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Background: Protein remote homology detection is one of the central problems in bioinformatics, which is
important for both basic research and practical application. Currently, discriminative methods based on Support
Vector Machines (SVMs) achieve the state-of-the-art performance. Exploring feature vectors incorporating the
position information of amino acids or other protein building blocks is a key step to improve the performance of

Results: Two new methods for protein remote homology detection were proposed, called SYM-DR and SVM-DT.
SVM-DR is a sequence-based method, in which the feature vector representation for protein is based on the
distances between residue pairs. SYM-DT is a profile-based method, which considers the distances between Top-n-
gram pairs. Top-n-gram can be viewed as a profile-based building block of proteins, which is calculated from the
frequency profiles. These two methods are position dependent approaches incorporating the sequence-order
information of protein sequences. Various experiments were conducted on a benchmark dataset containing 54
families and 23 superfamilies. Experimental results showed that these two new methods are very promising.
Compared with the position independent methods, the performance improvement is obvious. Furthermore, the
proposed methods can also provide useful insights for studying the features of protein families.

Conclusion: The better performance of the proposed methods demonstrates that the position dependant
approaches are efficient for protein remote homology detection. Another advantage of our methods arises from
the explicit feature space representation, which can be used to analyze the characteristic features of protein
families. The source code of SVM-DT and SYM-DR is available at http://bioinformatics.hitszedu.cn/DistanceSVM/

Background

Protein remote homology detection is a central problem in
computation biology, which refers to the detection of evo-
lutional homology in proteins with low similarities.
Through evolution, structure is more conserved than
sequence. Thus, knowledge of protein structure and evolu-
tion is important for predicting the functions of proteins,
which will promote protein binding study, rational drug
design, and many other related fields and applications.
Protein remote homology detection identifies proteins
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from different families, and therefore can be applied to
predict structure and function of specific proteins.
Unfortunately, protein remote homology detection is still
a changing problem in bioinformatics and therefore accu-
rately and efficiently computational approaches are needed.
During the past two decades, some computational methods
have been proposed for protein remote homology detec-
tion, which can be mainly divided into two major cate-
gories: generative methods and discriminative algorithms.
Early solutions of protein remote homology detection were
generative methods, which trained a model to represent a
protein family and then evaluated a query sequence accord-
ing to this model. For example, BLAST [1], PSI-BLAST [2],
and Hidden Markov Model (HMM) [3] searched the
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protein database based on a model built by both positively
labeled and unlabeled proteins. Generative methods didn’t
perform well because they only make use of positive train-
ing samples to build the models for the prediction. Some
generative methods have been improved by developing
more sensitive profiles, for example, HHsearch method [4]
used the hidden Markov model to calculate a novel profile.
COMPASS [5] generated numerical profiles and con-
structed optimal profile-profile alignments. FFAS [6] was
based on a new procedure for profile generation that takes
into account all the relations within the family. Some online
servers are available, including FORTE [7], RANKPOOP
[8], webPRC [9], PHYRE [10], GenThreader [11], COMA
[12], and, Bioshell [13].

