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Abstract

Background: Different high-dimensional regression methodologies exist for the selection of variables to predict a
continuous variable. To improve the variable selection in case clustered observations are present in the training
data, an extension towards mixed-effects modeling (MM) is requested, but may not always be straightforward to
implement.
In this article, we developed such a MM extension (GA-MM-MMI) for the automated variable selection by a linear
regression based genetic algorithm (GA) using multi-model inference (MMI). We exemplify our approach by training
a linear regression model for prediction of resistance to the integrase inhibitor Raltegravir (RAL) on a genotype-phenotype
database, with many integrase mutations as candidate covariates. The genotype-phenotype pairs in this database were
derived from a limited number of subjects, with presence of multiple data points from the same subject, and with an
intra-class correlation of 0.92.

Results: In generation of the RAL model, we took computational efficiency into account by optimizing the GA
parameters one by one, and by using tournament selection. To derive the main GA parameters we used 3 times 5-fold
cross-validation. The number of integrase mutations to be used as covariates in the mixed effects models was 25
(chrom.size). A GA solution was found when R2MM > 0.95 (goal.fitness). We tested three different MMI approaches to
combine the results of 100 GA solutions into one GA-MM-MMI model. When evaluating the GA-MM-MMI performance
on two unseen data sets, a more parsimonious and interpretable model was found (GA-MM-MMI TOP18: mixed-effects
model containing the 18 most prevalent mutations in the GA solutions, refitted on the training data) with better
predictive accuracy (R2) in comparison to GA-ordinary least squares (GA-OLS) and Least Absolute Shrinkage and
Selection Operator (LASSO).

Conclusions: We have demonstrated improved performance when using GA-MM-MMI for selection of mutations on a
genotype-phenotype data set. As we largely automated setting the GA parameters, the method should be applicable
on similar datasets with clustered observations.
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Background
In recent studies, classical regression methods for predic-
tion of a continuous variable from a large number of covar-
iates have been extended for the training of a model when
the data set is hierarchical in nature [1-4]. In this article we
extend our genetic algorithm (GA) variable selection meth-
odology in [5] to allow for clustering in the data. We
compare the performance of multi-model inference (MMI)
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using restricted maximum likelihood (REML) mixed-effects
modeling [6,7] (MM) with ordinary least squares regression
[8] (OLS) and compare GA-MMI with the commonly used
penalized regression method Least Absolute Shrinkage
and Selection Operator [9] (LASSO). We also show how
to optimally set the GA parameters.
As an example, the training of a linear regression model

for prediction of Raltegravir (RAL) resistance (“phenotype”)
from mutations in the HIV integrase region (“genotype”) is
worked out. The data sets used for training and testing
were described in more detail in [5]. The training set con-
sisted of n = 991 clonal genotype-phenotype measurements,
from multiple clones derived from 153 clinical isolates
Central Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
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Table 1 Simple genetic algorithm

Step Description

1 Initialize a random population of pop.size individuals, goto step 4.

2 Select the more fit individuals to form a new population.

3 Modify genetic material of the individuals in this new population
by applying genetic operators: mutation and cross-over.

4 Evaluate fitness of the population. If no solution found goto
step 2, else end.
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(on average 5 à 6 clones per isolate) and repeated measure-
ments (on average 3) from 28 site-directed mutants
(in-vitro lab created clones with a designed mutational
pattern), and the number of candidate mutations for
selection was p = 322. Two test sets were used: the first
consisted of population data of 171 clinical isolates
(test set 1), the second consisted of 67 integrase site-
directed mutants containing most of the known RAL re-
sistance associated mutational patterns [10] (test set 2).
As it was found in [5] that a second order model did not
significantly outperform a first order model, we did not
consider interaction terms.
The paper is organized as follows. We begin by recal-

ling the Simple Genetic Algorithm for variable selection
in OLS linear regression. Then, we introduce GA-MM
as an extension for clustered data. Finally, we introduce
MMI for estimation of the model parameters, combining
the results from multiple GA-MM (or GA-OLS) runs,
followed by a short section on how we applied the
LASSO method for comparison. In the remainder of the
paper, we illustrate our methodology on an example for the
predictive modeling of RAL resistance. For this example,
we describe in detail how we optimized the GA parameter
settings, and we report the results of comparing GA-MM-
MMI with LASSO and GA-OLS-MMI. When nominating
one ‘best’ model, from all models evaluated in the compari-
son, we chose the GA-MM-MMI TOP18 model as a sparse
model with high biological relevance (17 out of 18 integrase
mutations in this model have been confirmed to be associ-
ated with resistance [5]), and having better predictive accur-
acy than LASSO and GA-OLS-MMI models with equal
number of mutations selected. Throughout the text of this
article GA related terminology is written in italic.

