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Abstract

Background: Differential RNA sequencing (dRNA-seq) is a high-throughput screening technique designed
to examine the architecture of bacterial operons in general and the precise position of transcription start sites (TSS)
in particular. Hitherto, dRNA-seq data were analyzed by visualizing the sequencing reads mapped to the reference
genome and manually annotating reliable positions. This is very labor intensive and, due to the subjectivity, biased.

Results: Here, we present TSSAR, a tool for automated de novo TSS annotation from dRNA-seq data that respects
the statistics of dRNA-seq libraries. TSSAR uses the premise that the number of sequencing reads starting at a certain
genomic position within a transcriptional active region follows a Poisson distribution with a parameter that depends
on the local strength of expression. The differences of two dRNA-seq library counts thus follow a Skellam distribution.
This provides a statistical basis to identify significantly enriched primary transcripts.
We assessed the performance by analyzing a publicly available dRNA-seq data set using TSSAR and two simple
approaches that utilize user-defined score cutoffs. We evaluated the power of reproducing the manual TSS
annotation. Furthermore, the same data set was used to reproduce 74 experimentally validated TSS in H. pylori from
reliable techniques such as RACE or primer extension. Both analyses showed that TSSAR outperforms the static
cutoff-dependent approaches.

Conclusions: Having an automated and efficient tool for analyzing dRNA-seq data facilitates the use of the dRNA-seq
technique and promotes its application to more sophisticated analysis. For instance, monitoring the plasticity and
dynamics of the transcriptomal architecture triggered by different stimuli and growth conditions becomes possible.
The main asset of a novel tool for dRNA-seq analysis that reaches out to a broad user community is usability. As such,
we provide TSSAR both as intuitive RESTful Web service (http://rna.tbi.univie.ac.at/TSSAR) together with a set of post-
processing and analysis tools, as well as a stand-alone version for use in high-throughput dRNA-seq data analysis pipelines.
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Background
Deep sequencing approaches were successfully applied to
examine the architecture of primary bacterial transcrip-
tomes and uncovered an unexpectedly complex archi-
tecture [1-5]. Although plain transcriptome sequencing
can in principle be sufficient to determine transcription
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start sites (TSS) as local accumulations of read starts,
this approach requires extensive sequencing depth [6,7].
Alternative TSS located within well-expressed genes or
operons remain undetectable since moderate changes in
coverage do not offer a sufficiently distinctive signal. On
the other hand, TSS are not the only loci at which read
starts accumulate in RNA-seq data. Alternative sources
of such signals are specific processing sites, secondary
structures that influence RNA degradation patterns, or
chemical modifications [8-10].
The differential RNA sequencing method dRNA-seq

[4] is designed to overcome these difficulties. It makes
use of the 5’-monophosphate dependent terminator
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RNA exonuclease (TEX) that specifically degrades pro-
cessed RNA, which exhibits a monophosphate at its
5’ end. Transcription initiation, in contrast, produces
a 5’-triphosphate that protects the unprocessed 5’ end
from degradation by TEX. Treating RNA isolates with
TEX prior to reverse transcription to cDNA, leads to
a sequencing library ([+]-library or treated library) that
is enriched in primary transcription starts, compared to
an untreated total RNA library ([–]-library or untreated
library). Similar to other library preparation steps that
enrich or deplete certain transcript types, e.g. TAP treat-
ment [11] and rRNA depletion [12], the TEX dependent
degradation of processed RNA fragments is not perfect.
The [+]-library, therefore, still contains a mixture of pri-
mary and processed transcripts, albeit with a distribution
of read starts that is shifted significantly towards TSS posi-
tions [4]. In the data used in this contribution a median
enrichment at TSS positions of 3.5 is observable. The
discrimination of TSS from other accumulations of read
starts is thus non-trivial and cannot be performed unam-
biguously from a TEX treated library alone. On the other
hand comparison of [+]- and [–]-libraries offers a poten-
tially highly informative source of information: while read
starts will be relatively enriched, we can expect the alter-
native types of read start accumulations to be depleted in
the [+]-library.
Since the signal at hand is quantitative rather than an all-

or-none qualitative difference, it is imperative to employ a
statistical model to assess when an observed enrichment
is indeed significant. This depends strongly on the expres-
sion level. To distinguish between real TSS signals and
accidental read start accumulation resulting from imper-
fect TEX degradation or high local expression, the aid of a
background model, e.g. the [–]-library, is needed.
Hitherto, the analysis of the dRNA-seq data consists of