The discriminative approaches mark protein sequences
with a set of labels, positive if they are in the protein
family and negative otherwise. These methods attempt to
learn the distinction between different classes. Both posi-
tive and negative samples are used in training for these
approaches. The most popular discriminative methods
for remote homology detection problem are based on the
Support Vector Machine (SVM) [14]. SVM learns a linear
decision boundary from both positive and negative train-
ing samples to discriminate between the unseen protein
sequences. A key feature of SVM is that it needs fixed
length input vector. Thus some researchers have intro-
duced different types of kernel functions and feature vec-
tors for protein representation. Most of these kernel
functions were based on sequence composition and pro-
files. For features based on sequence composition, some
methods were based on the similarity between a protein
sequence and other sequences in the training sets. For
example, Fisher kernel [15] and SVM-Pairwise [16] mea-
sured the similarity from the local alignment between
proteins, but the alignment score fallen into a twilight
zone when the protein sequence similarity is below 35%
at the amino acid level [17]. Later, these methods were
improved by introducing several kernels, such as LA ker-
nel [18], SVM-HUSTLE [19]. However these methods
ignored the information from the protein structure and
evolutionary information, which led to limited perfor-
mance improvement. Some kernels were based on
sequence features, whose feature vector were calculated
from the subsequences, incorporating the protein struc-
ture information or amino acid position information. For
instance, in Motif kernel [20], a protein sequence was
represented in a vector space indexed by a set of motifs
over a alphabet and subsequences. Spectrum Kernel [21]
searched all possible subsequences of length k from a
alphabet to form a feature map. SVM-I-sites [22]
encoded structure information into the feature vectors.
Mismatch kernel [23] was calculated based on shared
occurrences of (k, m)-patterns in the data. LSA [24]
improved the performance of building-block-based
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methods. SVM-N-Peptide [25] reduced the size of amino
acid alphabet for increasing values of k. The performance
of the sequence-based methods is not satisfying because
these methods only use the sequence features without
using the evolutionary information or 3-dimension struc-
ture. In profile-based methods, the feature vectors were
extracted from profiles which contain the evolutional
information. These methods showed superior perfor-
mance than the sequence-based methods. This is because
that a profile is much richer than an individual protein
sequence in encoding information. Protein evolution
involves changes of single residues, insertions and dele-
tions of several residues, gene doubling, and gene fusion.
With these changes accumulated for a long period of
time, many similarities between initial and resultant pro-
tein sequences are gradually eliminated, but the corre-
sponding proteins may still share many common
features, such as similar structure and function. Profile
describes this kind of evolutionary information, and
therefore the profile-based kernels outperform the
sequence-based kernels for protein remote homology
detection. For instance, SW-PSSM [26] introduced two
classes of kernel functions which were constructed from
protein similarity measures by employing effective pro-
file-to-profile scoring schemes. Profile kernel [27] used
probabilistic profiles to define position-dependent muta-
tion neighborhoods along protein sequences. A Top-n-
gram-based approach [28] was proposed for protein
remote homology detection. Top-n-gram can be viewed
as a profile-based building block of proteins obtained by
combining the most frequent amino acids in the profiles.
The proteins were converted into fixed length vectors by
the occurrences of each Top-n-gram and input into SVM
for the prediction. Although, this method showed some
improvements in predictive performance, this method
completely ignores the sequence-order information.
Recent studies showed that the sequence-order effects
are relevant for protein remote homology detection. For
example, SVM-PDT [29] incorporated the sequence-
order information by considering the amino acid physi-
cochemical properties of any two residues in a protein
within a given distance. ODH [30] provided the basis dis-
tance histograms for any possible pair of k-mers based on
distances between short oligomers, which outperformed
other position independent approaches. In ACC method
[31], the sequence-order information was captured by the
autocross-covariance (ACC) transformation. SVM-
HMMSTR [32] can capture the sequential ordering of
the local structures. SVM-RQA [33] used the recurrence
quantification analysis (RQA) to detect the autocorrela-
tion patterns along the protein sequences.

Motivated by the successful of the position dependent
methods, in this study, we extend the Top-n-gram-
based method [28] by considering the sequence-order
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information, which is measured by all the possible Top-
n-gram pairs within a given distance. In this approach,
first, each amino acids in a protein sequence are con-
verted into Top-n-grams based on the frequency profiles
calculated from multiple sequence alignment. Second,
the feature vector is calculated by the occurrences of all
the Top-n-gram pairs within a given distance threshold
cutoff. Finally, this feature space is input into SVM for
the prediction.

Methods

As shown by a series of publications [34-38], to develop a
useful statistical prediction method or model for a biolo-
gical system, one needs to engage the following proce-
dures: (i) construct or select a valid benchmark dataset to
train and test the predictor; (ii) formulate the samples
with an effective mathematical expression that can truly
reflect their intrinsic correlation with the target to be
predicted; (iii) introduce or develop a powerful algorithm
(or engine) to operate the prediction; (iv) properly per-
form cross-validation tests to objectively evaluate the
anticipated accuracy of the predictor; (v) provide the
downloadable source code or a web-server for the predic-
tion method. Below, let us describe how to deal these
procedures.

