected (2). Installed



A B C

Figure 10 Installation, first run and update. A) Standard OS X installer to install the core program and required runtime libraries. A similar
installer is provided for Windows. B) First run; user interface installing the application support folder. C) User interface of the update procedure
during start-up. The application support folder is automatically updated without user interaction. A control mechanism checks whether the
current openBEB application is compatible with the updated application support folder, if not, the newest openBEB core program is downloaded
and installed (needs administration rights).

Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 11 of 14
http://www.biomedcentral.com/1471-2105/15/84
accordingly. Subsequently, an individual cell imaged by
LM is selected for further experiments, e.g., lysis. The
new data is stored in a sub-collection (e.g., Single cell
lysis, Figure 6D). The data from this analysis define a
sub-coordinate system; this sub-coordinate system depends
on the root coordinate data of the mother collection (here
the cell culture). Together, this defines a HC system as de-
scribed above. In other words: To find the soccer stadium,
latitude and longitude “GPS” coordinates are reasonable,
to find a player on the soccer field, a rectangular coordin-
ate system with the origin at a corner is better suited. The
two systems define a HC system.
1 2 3

47

8

Figure 11 Administration tool and protocol management. The adminis
the maintenance and creation of protocols (1), the definition of openBEB e
folder to the server (3). Protocols are comprised of three files: a collection p
two are assembled from a library of controlled vocabulary items (7) that is
library can be changed, and these modifications can be automatically trans
Data browsing and visualization
Various viewport plug-ins are available for data visuali-
zation. The type required depends on the data-type. Data
types are defined in so-called viewportType plug-ins
(Table 2).
Three viewport plug-ins are currently provided for the

visualization of scientific greyscale images (Figure 8A-C).
The first visualizes images in real space and allows the
addition and adjustment of a look-up table as well as the
visualization of the greyscale histogram (A). The second
calculates and displays the power-spectrum of the image
data. This is useful to evaluate the contrast-transfer
5 6

tration plug-in manages the application support folder. The tool allows
rrors (2) and the semiautomatic upload of the application support
rotocol (4), a dataset protocol (5), and an initialization file (6). The first
shared between all protocols. An entry in the controlled-vocabulary
ferred to existing protocols (8).



A B

Figure 12 Development of openBEB plug-ins. A) openBEB DevCenter facilitating management of the LabView project file created for each
plug-in and maintenance of the plugin.ini file that provides essential information about the plug-in. The tool also allows the batch-compilation of
selected plug-ins. B) Typical layout of a plug-in in the LabView project manager. Every plug-in provides a minimal set of override functions:
“BPMGetPlugin” info provides information about the plug-in, “CBPMInitialize plug-in” initializes the plug-in during start-up, “preferences GUI”
provides a GUI to manage plug-in settings, “CBPMStartMain” starts the main plug-in program.

A B
1

2

6

7 8

10

C

3

9

5

4

Figure 13 Main window of the openBEB browser. The main window can be used as a single window or in full-screen mode. The window has
three parts: A) Viewport for data visualization. These viewports are dynamically opened when browsing datasets. B) Tools and navigation panel.
C) Management and metadata panel. (1) Navigation for dataset browsing. (2) Tools and openBEB menu pop-up’s. (3) Full-screen toggle. (4)
Light-table window, showing small thumbnails of all datasets in the open collection (can be opened and closed). (5) Viewport selection; a specific
data-type can be visualized by viewports. (6) Metadata-panels for collections and datasets. (7) Bundle management. (8) Collection management.
(9) Tree representation of attached bundles (“root collection”) and collections. (10) User interface triggering database synchronization or
download of data.

Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 12 of 14
http://www.biomedcentral.com/1471-2105/15/84



Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 13 of 14
http://www.biomedcentral.com/1471-2105/15/84
function of the imaging device (B). The third uses the data
values as height information and draws an interactive
surface plot representation (C). Note, that viewport data
visualization profits from the rich libraries provided by
the LabView environment, facilitating the development
of such plug-ins.

Data annotation and metadata management
OpenBEB includes a comprehensive metadata management
tool. Metadata can be assigned to collections, datasets and,
depending on the data-type, to frames of a dataset stack,
e.g., time series. Annotations can be created or modified
using the GUI (Figure 5A-F). Individual annotations can
be written to collections (A) and dataset files (B). If sup-
ported by the importer, the metadata embedded in the
raw-data file is displayed (C). Furthermore, the data
visualization provided by the different viewports can be
stored as “views” (D) that can also be graphically annotated
if required (E). A batch-annotation tool facilitates changes
to the metadata of selected data series (F).