mapping sequencing reads for each library onto the refer-
ence genome, visualizing the read coverage in a genome
browser, often with displayed gene and transcription
unit annotation, promoter predictions and other available
prior knowledge. With this background the genome is
manually inspected for positions with a more pronounced
peak in the [+]- compared to the [–]-library. The interpre-
tation of dRNA-seq signals in such a way is not only very
time consuming, tedious, and error-prone, but also highly
subjective and weakly reproducible. Additional annota-
tion information from third-party sources can be very
helpful but bear the risk to introduce biases, resulting in
re-annotation of already “known” features, and neglect-
ing signals that are less obviously associated with current
annotation data. It is, therefore, preferable to separate
dRNA-seq data analysis from subsequent data integration
with additional available information.
To overcome these shortcomings we developed TSSAR

(TSS Annotation Regime), a tool for automated de novo

TSS annotation from dRNA-seq data. Incorporation of
information like gene annotation or promoter predictions
is deferred to post-processing steps.

Implementation
Theory
Detailed knowledge of the underlying background dis-
tribution is required to quantify the significance of dif-
ferential read start count signals. Although related, this
problem differs from the thoroughly examined problem
of describing the variance in read counts per gene, which
is routinely applied in the process of differential gene
expression analysis. On one hand, the background is vari-
able along the genome, depending on the transcription
activity of the considered region. On the other hand, the
distribution of read starts within an equally transcribed
region depends on many concomitants. These are met
by the different steps in the RNA-seq library construc-
tion, namely cDNA production by reverse transcriptase,
fragmentation (enzymatic or mechanic), adapter ligation,
read amplification by PCR, size selection, and finally the
chemistry of the sequencing platform itself. Since the
technology and the protocol details vary and develop with
a compelling rate, it is far from trivial to capture these
details [13]. Therefore, it is sensible to recollect the basic
characteristic of RNA-seq data, which basically consti-
tute count data. With this simplification we can assume
that the distribution of read starts within an expressed
genomic region can be modeled by a Poisson distribu-
tion with parameter λ. Given λ the Poisson probability
P(Y = k) = λke−λ

k! describes the probability that k reads
start at a genomic position. In dRNA-seq data genomic
positions with significantly enriched differences between
the Poisson distributions of [+]- and [–]-library are poten-
tial TSS. Therefore, we are concerned with finding posi-
tions where the observed difference cannot be explained
easily by the local model of the background expression
in the [–]-library. The difference of two Poisson distribu-
tions is given by the Skellam distribution [14] with the
cumulative distribution function

F(D, λ[+], λ[–]) =
D∑

d=−∞
e−(λ[+]+λ[–])

(
λ[+]
λ[–]

) k
2
I|k|(2

√
λ[+]λ[–])

(1)

Here λ[+] and λ[–] are the parameters describing the aver-
age read start rate in the [+]- and the [–]-library, respec-
tively. I|k| is the modified Bessel function of the first kind
and integer order |k| [15].
A major practical issue is the estimation of the param-

eters λ[±] for the two libraries. We assume that read start
counts per position within transcriptional active regions
follow a Poisson distribution, with the expected value λ

depending on the transcription rate, or to bemore precise,
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on the RNA abundance, which depends on the transcrip-
tion rate and the RNA stability. Within untranscribed
regions the read start count per position is ideally zero.
In reality, this idealization is often not met due to “leaky”
promoters, read-through from adjacent genes, spurious
transcription starts at random positions, sample contam-
ination, and sequencing errors leading to mis-mapping
of individual reads. Nevertheless, as a first approxima-
tion it is reasonable to neglect these sources of error since
the effect can be regarded to be small compared to the
coverage dispersion within transcribed regions.
As a consequence, randomly selected genomic regions,

which are most likely a mixture of untranscribed and tran-
scribed regions, can be modeled with a mixture model
of a Poisson distribution and a background that is 0 with
probability 1. To separate the two underlying distributions
and estimate the parameter λ, describing only the tran-
scriptionally active region, a zero-inflated Poisson model
regression [16,17] is applied. For each sample Y the prob-
ability φ that an observed zero is an excess structural zero,
is estimated, such that

P(Y = 0) = φ + (1 − φ) · e−λ (2)

where e−λ is the probability for a position within the
Poisson distributed part to have zero reads starting there
(sampling zero). These positions are part of transcriptional
active regions. We use a zero-inflated Poisson regression
to estimate φ and thus determine how many positions
without read starts are structural and sampling zeros,
respectively. Only the latter and positions that have at
least one read start are used to estimate λ of the [+]- and
[–]-library, respectively. The estimation of λ thus effec-
tively considers the transcriptionally active regions only.
In practise, the removal of structural zeros leads to larger
estimates for λ and thereby avoids the incorrect prediction
of TSS from small counts in regions with low numbers of
observed read starts.