Dataset description

SCOP 1.53 superfamily benchmark

We used a common benchmark [39] to evaluate the per-
formance of our methods for protein remote homology
detection, which can be downloaded at http://noble.gs.
washington.edu/proj/svm-pairwise/. This benchmark has
been used by many studies, which can provide good com-
parability with previous approaches [4,16,18,28-30,35,36].
There are 54 families and 4352 proteins selected from
SCOP version 1.53. All protein sequences were extracted
from the Astral database [40] and no pairwise alignments
is higher than an E-value of 10"*°, Proteins within one
SCOP family were taken as positive test samples, and pro-
teins outside the family but within the same superfamily
were taken as positive training samples. Negative samples
were selected from outside of the superfamily and were
separated into training and test sets.

Distance-based Top-n-gram (DT) and distance-based
Residue (DR)
In this study, two approaches were proposed to convert
protein sequences into feature vectors, including Distance-
based Top-n-gram approach (DT) and Distance-based
Residue approach (DR). First of all, we will introduce the
process of the Distance-based Top-n-gram approach.

In previous study, a Top-n-gram-based method [28]
was proposed for protein remote homology detection,
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which showed better predictive performance than some
state-of-the-art methods, including SVM-LA [18], SVM-
pairwise [16], and SVM-pattern [24]. Top-n-gram can
be viewed as a profile-based building block of protein
sequences, which contains the evolutionary information
extracted from frequency profiles. Each amino acid in a
protein sequence can be converted into a corresponding
Top-n-gram by combining the top » most frequency
amino acids in the corresponding column of a frequency
profile, and the order of the amino acids in a Top-n-
gram reflects the different importance of these amino
acids during evolution. By replacing all the amino acids
in a protein with their corresponding Top-n-grams, a
protein sequence can be represented as a sequence of
Top-n-grams instead of a sequence of amino acids. For
more details of Top-n-gram, please refer to the study
[28].

In order to incorporate the sequence-order informa-
tion into the prediction, a Distance-based Top-n-gram
(DT) approach was proposed, which extends the original
Top-n-gram-based feature vector by considering the
relative position information of Top-n-gram pairs in
protein sequences. The proposed feature vector was cal-
culated by counting the occurrences of all possible Top-
n-gram pairs within a certain distance threshold. In this
study, the Top-1-gram was selected to construct the
Distance-based Top-n-gram feature vector in order to
reduce the dimension of the feature vectors and reduce
the computational cost. Therefore, we will introduce the
proposed Distance-based Top-n-gram approach based
on Top-1-gram.

Given an alphabet of Top-1-grams A(A, R, D, C, Q, E,
HLGNLKM,FTPS T,W,Y, V), we consider
the distances between all Top-1-gram pairs in a Top-1-
gram sequence S’, which is capable of measuring the
position information of the Top-1-grams sequence S’.
Firstly, we define a distance d between Top-1-gram pair
(t» t;), which means that Top-1-gram t; occurs before
Top-1-gram ¢; and the distance between t; and ¢; is d.
Given a distance threshold d;;4x, we set the maximum
distance between Top-1-gram pair (¢; t;) as dpax. Sec-
ondly, we count the occurrences of these distances
between all Top-1-gram pairs. Thus for any distance
d < dyax, we can build a distance-based feature vector
of S according to:

N [TO4(S"), T°R(S),... TV (S)]  (d=0)
Dd(s) - {[Td/m(s/\), TdAR(};/)y---erVV‘ES/)] (1Sd§MAX) (1)

Where T(S’) is the occurrences of Top-1-gram t;,
which represents the importance of each Top-1-gram
occurring in S’ Tdij(S’) is the occurrences of Top-1-
gram pair (¢; t;). The feature vector of S’ is achieved by
combining all the Top-l-gram pairs at different
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distances and the final feature vector can be represented
as:

Fiy(8) = [Do(S),D1(S),- Dty (S)] (2)

The dimension of the feature vector is 20 + 20 * 20 *
dpax, where 20 is the size of the alphabet of Top-1-
grams.