Database synchronization with openBIS
OpenBEB supports database synchronization plug-ins; a
standard plug-in to synchronize with an openBIS database
is presented here. This plug-in lets openBEB transparently
store a user’s local work on a server, which has several
benefits: (i) It makes the user’s work accessible to other
team members or collaborators. (ii) It protects against
data loss. Having a second copy of the data on a server
enables data recovery in the event of hardware failure or
loss. The server, which is managed by a system adminis-
trator, is typically configured to make a nightly back up.
(iii) Synchronization with a server ensures that work
remains accessible beyond the duration of a PhD (unfortu-
nately still the typical lifetime of scientific data). Storing
the data on a server, along with any required contextual
metadata, makes it possible for future team members to
understand and build upon the results of present or previ-
ous team members. (iv) It further increases the scalability
of the overall system as only recent data has to be kept
Figure 14 Communication diagram explaining and illustrating the up
locally in openBEB, while older data can be offloaded to
openBIS.
The data synchronization plug-in for openBIS is a

standard plug-in supplied with openBEB (Figure 14). The
openBIS data synchronization plug-in stores the raw-data
and the accompanying metadata in openBIS. Just pushing
the data to the server is not sufficient; information about
the experiment that produced the data and the biological
and technical samples that were measured is required
as well. To reinforce this connection, the openBEB
synchronization process creates an experiment and sam-
ple in openBIS. Information about the experiment and
sample are important for data-provenance tracking.

Limitations and comparison to other software
The functionality of openBEB depends on the available
plug-ins. Currently, two viewportType families are pro-
vided, each defining a data-type; one is for greyscale
images (as presented above), the other is for “wave”
data providing support for equally spaced measure-
ments, e.g., a time resolved signal. Further, to a certain
degree available plug-ins for hardware control are inher-
ently tied to the hardware and communication protocols
of a local set-up. Accordingly, the instrument and data-
acquisition control system presented in Figure 6 is directly
linked to specific hardware developed in-house, and
limited to this specific setup. However, the extensive li-
braries for data acquisition, processing and visualization
of LabView make it easy to develop new plug-ins, and
openBEB hardware integration via library plug-ins allows a
high degree of code re-usage. Furthermore, the core system
of openBEB facilitates the integration of independently
developed modules.
To our knowledge, openBEB is the only data-agnostic

browser that has both developers and the end-user in
mind. It complements “single domain” software solutions
[4,5]. Use of openBEB can provide the unified control and
tight integration essential to maintain the temporospatial
relationship of correlated experiments. Combining the
data-type independent housekeeping tools offered by the
loading of an openBEB bundle to openBIS [6].



Ramakrishnan et al. BMC Bioinformatics 2014, 15:84 Page 14 of 14
http://www.biomedcentral.com/1471-2105/15/84
openBEB core program with the flexibility of the plug-in
system makes this possible.

Conclusions
OpenBEB is a tool for correlative experiments in systems
biology. It allows instrument control and provides a
bridge between biological experiments, annotation and
synchronization with databases. The software is (i) for
end-users performing automated (biological) experiments
and (ii) for developers requiring a framework to write
instrument control and data-registration plug-ins. The
latter inherently benefit from the “house-keeping” data-
management and annotation tools of the openBEB core
program. The plug-in based, loose coupling and the open
modular architecture of the macro subsystem make open-
BEB highly flexible and scalable. Further data-type plug-ins
will be implemented in the future, e.g., to directly access
mass-spectrometry data.

Availability and requirements
The openBEB core program has the following requirements
and is available as indicated:
Project name: openBEB
Project home page: www.openBEB.org
Operating system(s): Mac OS X, Windows XP, 7; will
be compiled on Linux
Programming language: G (LabView), JAVA
Other requirements: LabView runtime 2012, JAVA.
Minimal screen-size of 1024 × 720 pixel
License: Apache license (http://www.apache.org/licenses/
LICENSE-2.0)
Any restrictions to use by non-academics: no restric-
tion, however restrictions may apply for specific plug-ins.

Abbreviations
openBIS: open Biological Information System; openBEB: open Biological
Experiment Browser; GUI: Graphical user interface; HC: Hierarchical coordinate
system; EM: Electron microscopy; LM: Light microscopy; NTP: Network time
protocol.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TB developed the software concept and wrote most of the core software
and plug-ins; NS developed the instrument plug-in connecting live cell imaging,
microfluidic based cell lysis and sample preparation for visual proteomics
(shown as an example); CR, KE and BR critically reviewed openBEB progress,
developed/maintained openBIS and created the openBEB-openBIS bridge; AB,
SR, PR, KNG, HS, SAM tested the software and/or provided significant feedback
during the software development. All authors were involved in the manuscript
preparation. All authors read and approved the final manuscript.