Methods
GA-OLS
The Simple Genetic Algorithm, due to John Holland
[11-15], is used to evaluate a set P of regression models
M with psel variables. In GA terminology: P is a popula-
tion, and a model M ∈ P, is called an individual, the psel
model variables determine the individuals’ chromosome.
The number of models in a population, |P|, is fixed, as
well as the number of variables psel in a model M. In GA
terminology: |P| is called the population size (pop.size),
and psel is called the chromosome size (chrom.size). Thus,
each regression model M represents a candidate subset of
psel variables (in GA terminology variables are called genes),
and a GA fitness function has to be defined to identify the
better or ‘more fit’ individuals. In GA-OLS, we used the
linear model R2 (OLS) goodness-of-fit statistic as fitness
function. The better the model M fits to the data, the higher
R2 (with 0 ≤R2 ≤ 1). Models with R2 > goal fitness are
termed solutions to the optimization problem. A Darwinian
evolution is applied to modify the population over several
generations. The GA finds a solution using the search pro-
cedure as given in Table 1.
In step 3 of Table 1, the mutation genetic operator

alters a gene (replacing it with another gene from the
pool of candidate genes) in a chromosome with prob-
ability Pm. The crossover genetic operator re-combines
the genotypes of two individuals. The probability of an
individual to be selected for crossover is Pc. The key in
the optimization is to keep a good balance between se-
lective pressure (Table 1 step 2) and genetic diversity
(Table 1 step 3). The GA run is completed when an
individual is found with fitness > goal fitness. When no so-
lution is found within a maximum number of generations
(max.generations), the GA run is halted. For step 2 of
Table 1, we used tournament selection as detailed in
Section II (Results and discussion). Also, elitism is used,
meaning that the best chromosome (highest R2) is passed
through to the next generation, with a probability Pe.
The running of the GA is done multiple times to gener-

ate a set S of solutions. A ranking by importance can then
be made for all variables based on their frequency in S.

GA-MM
Although OLS parameter estimates are known to be un-
biased when neglecting the correlation structure [6], in this
article we want to evaluate whether using a mixed model
for the GA models, using a random subject effect in
addition to the fixed effects (variables as in the OLS model),
can improve the interpretability or performance of the final
linear regression model, derived with MMI (next section).
The GA-MM methodology makes use of the Simple

Genetic Algorithm (Table 1), completely analogous to
GA-OLS, producing a ranking of variables by their fre-
quency in a set S of GA solutions. However, there is no
single commonly used definition for the R2 statistic as is
the case for OLS [16,17]. Several definitions have been
suggested that all have different interpretations in the
presence of correlated errors. Here, we used the mar-
ginal R2

MM definition from [18], quantifying the variance
explained by the fixed effects. As new data will originate
from other subjects than those used for the training of
the model, the random effects cannot be used for predic-
tion. In [1] it has also been described that conditional R2

(variance explained by the entire model, including the
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random effects) should not be used for fixed-effect vari-
able selection. For us, the main motivation for using
R2
MM was that the MM can be fitted using REML, result-

ing in better estimates for the variance components,
needed in the estimation of the fixed effects, especially
in models with many fixed effects [7].
In the example, for predicting the RAL phenotype y

from the integrase clonal genotype x ∈ [0, 1]p, the mixed
model M uses one random effect/ cluster factor αi (clones
are clustered per clinical isolate/ site-directed mutant):

yij ¼ β0 þ
Xp
k¼1

βkxkij þ αi þ εij;

with β0 the intercept, and yij the j-th response of cluster i,

αieN 0; σ2α
� �

;

and

εijeN 0; σ2ε
� �

If xk ∉M: βk ≡ 0.
The marginal R2 is calculated as:

R2
MM ¼ σ2f

σ2
f þ σ2

α þ σ2ε
;

where σ2
f is the variance calculated from the fixed

effects βk:

σ2f ¼ var
Xp
k¼1

βkxkij

 !
;

σ2α is the between-cluster variance, and σ2ε is the within-
cluster variance.