Program architecture
TSSAR has been implemented in Perl and R and is
available in two variants: A stand-alone version incor-
porates the core statistic routines and is best suited to
be used in custom high-throughput dRNA-seq analy-
sis. The Web service (available at http://rna.tbi.univie.
ac.at/TSSAR/) comprises additional components for pre-
and post-processing, thus providing a Web-based, cross-
platform compatible pipeline for dRNA-seq analysis.
An overview of the pipeline workflow can be found in
Additional file 1: Figure S1.
The TSSAR Web service is built on top of the Perl

Dancer [18] framework and adheres to the Represen-
tational State Transfer (REST) [19] principles of Web
architecture. The first step in using the TSSAR online

pipeline is pre-processing of mapped reads, i.e., extract-
ing the essential information of read start counts per
genomic position. To avoid the necessity of uploading
huge mapping files (typically for bacterial genomes up
to several gigabytes), we implemented the TSSAR client
for local pre-processing of mapped reads in SAM/BAM
or BED format on the user’s computer. To grant plat-
form independence, the TSSAR client is implemented
in Java. Once the relevant data is extracted from the
mapping files assisted by the Picard tools [20], files
are compressed using XZ utils [21] and automatically
transferred, using the Apache HttpComponents [22]
package, to the TSSARWeb server. On theWeb server the
statistical calculations are conducted and potential TSS
are predicted. The TSSARWeb service provides an assort-
ment of post-processing steps. The list of predicted TSS
can be reduced by merging consecutive TSS and clus-
ter them into the most prominent position. For samples
where the reference genome annotation was specified, all
annotated TSS are classified into primary, internal, anti-
sense or orphan, according to their position relative to
nearby genes, see Figure 1A. Based on the classification
the 5’ UTR length distribution is determined. All results
are visualized and provided for download. Figure 1 depicts
partly the output for showcase data sets [4,23]. Beside
the shown results, the output additionally contains all
annotated TSS and the clustered TSS list in BED [24]
and GFF format. All tables are available in comma and
tab-separated lists, as excel and HTML files. With the
assistance of the pre-computed plots, it is easy to gain a
quick overview of the quality of the analysis.
While the TSSAR Web service provides convenient

usability for routine dRNA-seq analysis tasks, there is also
a demand for integrating third-party bioinformatics tools
into custom analysis pipelines. To address this issue, we
provide a TSSAR stand-alone version. In this version,
the implementation is restricted to processing of SAM
files, analysis based on the statistical calculations, and out-
put of annotated TSS in BED format. The stand-alone
version is available for download from the TSSAR Web
site.

Statistical calculation
We chose a sliding window approach with a dynamic
assessment of each position in the context of its local sur-
rounding in order to account for different transcription
rates across the genome. As a matter of fact, the choice
of the window size parameter has an effect on the results
(see Additional file 1: Figure S2). There, two conflicting
interests have to be balanced. On the one hand, the region
should be large enough to provide enough information
for a reliable distribution parameter estimation. On the
other hand, the region should be small enough to provide
an as homogeneous surrounding as possible. If the sliding

http://rna.tbi.univie.ac.at/TSSAR/
http://rna.tbi.univie.ac.at/TSSAR/
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Figure 1 Post-processing and Visualization. (A) Similar, but more restrictive, to the scheme in [4] each annotated transcription start site is
classified according to its genomic context: If a TSS is positioned within 250 nt upstream of an annotated gene, it is classified as Primary. TSS within
an annotated gene is labeled Internal. A TSS which is on the opposite strand of an annotated gene is classified as Antisense. This class further splits
into Ai and Ad, for internal antisense and downstream antisense, respectively. The latter is reserved for a TSS which points in the opposite reading
direction and is less than 30 nt downstream of an annotated gene. A TSS that falls in none of these classes is reported to be Orphan. (B) As a matter
of fact, one TSS can have several labels as it might fall into more than one of the aforementioned classes. The TSSARWeb service summarizes the
counts of the overlapping main classes graphically. (C) For TSS which are annotated as ’Primary’ the 5’UTR lengths are deduced and the
corresponding distribution is plotted. (D) To assess the efficiency of the TEX treatment, the distribution of read starts per position is provided as a
helpful indicator. If the enrichment in the [+]-library worked efficiently, we expect fewer read start sites, each of which will have more reads. Hence
the distribution is flattened on the left side and bulged at the right side. The corresponding distribution and the mean (dashed line) is expected to
be shifted to the right compared to the [–]-library.