Acknowledgements
We thank Stefan Arnold, Christoph von Arx, Benjamin Bircher, Dominic Giss,
Simon Kemmerling (C-CINA, University Basel) for testing the openBEB
software. We thank Christophe Salzmann (EPFL, Lausanne, Switzerland) for
providing the LabView Quicktime libraries. The project is supported by the
SystemsX.ch initiative (CINA, granted to HS), the SNF (200020_146619,
granted to TB) and the SNI PhD school.
Author details
1Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum,
Universität Basel, Basel, Switzerland. 2Center for Information Sciences and
Databases (C-ISD), Department of Biosystems Science and Engineering, Swiss
Federal Institute of Technology Zurich, Basel, Switzerland. 3Swiss Institute of
Bioinformatics, Biozentrum, Universität Basel, Basel, Switzerland. 4Laboratory
of Physical Chemistry of Polymers and Membranes (LCPPM), École
Polytechnique Federale de Lausanne, Lausanne, Switzerland.

Received: 19 October 2012 Accepted: 11 March 2014
Published: 26 March 2014

References
1. Aderem A: Systems biology: its practice and challenges. Cell 2005,

121:511–513.
2. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL,

Weissman JS: Single-cell proteomic analysis of S-cerevisiae reveals the
architecture of biological noise. Nature 2006, 441:840–846.

3. Allan C, Burel JM, Moore J, Blackburn C, Linkert M, Loynton S, MacDonald D,
Moore WJ, Neves C, Patterson A, Porter M, Tarkowska A, Loranger B,
Avondo J, Lagerstedt I, Lianas L, Leo S, Hands K, Hay RT, Patwardhan A, Best
C, Kleywegt GJ, Zanetti G, Swedlow JR: OMERO: flexible, model-driven data
management for experimental biology. Nat Methods 2012, 9:245–253.

4. Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S,
Potter CS, Carragher B: Automated molecular microscopy: the new
Leginon system. J Struct Bio 2005, 151:41–60.

5. Kislinger T, Rahman K, Radulovic D, Cox B, Rossant J, Emili A: PRISM, a
generic large scale proteomic investigation strategy for mammals.
Mol Cell Proteomics 2003, 2:96–106.

6. Bauch A, Adamczyk I, Buczek P, Elmer FJ, Enimanev K, Glyzewski P, Kohler M,
Pylak T, Quandt A, Ramakrishnan C, Beisel C, Malmstrom L, Aebersold R,
Rinn B: openBIS: a flexible framework for managing and analyzing
complex data in biology research. BMC Bioinforma 2011, 12:468.

7. ZIP File Format Specification. http://www.pkware.com/documents/
casestudies/APPNOTE.TXT.

8. Kemmerling S, Ziegler J, Schweighauser G, Arnold SA, Giss D, Müller SA,
Ringler P, Goldie KN, Goedecke N, Hierlemann A, Stahlberg H, Braun T:
Connecting µ-fluidics to electron microscopy. J Struct Biol 2012,
177:128–134.

9. Engel A: Chapter 9 - Scanning transmission electron microscopy:
biological applications. In Advances in Imaging and Electron Physics, Volume
159. Edited by Hawkes PW. Amsterdam: Elsevier Inc; 2009:357–386.

10. Kemmerling S, Arnold SA, Bircher BA, Sauter N, Escobedo C, Dernick G,
Hierlemann A, Stahlberg H, Braun T: Single-cell lysis for visual analysis by
electron microscopy. J Struct Biol 2013, 183:467–473.

doi:10.1186/1471-2105-15-84
Cite this article as: Ramakrishnan et al.: openBEB: open biological
experiment browser for correlative measurements. BMC Bioinformatics
2014 15:84.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://www.openbeb.org
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.pkware.com/documents/casestudies/APPNOTE.TXT

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Core program
	Macro control and modules
	Local repository
	Annotating metadata, hierarchical coordinate system and graphical annotations
	Error handling

	Plug-in manager

	Results and discussion
	Installation, administration and plug-in development
	Installation and update
	Protocol management
	Plug-in development

	Example: Live cell imagining and “Lyse and spread” visual proteomics
	Main window of the openBEB GUI
	Creating and managing collections, instrument control and data acquisition
	Data browsing and visualization
	Data annotation and metadata management
	Database synchronization with openBIS

	Limitations and comparison to other software

	Conclusions
	Availability and requirements
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