The intra-class correlation: ICC ¼ σ2α
σ2αþσ2ε

for the model

without fixed effects was 0.92, showing very strong
within-cluster correlation, and suggesting that account-
ing for this correlation may improve the performance of
our model.

GA-MMI
In [19,20] it has been described that, when the number
of samples in the training data is small, making inference
from a single best model, e.g., produced with stepwise
regression, leads to the inclusion of noise variables.
Here, we used MMI to combine the information from
the GA solutions into a final model for making predic-
tions. As a GA run is stopped as soon as the goal fitness
(calculated in section VI (Results and discussion)) is
achieved (Table 1, step 4), GA solutions were ‘equally fit’.
Thus, we used equal weighting of the GA solutions in the
MMI. In [6] it was shown that for stepwise regression
using an information criterion for selection – as we used
in [5] for deriving a consensus model from the GA rank-
ing of variable frequencies – one should for MM use the
biased ML estimators. An advantage of using MMI in
combination with GA-MM is that REML can still be used.
Thus, using MMI, we could make a fair comparison be-
tween GA-OLS and GA-MM.
For estimation of the parameters for the final model,

we used the following three MMI approaches on the GA
solutions:

1. Refitting for a TOP selection of the GA ranking:
from the GA-ranking, the variables with highest
frequencies were retained for the final model, which
was then refitted using OLS/MM.

2. Averaging of parameter estimates β̂k using all GA
solutions (β̂k≡0, if xk not in GA solution) (MMI1):

�βk ¼

XSj j

s¼1

β̂ks

Sj j ;

with |S| the number of GA solutions.

3. Averaging of parameter estimates β̂k using GA
solutions where β̂k≠0 (MMI2):

XSj j
β̂ ks
�βk ¼ s¼1
M∈S xk∈Mgj:jfj

For the model averaging in 2 and 3, parameters β̂k were
(re-)fitted using OLS/MM for all m variables with pres-
ence at least once in a GA solution or for a TOP selection
of variables in the GA ranking only.
LASSO
LASSO [9] is a regularization method that performs
variable selection by constraining the size of the coeffi-
cients, also called shrinkage. By applying an L1 absolute
value penalty, regression coefficients are ‘shrunk’ to-
wards zero, forcing some of the regression coefficients
to zero. Using the R package glmselect 1.9-3 [21], for
the described example in this paper we performed vari-
able selection using the LASSO technique on the clonal
genotype-phenotype database returning a LASSO rank-
ing of variables (solution path) as selected by decreasing
the amount of penalty applied. Besides using the shrink-
age coefficients for variable estimation (default LASSO)
we also applied OLS and MM to the LASSO selected
variables (post-LASSO [22]).
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Results and discussion
GA parameter settings
We optimized the GA parameters one by one in the order
(I - >VI) as described below, and taking computational
efficiency into account (see Additional file 1). Tournament
selection was used as selection method to form a new
population of more fit individuals. GA parameters Pm
and Pc were optimized together using a meta-GA. Pe and
pop.size were fixed in advance and were not optimized.
Pe was set to conserve the best chromosome in three
consecutive generations, followed by a generation where the
probability of keeping the best chromosome was set to 20%.
Pop.size was set equal to 20. To set the main GA parame-
ters: max.generations, chrom.size, and num.runs we used
cross-validation (Additional file 1 point 7).
For running the GA, we used the R package GALGO

1.0.11 [23]. After inspection of the R2
CV results, with

exception of goal.fitness, we took the same optimized
GA parameters values for GA-OLS and GA-MM (for
the model comparison): pop.size = 20, chrom.size = 25,
Pm = 0.1, Pc = 0.6, Pe = (1,1,1,0.2), max.generations = 500,
tournament.size = 10, num.solutions = 100, goal.fitness.
ols = 0.957, and goal.fitness.mm = 0.95. In Additional file 2
is the R code we used to derive these settings and to run
GA-MM-MMI.