window covers more than one actively transcribed gene,
with different RNA abundances, the variance will be esti-
mated over all transcribed entities. This might blur small
signals, e.g., for low abundant sRNA genes. As a compro-
mise, the default window size is 1,000 nt, approximately
matching the average length of prokaryotic genes. It can
be easily adjusted by the user.
For each window the parameters describing the Poisson

distribution are estimated in the following manner: First,
the sample values are winsorized [25], i.e., the highest read
start count is substituted with the second highest count.
The same procedure is done for the lowest value. This
increases the robustness of the method against outliers,
which may be caused by mis-mapping and/or abundant
RNA fragments e.g. arising from rRNA loci.
Second, the zero-inflated Poisson regression is applied

to estimate φ, the probability that an observed zero is a
structural zero from an untranscribed region instead of

a sampling zero from a transcribed region. The R pack-
age VGAM is used for the regression [17,26]. Here, the
parameters describing the Poisson distribution are fitted
by full maximum likelihood estimation (MLE). In case
the MLE algorithm fails to converge, which might hap-
pen because the underlying assumption of a well behaved
Poisson distribution is violated, the respective window is
excluded from further analysis. While this might seem to
be a drawback, it serves as a minimal plausibility check,
ensuring the data fulfills the underlying assumption of fol-
lowing a Poisson distribution. Sequencing libraries with
low complexity but many PCR duplicates might otherwise
feign confidence in the results, which can actually not be
deduced from the data. A BED file listing the omitted seg-
ments which typically correspond to less than 1% of the
genome is provided (see Figure 2). In the evaluation data
set (see section Evaluation) modeled with a window size of
1,000, 24 regions with a total length of 12,000 bases could
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Figure 2 Regions of non-convergence. Regions where the applied
zero-inflated Poisson regression does not converge are omitted from
the analysis and need manual inspection. Since the basic unit which
cannot converge is the step size (equals a tenth part of the windows
size) there is a correlation between the parameter window size and
the percentage of the genome which can not be modeled. The H.
pylori dRNA-seq data (see section Evaluation) shows that for all
practical useful window sizes below 5,000 nt, less then 1% of the
genome eludes analysis.

not be modeled (∼0.5% of the genome). The majority cor-
respond to tRNA and rRNA coding loci (10 and 5 single
regions, respectively). Additionally, 4 regions overlapped
with annotated protein coding genes and the remaining
5 did not overlap with any annotated gene. A manual
screening of the corresponding regions revealed that they
share common characteristics. Generally, they are small
islands with very high expression levels.
Third, a regression procedure is applied to each win-

dow in the [+]- and in the [–]-library separately. For
each library the probability φ is transformed into an
expected number of excess structural zeros. Since the
same genomic region is under consideration in both
libraries, a similar proportion of untranscribed and tran-
scribed regions can be expected. To increase robustness,
the average between the number of structural zeros in
both libraries is calculated and the estimated number of
zeros are removed from each library. To determine λ for
each library, describing the Poisson distribution of the
sample, the arithmetic mean of the remaining counts is
calculated.
In the next step the probability that the read start differ-

ences between [+]- and [–]-library can be explained by the
aforementioned background model is calculated. For this
purpose, the original read start counts are normalized by

p̂i =
{
pi ·

∑
M∑
P if

∑
M >

∑
P

pi · 1 if
∑

M ≤ ∑
P

(3)

m̂i =
{
mi ·

∑
P∑
M if

∑
P >

∑
M

mi · 1 if
∑

P ≤ ∑
M

(4)

Thereby, pi and p̂i are the raw and normalized values
of the [+]-library at position i, respectively. The same
applies to the [–]-library, i.e., mi and m̂i.