I. Meta-GA for selection of Pm and Pc
For the meta-GA optimization of the parameters Pm
and Pc (Table 2), we used the R package gaoptim 1.0
with the default settings (except for pop.sizemeta = 20,
instead of 100 (default)) [24]. GA-OLS was used as the
meta-GA fitness function returning the R2 from the
best chromosome for the (Pm, Pc) combinations. Differ-
ent random numbers were generated for each of the
GA-OLS runs, thus the same real-valued combination
(Pm, Pc) with multiple presence in the meta-GA popu-
lation did not give the same fitness result. The fitness
Table 2 Meta-GA optimization of Pm and Pc

GA CHOSEN PRE-SET BEING
OPTIMIZED

GA-OLS pop.size = 20 chrom.size = 15 Pm ∈ [0,1]

Pe = (1,1,1,0.2) max.generations = 100 Pc ∈ [0,1]

num.runs = 1

goal.fitness = 1

tournament.size = 10

metaGA pop.sizemeta = 20

num.generationsmeta = 100

Pmmeta = 0.01

Pcmeta = 0.9

Pemeta = 0.4
landscape from 2000 (pop.sizemeta × num.generationsmeta)
points is shown in Figure 1.
Crossover was a fairly weak genetic operator as can

be seen from the red band in Figure 1. Oppositely, the
mutation genetic operator was a strong operator and
was best taken in the range [0.1, 0.4]. The meta-GA con-
verged at (Pm,Pc) = (0.258,0.372). For further evaluation in
Section II, we also selected (0.1,0.6) and (0.2,0.6) located in
the largest dark red area in Figure 1 (R2 > 0.91).

II. Tournament selection
Tournament selection [15,25] is a selection method to
bias the selection towards the more fit individuals.
Pop.size tournaments are organized with k randomly
selected chromosomes. The winner of a tournament is
the chromosome with the best fitness (highest R2). The
pop.size tournament winners become the new population.
Selection pressure, the degree to which better individuals
are favoured, is increased when the tournament size is
increased, as the winner from a large tournament will,
on average, have a higher fitness than the winner of a
small tournament.
In the optimization (Table 3), all tournament sizes

1 ≤ k ≤ pop.size were considered. From section I, we se-
lected the following (Pm,Pc) combinations for evaluation:
(0.1,0.6), (0.2,0.6), and (0.258,0.372). We also considered
(0.05,0.7), the (Pm,Pc) combination used in [5]. From
Figure 2, to improve the R2(OLS) performance the
tournament.size k should be taken > 2. We chose to
continue to use k = 10 (as pre-set in section I). Slightly
better R2 performance was seen for the (Pm,Pc) combina-
tions (0.1,0.6) and (0.2,0.6). The former was chosen for
reasons of computational efficiency.
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Figure 1 GA parameter: mutation probability (Pm) and cross-over
probability (Pc). R2 fitness landscape from meta-GA.



Table 3 GA parameter settings to evaluate tournament.size
and (Pm,Pc)

GA CHOSEN PRE-SET BEING OPTIMIZED

GA-OLS pop.size = 20 chrom.size = 15 tournament.size ∈ {1,…,20}

Pe = (1,1,1,0.2) max.generations = 100 (Pm,Pc) ∈{(0.1,0.6);(0.2,0.6);

num.runs = 10 (0.258,0.372);

goal.fitness = 1 (0.05,0.7)}

Table 4 GA parameter settings to evaluate max.generations

GA CHOSEN PRE-SET BEING OPTIMIZED

GA-OLS pop.size = 20 chrom.size = 15 max.generations ∈
{100,200,300,400,500}

GA-MM Pe = (1,1,1,0.2) num.runs = 10

Pm = 0.1 goal.fitness = 1

Pc = 0.6

tournament.size = 10
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III. Maximum number of generations
In Table 4, the GA settings for evaluating max.generations
are summarized. Evaluation was done for both GA-OLS
and GA-MM, calculating R2

CV as the mean from 3 repeti-

tions of 5-fold cross-validation: R2
CV ¼

X3
i¼1

R2
CV ;i=3where

R2
CV ;i was calculated as the correlation between the pheno-

type measurements of all observations in the database
(contained exactly once in test set Tij , j = 1…5) and their
mean prediction (MMI1) of the 10 best chromosomes
from GA-OLS/GA-MM (trained on train set TRij con-
taining 4/5 of the subjects).
From Figure 3, it can be seen that, while the improve-

ment in R2
CV when increasing max.generations from 100

to 300 was larger for GA-MM than for GA-OLS, the
R2
CV performance for GA-MM was found to be lower

than for GA-OLS. Stabilization of R2
CV was seen for both

GA-OLS and GA-MM for num.generations ≥ 400. We
chose max.generations = 400 to be used further in the
sections IV and V. Note that for the pre-set goal fitness = 1,
max.generations was the number of generations always
executed. For the model comparison, with the goal fitness
calculated (Section VI), we set max.generations = 500 for
both GA-OLS and GA-MM.
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Pm=0.05,Pc=0.7 Pm=0.258,Pc=0.372
Pm=0.2,Pc=0.6 Pm=0.1,Pc=0.6