∑
P and

∑
M

are the native sums of all read start counts in the total
[+]- and [–]-library, respectively. The effect of this step
is to scale the read counts of the larger library relative to
the smaller one, hence avoiding artificial distending of the
sample variance. The estimated parameters λ[+] and λ[–]
are therefore normalized accordingly.
For each sequence position i in the current window,

the difference d̂i = p̂i − m̂i of the normalized counts
between [+]- and [–]-library is calculated. Unexpectedly
large positive values of d̂i for position i indicate TSS, while
exceptional negative values may indicate processing sites.
The probability of observing d̂i is evaluated w.r.t. the Skel-
lam distribution with the estimated normalized Poisson
parameters.
The window slides along the genome with a step size

equal to 1/10th of the window size, hence each position
is evaluated in 10 slightly different contexts. The geo-
metric mean of all ten p-values is calculated in order to
obtain the final position-wise p-value. Finally, each posi-
tion that falls below a user-specified average p-value cutoff
and whose total read start count in the [+]-library exceeds
a user specified noise cutoff is reported as a significant
TSS. The noise cutoff serves as an additional safeguard
to restrict the results to plausible annotations. This is
needed because the Skellam distribution works only with
the differences of the expectation values of the underlying
Poisson distributions. A very high expectation value in the
[–]-library in combination with a small expectation value
in the [+]-library leads to a negative expectation value of
the resulting Skellam distribution. This, in turn could lead
to annotated positions which are not supported by reads
in the [+]-library, as significantly enriched. To prevent this
unwanted behavior a user defined number of read starts
must be observed in the [+]-library.

Results
The goal of the TSSARmethod is to provide user-friendly
tools for rapid annotation of significant TSS based on
dRNA-seq data. We therefore implemented a stand-alone
version and aWeb service. The first is intended to be used
in high-throughput analysis pipelines whereas the latter
represents an easy to use and platform independent user
interface. For a Web service it is important to avoid the
transfer and storage of gigabyte-sized mapping files. We
therefore provide a Java client that extracts the necessary
information and asks the user for only two parameters,
namely genome size and window size. The data is pre-
processed locally on the user’s computer. The essential
information, i.e., the number of sequencing reads starting
at each position, is automatically uploaded and analyzed
on the TSSARWeb server (see Additional file 1: Figure S1).
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All relevant cutoffs like p-value and noise threshold are
subsequently selectable for precomputed values.

Evaluation
To evaluate the performance of TSSAR in analyzing
dRNA-seq data, we resort to the published data set for
Helicobacter pylori [4]. We used the publicly available
raw sequencing data from the Sequence Read Archive
[27] (study accession number SRP001481), restricting our-
selves to the dRNA-seq data frommid-logarithmic growth
phase and acid stress growth condition. The reads were
pooled andmapped to the reference genome (NCBI acces-
sion ID NC_000915) using segemehl version 0.1.4 [28]
with default parameters.
Based on this data, which were normalized in the same

way as indicated in equations 3 and 4, we predicted puta-
tive TSS with three different approaches. The first two
represent a naïve benchmark. First, we calculated the dif-
ference (̂pi − m̂i) for each position i of the [+]- and
[–]-library read start counts. We applied different cut-
off thresholds between 1 and 300, thereby denoting every
position with a difference higher than the cutoff to be a
putative TSS. The resulting list of potential TSS was com-
pared to themanual annotation from [4] using BEDTools
Intersect [29], allowing ±2 nt inaccuracy to call a
manual and an automated annotated TSS the same. The
second approach is quotient based. Analogous to the dif-
ference based approach, the quotient p̂i+1

m̂i+1 is calculated
for each position i (+1 is used as pseudo-count to avoid
division by zero). Again we use different cutoff values
between 1.1 and 20. These two approaches have their
static nature in common. The same threshold is applied
for the whole genome. A similar approach was already
applied by [30]. Albeit, there it was used to identify differ-
entially induced TSS between different strains and growth
conditions and additional information about promoter
sequences was used to gain specificity.
Finally, we applied the dynamic TSSAR model, which

analyzes the transcriptome locally and thus is able to
model the different dynamics within the transcriptome.
Here, we used a window size of 1,000 nt (approximately
the mean gene length in H. pylori) and a noise cutoff of
3 reads per position. We filtered with different p-value
threshold from 1 · 10−15 to 9 · 10−1.
From these results, each threshold based prediction

is evaluated using standard measurements: recall rate
( TP
TP+FN ), precision ( TP

TP+FP ), accuracy (
TP+TN

TP+FP+FN+TN ) and
the F-measure (2 × precision×recall

precision+recall ) [31], where TP, TN, FP
and FN are true positive, true negative, false positive and
false negative predictions, respectively. Figure 3 depicts
the results of this analysis. TSSAR shows a much higher
precision and simultaneously a less sharp decrease of the
recall rate. In terms of the F-measure, it outperforms

the fixed-threshold approaches by about 2-fold. A further
major advantage is the smoother course of the F-measure
along different p-value cutoffs. This makes the resulting
annotation less dependent on the cutoff choice. The opti-
mal cutoff value for the basic annotation strategies based
on difference or ratio might be very variable for different
experiments and difficult to deduce without a reference
annotation.
In its default settings TSSAR merges consecutive TSS.