Figure 2 GA parameter: tournament size. Mean R2(OLS) from best
chromosomes (from 10 runs) on the training data for tournament
selection with tournament.size 1–20 (pop.size).
IV. Chromosome size
In Table 5 the GA settings for evaluating chrom.size are
presented. Analogously as for num.generations, evaluation
was done for GA-OLS as well as GA-MM, using 3 × 5-fold
cross-validation (see section III).
The R2

CV performance is shown in Figure 4. Stabilization
in performance was seen for both GA-OLS and GA-MM
for chrom.size ≥ 25. We chose chrom.size = 25 to be used
further. Thus, after optimizing chrom.size, the GA-MM
performance was now equal to the GA-OLS performance
(R2

CV = 0.87).

V. Number of GA runs
The GA settings for evaluating num.runs are shown in
Table 6. Analogously as for max.generations and chrom.
size, evaluation was done for both GA-OLS and GA-MM
using 3 × 5-fold cross-validation (see section III).
In Figure 5 the R2

CV performance is shown using all
best chromosomes from num.runs in the model averaging
(MMI1) (cf. sections III and IV), including the cases
where the GA variable selection is done with MM and re-
estimation of the variables in the MMI is done with OLS
and vice versa. A similar R2 performance was observed
when using GA-OLS or GA-MM for the variable selec-
tion. However, a higher R2

CV performance was observed
when using OLS for estimation of the best chromosome
parameters. The R2

CV performance was stable for num.
runs ≥ 10. When increasing num.runs from 100 to 500 for
0.75

0.77

0.79

0.81

0.83

0.85

0.87

0 100 200 300 400 500

R²CV

Number of generations

OLS

MM

Figure 3 GA parameter: number of generations. R2CV from mean
prediction of best chromosomes from 10 runs (3 × 5-fold CV) (MMI1).



Table 5 GA parameter settings to evaluate chrom.size

GA CHOSEN PRE-SET BEING OPTIMIZED

GA-OLS pop.size = 20 num.runs = 10 chrom.size ∈
{5,10,15,20,25,30}

GA-MM Pe = (1,1,1,0.2) goal.fitness = 1

Pm = 0.1

Pc = 0.6

tournament.size = 10

max.generations = 400

Table 6 GA parameter settings to evaluate num.runs

GA CHOSEN PRE-SET BEING OPTIMIZED

GA-OLS pop.size = 20 goal.fitness = 1 num.runs ∈
{1,10,20,50,100,500}

GA-MM chrom.size = 25

Pe = (1,1,1,0.2)

Pm = 0.1

Pc = 0.6

tournament.size = 10

max.generations = 400

0.89
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GA-OLS variable selection, only a slight increase in R2
CV

performance was seen.
In Figure 6 the R2

CV performance is shown using only
the ‘best’ best chromosome from num.runs for prediction
in the cross-validation. Overall, a similar R2

CV perform-
ance was observed when using OLS or MM for estima-
tion of the ‘best’ best chromosome parameters, and using
GA-MM or GA-OLS for variable selection.
In Figure 7, the ‘x% best’ best chromosomes (shown on

the x-axis in log scale) were used in the model averaging
(MMI1). Evaluation was done for num.runs = 100 or 500
and num.runs = 50 or 100 for GA-OLS and GA-MM, re-
spectively. For GA-OLS, the highest R2

CV was 0.89 and
was obtained when including the ‘five best’ best chromo-
somes (top 1% chromosomes with highest R2(OLS) from
num.runs = 500). Also, for GA-MM, including the ‘five
best’ best chromosomes (top 5% of num.runs = 100 with
highest R2

MM) gave the highest R2: 0.879 and 0.885 for
MMI-MM and MMI-OLS, respectively. Thus, both for
GA-OLS-MMI and GA-MM-MMI inclusion of the ‘five
best’ best chromosomes yielded an improvement in R2

CV

performance in comparison to using all best chromo-
somes (Figure 5) or ‘the best’ best chromosome (Figure 6).
As previously noted from Figure 5, also a better R2