Since the tested naïve approaches do not share this behav-
ior, we tested the influence of TSS clustering on the
prediction performance separately (see Additional file 1:
Figure S5). Although, clustering contributes to the preci-
sion of the prediction, the effect is too small to cause the
improved performance of TSSAR.
Additionally, besides comparing our automated annota-

tion to the manual annotation by the authors, we exam-
ined how precise TSSAR reproduces knownH. pyloriTSS.
Therefore, we used TSS studied in detail by independent
methods, such as primer extension or 5’ RACE. From the
74 examples described in the literature (summarized in
Additional file 1 of [4]), we calculated the distance to the
closest position which we annotated as TSS. If the dis-
crepancy was more then 10 nt, we considered the TSS as
not recovered. Figure 4 shows the result of this analysis for
two TSSAR annotations with different parameters. The
first one with lenient threshold values (aiming for sensi-
tivity), and the later with more stringent values (aiming
for specificity). In both cases the majority of experimen-
tally confirmed TSS could be detected at the exact same
position (39 and 37 TSS, respectively). TSSAR missed 14
and 21 TSS, respectively, compared to the 12 TSS that
were also not detectable in the manual annotation by
the authors of [4]. We have to emphasis that, in con-
trast to a manual annotation, our method is not aware of
any annotation information, which might induce a human
curator to prefer certain positions. Comparison of the two
naïve approaches and TSSAR emphasizes that the pre-
sented statistical method is relatively insensitive to certain
parameter thresholds, see Additional file 1: Figure S3.
During manuscript preparation a new method for

dRNA-seq data analysis, called TSSpredator, became
available. It combines a peak calling approach for the
treated library and a ratio based approach between the
treated and untreated library [32]. Since the parameters
for this method were trained on the very same data set
we used for the evaluation, the performance of meth-
ods cannot be impartially compared on this data. We
can report, however, that TSSAR’s statistical method per-
forms equally well even on this set (Additional file 1:
Figure S6). To demonstrate that TSSAR has more gen-
erally applicable default parameters, we compared the
two methods on a new, publicly available dRNA-seq data
set from Stenotrophomonas maltophilia [33]. Based on
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Figure 3 Evaluation of TSSAR performance. Comparison of the prediction power of TSSAR against two fixed-cutoff approaches Difference and
Quotient. For each method different cutoff thresholds were applied. The difference, quotient and logarithm of the p-value are plotted along the
x-axis. Please note, for comparability the log(p-value) is plotted in descending order from left to right. The resulting predictions were evaluated by
calculating the recall rate, precision, F-measure and accuracy. The dynamic approach of TSSAR clearly outperforms the remaining in all aspects.
Since only TSSAR applies a clustering of consecutive TSS positions, this effect was separately examined, results can be found in Additional file 1:
Figure S5.
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Figure 4 Recall experimental validated TSS. Comparison of 74 experimentally validated TSS described in literature [4] with TSSAR results. The
Manual TSS annotation recovered 40, 15 and 6 TSS with a 0, ±1 and ±2 nt offset, respectively. Here 12 TSS were annotated more than 10 nt away
from the experimentally determined position (summarized asmissed in the plot). TSSAR was run with a Sensitive and a Specific parameter set
(p-value cutoff 0.05 and 0.0001; noise cutoff 1 and 3, respectively). With sensitive parameters 39 TSS (53%) were annotated on the exact same
position. Of the remaining TSS 13 and 7 were annotated with ±1 and ±2 nt variance, respectively, whereas 14 TSS (19%) were annotated more than
10 nt away. The specific TSSAR prediction annotated 37, 9 and 6 TSS with 0, ±1 and ±2 nt offset, respectively, relative to the experimentally
validated position. In this case 21 TSS (28%) were annotated more than 10 nt away, and therefore annotated as missed. The results of the same
analysis including also our naïve benchmark approaches can be found in Additional file 1: Figure S3.
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the mapped reads (treated and untreated dRNA-seq data
from the WT strain, SRS352126 and SRS352125, mapped
with segemehl read aligner [28] against the reference
genome NC_010943, considering only uniquely mapped
reads), TSSAR and TSSpredator were applied each in
the default settings.
The TSS predictions, together with the authors’ man-

ual annotation taken from the supplementary data of [33]
were analysed for congruency (Figure 5C), and for enrich-
ment of conserved sequence motifs that may be constitute
promoter elements (Figure 5A,B). To this end, we extraced
the 20 nt upstream regions of the putative TSS reported
by TSSAR (938 TSS), TSSpredator (1704), and manual
annotation (1030). The combined set was then screened
for overrepresented sequence motifs with MEME [34]. We
found three motifs with E < 0.001. Their position weight
matrices (PWMs) are shown in Figure 5A. The Pribnow
box [35] like Motif 1 is very similar to the dominant pro-
moter motif determined for Xanthomonas campestris in
[5], a close relative of S. maltophilia.
The PWMs of these motifs were then mapped back

to the putative promoter regions with FIMO [36]. We
counted a motif found if the p-value of the hit was below
0.001, Figure 5B. For TSS annotated by TSSAR 27.1%
are associated with one of the three motifs, of which the
majority corresponds to the Pribnow box like motif, while
only 18.7% of the TSSpredator results are associated
with a motif. The manualy curated list of TSS shows a
motif for 29.5% of the entries.

The reproduction of the manual annotation on the S.
maltophilia data shows an F-measure of 0.46 and 0.39 for
TSSAR and TSSpredator, respectively.Which is mainly
due to the fact that the latter predicts about 1,100 addi-
tional TSS whereas TSSAR only predicts about 500 not
manually annotated TSS, Figure 5C.
These results indicate a higher accuracy of the TSSAR

analysis. TSSAR reproduces manual annotationmore pre-
cise and TSS annotated by TSSAR exhibit a higher enrich-
ment in putative promoter motifs, indicating its greater
specificity compared to TSSpredator. However, the
latter results have to be interpreted with caution since sev-
eral recent studies, e.g. [37,38], showed that the textbook
knowledge of the homogeneous architecture of promoter
region motifs does not capture the full complexity of
biological reality.

Discussion
A major advantage of an automated TSS annotation,
based on a sound statistical analysis, neglecting a priori
knowledge of the whereabouts of promoters and other
already established annotation, lies in the avoidance of
any bias towards certain genomic positions. This ensures
an unbiased analysis as well as a comparable and repro-
ducible TSS annotation procedure.
Although our approach checks whether the basic

assumption that the read starts of a sequencing library
are Poisson distributed holds, a manual inspection of the
produced data is still recommended. The automated TSS

B CA

Figure 5 Comparison TSSAR and TSSpredator. To assess the performance of TSSAR and TSSpredator we used dRNA-seq data of S.
maltophilia [33]. Thereby, the enrichment of cis-regulatory DNA motifs upstream of the predicted TSS was used as a surrogate for sensitivity.
Furthermore, the individual results were compared to a manual annotation. Panel A shows the significantly enriched sequence motifs. Panel B
shows the relative enrichment and the total count of this motifs in the sets of all TSS predicted by TSSAR, TSSpredator and by a manual
analysis. Panel C depicts the overlap of the TSS annotated by the different methods.
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prediction is only as good as the underlying dRNA-seq
libraries. We therefore emphasize that a thoughtful inves-
tigation of the input sequencing reads, especially for
PCR duplicates, is advised. Manual inspection is neces-
sary for those genomic regions that are not annotated
by TSSAR due to non-convergence in the estimation of
the expression parameters. For TSSAR’s output, we rec-
ommend at least a basic sanity check, since very com-
plex regions, such as tRNA and rRNA loci, might be
misconstrued. In spite of these precautions, the work
load to check hundreds or a few thousands of pre-
dicted TSS positions is significantly reduced compared
to screening millions of genomic positions in the first
place.
Reliable and automated TSS annotation is a prerequi-