CV

performance was again found using OLS estimation of
parameters than when using MM estimation. For GA-
OLS num.runs = 100 was repeated 5 times (splitting the
best chromosomes as available from num.runs = 500 in
0.75
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Figure 4 GA parameter: chromosome size. R2CV from mean
prediction of best chromosomes from 10 runs (3 × 5-fold CV) (MMI1).
five consecutive parts for evaluation using MMI1). The
mean curve of these 5 repeats is shown, together with
the 95% confidence interval error bars. The peak of this
mean curve is at ‘6% best’ best chromosomes included.
The GA-MM curve with MMI-OLS estimation (num.
runs = 100) is situated within these error bars. Thus, for
num.runs = 100 GA-MM and GA-OLS perform equally
well in selecting variables for the model in the cross-
validation. For GA-OLS the R2

CV performance using the
‘five best’ best chromosomes using num.runs = 500 is bet-
ter than when using num.runs = 100. Therefore, calcula-
tion of the goal fitness for GA-OLS in section VI was
done from the num.runs = 500 best chromosomes. For
calculation of the goal fitness for GA-MM, num.runs =
100 was used. Note that, once the goal fitness was calcu-
lated, num.runs was set to NA (not applicable). Instead,
the model comparison will be based on num.solutions =
100 (number of best chromosomes with R2 > goal.fitness)
for both GA-OLS and GA-MM.

VI. Goal fitness
As derived from Figure 7, for calculating the goal fitness
we considered the fitness of the ‘5 best’ best chromo-
somes: this is the top 1% (of num.runs = 500) for GA-
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Figure 5 GA parameter: number of GA runs. R2CV from mean
prediction of best chromosomes from num.runs (3 × 5-fold CV) (MMI1).
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Figure 6 GA parameter: number of GA runs. R2CV from prediction
of ‘best’ best chromosome from num.runs (3 × 5-fold CV).
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OLS and the top 5% (of num.runs = 100) for GA-MM.
For each of the 15 (3 × 5) CV training sets we calculated
the non-parametric one-sided (1-p,1-α) tolerance upper
limit [26] on the R2 fitness distribution of best chromosomes
from num.runs with p = 1% and p = 5% for GA-OLS and
GA-MM, respectively, and α = 0.05 (95% confidence).
The interpretation is that with confidence level 1-α
not more than (100 × p)% of the best chromosomes
have R2 fitness values exceeding this limit. To be able
to calculate these tolerance limits the requested number

of runs was ln αð Þ
ln 1−pð Þ
h i

þ
[26]. This requirement was met

for num.runs = 100 ≥ 59, and num.runs = 500 ≥ 299 for
GA-MM and GA-OLS, respectively. The goal fitness
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was then calculated as the mean of the CV tolerance
upper limits:

goal:fitness ¼
X15
i¼1

tol:upperi=15;

which equals goal.fitness = 0.957 for GA-OLS and goal.
fitness = 0.95 for GA-MM. For the calculation we used
the R package tolerance 0.5.2 [27].

GA-OLS vs. GA-MM: variable selection
GA-OLS and GA-MM variable selection were performed
on the clonal genotype-phenotype database using the GA
parameters as specified in the above sections. The percent-
age of runs that failed reaching the goal.fitness with max.
generations = 500 was 16% and 23.1% for GA-OLS and
GA-MM, respectively.
Figure 8 shows the relation between the frequency of the

variables selected in the GA using OLS and MM. While
frequency differences were clearly observed (e.g. for 74M,
151I, 230R, 84L, 140S, 143C, 155S, and 140A), a strong
correlation was obtained (R2 = 0.95). Eight integrase
mutations were selected as variables in all 100 GA solutions
for both GA-OLS and GA-MM: 92Q, 97A, 143G, 143R,
148H, 148K, 148R, 155H. This number would possibly
be lower when increasing num.solutions, leading to non-
selection for a few GA solutions. This was now already the
case with num.runs = 100 for 66K (always selected by
GA-MM, 99/100 selected by GA-OLS) and 121Y (always
selected by GA-OLS, 99/100 selected by GA-MM).

GA-OLS and GA-MM variable selection vs. LASSO
Figure 9 shows the comparison of the GA-OLS and GA-
MM ranking with the LASSO top 50 ranking of variables,
shown on the x-axis. The variables selected are integrase
mutations, indicated as primary/secondary/other. Primary
and secondary mutations have been associated with RAL
resistance in [10]. Note that whereas a single primary
mutation causes RAL resistance, the effect on resistance
of secondary mutations not in a combination with a
primary mutation is minor [5]. In Figure 9, most of the pri-
mary and secondary mutations had a high ranking for GA-
OLS, GA-MM and LASSO. However, some of the ‘other’
mutations such as 66K, 121Y, 143G and 155S with pres-
ence in one or more of the publically available genotypic
algorithms: ANRS (http://www.hivfrenchresistance.org),
Rega (http://regaweb.med.kuleuven.be), and Stanford
(http://hivdb.stanford.edu), had a lower ranking for LASSO.
We note that 66K, 121Y and 155S were introduced in the
database as site-directed-mutants not in a combination
with other mutations [5], and LASSO was less sensitive in
selecting these. Another observation was that for LASSO,
the secondary mutations 140A and 140S were ranked
higher than the primary mutations. Also, mutations not

http://www.hivfrenchresistance.org/
http://regaweb.med.kuleuven.be/
http://hivdb.stanford.edu/
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Table 7 R2 performance on test set 1

Variable selection LASSO GA-OLS GA-MM

Variable
estimation

Coef
(shrinkage)

OLS MM OLS MM MMI1 MMI2 OLS MM MMI1 MMI2

OLS MM OLS MM OLS MM OLS MM

TOP15 variables 0.815 0.816 0.827 0.830 0.833 0.832 0.838 0.827 0.831 0.834 0.835 0.834 0.839 0.829 0.832

TOP18 variables 0.816 0.818 0.827 0.830 0.831 0.833 0.838 0.825 0.829 0.832 0.835 0.835 0.839 0.829 0.832

TOP21 variables 0.819 0.825 0.835 0.821 0.825 0.836 0.839 0.819 0.824 0.824 0.826 0.834 0.838 0.819 0.824

TOP24 variables 0.820 0.822 0.824 0.819 0.824 0.837 0.840 0.818 0.824 0.820 0.821 0.834 0.837 0.817 0.821

TOP27 variables 0.827 0.817 0.818 0.827 0.829 0.839 0.841 0.822 0.827 0.814 0.820 0.835 0.838 0.814 0.819

TOP30 variables 0.828 0.812 0.817 0.821 0.822 0.838 0.840 0.819 0.823 nac nac nac nac nac nac

ALL m variablesa 0.826 0.795 0.811 nab nab 0.840 0.841 0.701 0.725 nab nab 0.838 0.839 0.713 0.725

(m = 51) (m = 193) (m = 200)
am is the number of variables with presence in the GA solutions or with abs(coef) > 0 in the LASSO solution path. bnot calculated due to singularity.
cno model with exactly 30 mutations.
In bold the highest R2 per row is indicated.
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listed by any of the public algorithms such as 6E, 125A,
and 200L, had a higher ranking for LASSO in compari-
son to GA-OLS and GA-MM. Oppositely, one of the
“other” integrase mutations ranked higher by GA-OLS
and GA-MM, and not listed by any of the public genotypic
algorithms was 84L. In [5] we already discussed that its
selection may result from a more complex interaction of
three secondary mutations with which 84L co-occurred in
the clones of one clinical isolate.
When we compared the GA-OLS ranking with the GA-

MM ranking (Figures 8 and 9), a relatively low ranking was
seen e.g., for GA-OLS for 140A and 155S, which favours
GA-MM for its interpretation.

GA-OLS-MMI vs. GA-MM-MMI vs. LASSO: R2 performance
on test set 1 and test set 2
In Tables 7 and 8 are the results of the R2 performance
comparison of GA-OLS-MMI, GA-MM-MMI, and LASSO
Table 8 R2 performance on test set 2

Variable selection LASSO GA-

Variable
estimation

Coef
(shrinkage)

OLS MM OLS MM MM

OLS

TOP15 variables 0.667 0.734 0.712 0.707 0.707 0.708

TOP18 variables 0.690 0.731 0.713 0.721 0.718 0.716

TOP21 variables 0.742 0.760 0.765 0.736 0.730 0.722

TOP24 variables 0.745 0.771 0.768 0.732 0.728 0.720

TOP27 variables 0.767 0.788 0.788 0.721 0.725 0.720

TOP30 variables 0.777 0.789 0.787 0.768 0.772 0.731

ALL m variablesa 0.787 0.770 0.776 nab nab 0.733

(m = 51)
am is the number of variables with presence in the GA solutions or with abs(coef) >
cno model with exactly 30 mutations.
In bold the highest R2 per row is indicated.
on the two test sets with n = 171 clinical isolates and n = 67
site-directed mutants, respectively. Models containing the
TOP15-18-21-24-27-30 or ALL variables as selected by
LASSO, GA-OLS and GA-MM were considered. Note that
as randomness is incorporated in the GA optimization
techniques there are more mutations with presence in
at least one of the GA solutions, m = 193 and m = 200 for
GA-OLS and GA-MM respectively, compared to m = 51
mutations with absolute value of the regression coefficients
above zero in the LASSO solution path.
On test set 1, using MM for the variable estimation

had a slightly better R2 performance than using OLS, for
all models considered. Note that this was not the case in
the cross-validation (section V) where OLS R2