site for many applications. So far, most genome-wide TSS
annotations focused on a static picture of the transcrip-
tomal architecture [2,39] (there are also notable excep-
tions, e.g. [30,40]). One reason is that data analysis was
more laborious than data generation. Relieving the exper-
imenter from this time-consuming burden might liberate
the resources to investigate more of the dynamics and
alteration of the transcriptome, due to external stimuli or
evolutionary differences. During manuscript preparation
the latter was demonstrated by conducting a compara-
tive transcriptomics approach [32]. There, TSS annotation
was also conducted in an automated manner. First, puta-
tive TSS are selected by considering the “flank height”, and
the differences of mapped read starts of position i − 1
to i are calculated. These sites are then evaluated simi-
larly to ourQuotient approach based on the ratio between
the TEX treated and untreated library. The problem of
selecting an educated cutoff, which is immanent to all
methods but especially troublesome for classifiers which
directly depend on variable conditions such as sequenc-
ing depth, was neatly circumvented by using a compara-
tive approach. Transcriptomes of differentCampylobacter
jejuni isolates were used to dynamically adjust thresholds
if signals in different strains could be observed. In the
more typical application scenarios, where such compara-
tive information is not available, a robust p-value estimate
that takes the dynamic range of transcription activity
along the whole genome into account for the classification
seems to be preferable.
Currently, TSSAR is based on the assumption that a

[+]- and [–]-library is analyzed and only positions with a
significant enrichment in the [+]-library are reported as
potential TSS. At least two other application scenarios of
the statistical framework are possible. One is to detect
RNA processing sites and the other to analyze differen-
tially induced transcription starts. In principle the latter
could be achieved by comparing two TEX treated libraries
resulting from dRNA-seq runs of different growth con-
ditions. In that case, a large positive and negative d̂i

is of importance as it indicates (growth phase depen-
dent) induction of a TSS in the one or the other library.
RNA processing sites are in principle detectable using the
“standard” dRNA-seq approach. Positions where a signif-
icant enrichment in the [–]-minus over the [+]-library is
observable are of interest. Extremely small values of d̂i
point to these positions. Tackling both issues, process-
ing sites and induced transcription initiation, is however
currently hampered by the lack of experimentally veri-
fied training sets. Furthermore, although tailored for ana-
lyzing dRNA-seq data, in principle, the TSSAR method
should be applicable to other RNA-seq protocols, e.g.,
[11], which aim to enrich read starts at certain positions in
the sequencing library. Currently, the run-time of TSSAR,
see Additional file 1: Figure S4, prevents its application for
one of the above mentioned purposes to complete eukary-
otic genomes. An improvement of this aspect will be a
task for the future development and refinement of the
program.
The modularity of the TSSAR framework makes it pos-

sible to extend the current approach e.g., by improving
the statistical model. Alternative approaches based on a
different (non-Poisson) distribution or the Pitman sam-
pling method [6] can be implemented in the TSSAR
core module, without the necessity to change the Java
client or the Web service front end. The RESTful archi-
tecture of the TSSAR Web service provides additional
extensibility, rendering implementation of new func-
tionality such as promoter or operon characterization
straightforward.

Conclusion
Here, we presented an automated analysis of dRNA-seq
data which aims to detect significantly enriched TSS posi-
tions. The background distributions of sequencing read
starts are modeled locally by a zero inflated Poisson dis-
tribution. Positions with a larger difference between the
TEX treated and the untreated library than expected,
considering the background, are annotated as significant
transcription start sites. We could show that our method
reproduces manually analyzed dRNA-seq data better than
two simple approaches that use a global cutoff to dis-
criminate between true and false signals. Furthermore,
the choice of a p-value cutoff is more intuitive and less
arbitrary.
TSSAR is available both as a stand alone tool and as

a Web service at http://rna.tbi.univie.ac.at/TSSAR/. The
latter provides additional post-processing functionality
like TSS classification or merging of consecutive TSS.
The TSSARWeb service offers user-friendly and intuitive
online access to the TSSAR framework whereas the stand-
alone version is intended for integration into third-party
annotation pipelines.

http://rna.tbi.univie.ac.at/TSSAR/
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Availability and requirements
• Project name: TSSAR
• Project home page: http://rna.tbi.univie.ac.at/

TSSAR
• Operating system: Platform independent
• Programming language: Java, Perl and R
• Other requirements: Client needs Java 1.6 or

higher and the standalone version is based on Perl
5, R 2.15

• License: Java client under Apache License,
Statistics module under GPL2.

• Any restrictions to use by non-academics: For
non-profit use only.

Additional file

Additional file 1: Supplementary Information. File that contains
supplementary information, i.e. additional figures.
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