CV perform-
ance was higher, possibly due to the inclusion of multiple
clinical isolates from the same patient. However, as patient
information was not given for the training set, we could
not take this into account. For the TOP15/TOP18 models
OLS GA-MM

I1 MMI2 OLS MM MMI1 MMI2

MM OLS MM OLS MM OLS MM

0.708 0.709 0.710 0.709 0.702 0.705 0.696 0.706 0.698

0.714 0.722 0.719 0.768 0.770 0.742 0.742 0.747 0.750

0.717 0.732 0.726 0.777 0.775 0.746 0.744 0.751 0.752

0.716 0.727 0.723 0.762 0.761 0.743 0.740 0.748 0.749

0.717 0.732 0.726 0.770 0.768 0.744 0.741 0.758 0.755

0.729 0.747 0.743 nac nac nac nac nac nac

0.729 0.741 0.733 nab nab 0.747 0.745 0.754 0.749

(m = 193) (m = 200)

0 in the LASSO solution path. bnot calculated due to singularity.
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containing the smallest number of variables, the best
performance was seen for GA-MM-MMI1 (R2 = 0.839).
For the TOP21- > ALL models with more variables consid-
ered, the best performance was seen for GA-OLS-MMI1
(R2 = 0.839-0.841). When estimating ALL GA-OLS/
GA-MM variables, the worst performance was seen for
MMI2 (R2 = 0.701-0.725) where noise variables were clearly
overweighted. For LASSO, the best R2 performance on
test set 1 was obtained using MM for the variable esti-
mation for the TOP15- > TOP24 selection of variables
(R2 = 0.824-0.835). For LASSO TOP27- > ALL, the best
R2 performance was obtained using the LASSO shrinkage
coefficients (R2 = 0.826-0.828).
On test set 2, for the sparse models the best perform-

ance was observed for LASSO-OLS TOP15 (R2 = 0.734),
GA-MM-MM TOP18 (R2 = 0.770), and GA-MM-OLS
TOP21 (R2 = 0.777). For the TOP21- > ALL models, the
best performance was seen for LASSO (R2 = 0.771-0.789).
In contrast to the results for test set 1, the MMI2 R2 per-
formance was now found to be higher than for MMI1, for
the GA-OLS/MM models. The reason is that while test
set 1 consisted of clinical samples, with 82.5% not contain-
ing any of the primary RAL resistance mutations [5], test
set 2 consisted of site-directed mutants containing most
of the known resistance patterns but lacking any noise
variables as found in clinical samples. Nevertheless, on test
set 2, the GA-MM R2 values were found to be better than
for GA-OLS, confirming that a better selection of variables
as made by GA-MM (cf. the above two sections) led to a
better performance on unseen data.
Therefore, on the example training set in this article

we would favour the GA-MM-MMI TOP18 model. Based
on the performance on test set 2, for the MMI variable
estimation re-fitting using MM may be preferred over
MMI1-MM.

Conclusions
In this article, we extended our GA variable selection
methodology to mixed models which account for clustering
in the data. Using cross-validation, we optimized the
GA parameter settings taking also computational efficiency
into account. For the worked-out example, all settings
could be taken equal for GA-OLS and GA-MM, with
exception of goal.fitness for which we used a marginal
R2 definition. The model parameters for prediction could
then be estimated using MMI-MM (REML) on the GA
solutions obtained from 100 GA runs. When testing
LASSO, GA-OLS and GA-MM on two unseen data sets,
all methods had good performance. When imposing a par-
simony restriction for better interpretability of the model,
the GA-MM-MMI TOP18 model had better predictive
accuracy (R2) than GA-OLS and LASSO.
In summary, we belief that GA-MM-MMI is a direct

approach to derive a sparse and interpretable model for
making predictions with good accuracy on small data
sets with clustered observations and a large number of
candidate variables, where chance of overfitting with
standard regression techniques is high.
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