In order to help the readers to further understand
the process of converting a protein sequence into a
feature vector, a specific example is given and shown
in Figure 1. Given a protein sequence S = ‘AGLP’, each
amino acid in S can be converted into a Top-1-gram,
and therefore S can be represented as a sequence of
Top-1-gram §’ (KFFK). S’ contains the evolutionary
information extracted from frequency profile. If the
distance threshold dj 4y is set as 2, the occurrences of
all Top-1-gram pairs at distance 0, 1, 2 are counted.
Then the feature vector is obtained by combining the
occurrences of Top-1-gram pairs at distance 0, 1, and 2.
The algorithm of construing the Distance-based Top-1-
gram feature vector is shown in Figure 2. The time com-
plexity of this algorithm is O(L?), where L is the length
of the longest protein in the dataset. The source code
can be downloaded at http://bioinformatics.hitsz.edu.
cn/DistanceSVM/index.jsp

The Distance-based Residue approach (DR) is similar
as the Distance-based Top-1-gram approach (DT),
except that the native protein sequence was directly
converted into the feature vector without replacing the
amino acids with Top-1-grams.

Construction of SVM classifiers and classification

SVM learns a linear decision boundary from both posi-
tive and negative training samples to discriminate
between the unseen protein sequences. A key feature of
SVM is that it needs fixed length of the input vector.
The proteins in the training set and test set were trans-
formed into fixed-dimension feature vectors following
the process introduced above, and then the training vec-
tors were input into SVM to construct the classifier.
The SVM gives a discriminative score for each protein
in the test set, which indicates the class level of the pro-
tein. In order to have better comparability with other
SVM-based methods, we employed the publicly available
Gist SVM package version 2.3 (http://www.chibi.ubc.ca/
gist/index.html). The SVM parameters were used by
default of the Gist Package.

Evaluation methodology

In order to evaluate the performance of SVM-based
methods applied in unbalanced dataset, we applied
receiver operating characteristics (ROC) score and
ROC50 score to measure the performance of different
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methods. The ROC score is the normalized area under a
curve that plots true positives against false positives for
different possible thresholds for classification and the
ROCS50 score is the area under the ROC curve up to the
first 50 false positives. The discriminative score obtained
from the SVM classifier can be used to calculate the
ROC score and ROC50 score.

Results and discussion

The impact of dyx value on the performance of SVM-DT
and SVM-DR

There is a parameter dy4x in the proposed methods
(see method section for details), which would impact on
the predictive performance of the proposed methods
SVM-DT and SVM-DR. d,,,, can be any integer
between 0 and the length of the longest protein
sequence in the dataset. Figure 3 descripts the average
ROC scores of the two methods with different d,,,,
values. The performance of the two methods improves
quickly with the increment of d,,,,, from 0 to 100, and
the performance of both the two methods turns stable
with the d,,,, in the range of [100, 200]. These results
reveal that the distance-based approaches are relevant
for discrimination. In real world application, smaller
d,.ax is preferred because it leads to shorter feature vec-
tors, and therefore less computational and space cost is
needed. In this study, the d,,,, was set as 150 consider-
ing the trade-off between performance and computa-
tional cost.

Comparative results of previous approaches

Nine state-of-the-art protein remote homology detection
methods were selected to compare with the proposed
methods, including Monomer-dist [30], SVM-Top-n-gram
[28], SVM-Top-n-gram-LSA [28], SVM-PDT-Profile [29],
PseAACIndex-Porfile [41], SVM-LA [18], SVM-Pairwise
[16], BioSVM-2L [42], and HHSearch [4]. HHSearch is a
generative method, and the other eight methods as well as
the proposed SVM-DR and SVM-DT are discriminative
methods based on SVM. They are different in the strate-
gies of constructing the feature vectors and kernel func-
tions. The feature vector of Monomer-dist was based on
the distances between short oligomers. SVM-Top-n-gram
constructed the feature vectors by the occurrences of
Top-n-grams, which can be viewed as a profile-based
“building block” of proteins. SVM-Top-n-gram-LSA
further improved this method by employing the Latent
Semantic Analysis (LSA). SVM-PDT-Profile combined the
amino acid physicochemical properties in the Amino Acid
Index (AAlIndex) [43] with the frequency profiles for the
prediction. PseAACIndex-Porfile combined the Pseudo
Amino Acid Composition (PseAAC) proposed by Chou
with profile-based protein representation to convert pro-
teins into fixed length vectors. The kernel of SVM-LA
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Figure 1 The process of generating Distance-based Top-1-gram feature vector. A protein S is input into the PSI-BLAST software to do the
multiple sequence alignments against a non-redundant database, and then the frequency profile is calculated from the multiple sequence
alignments. The frequencies of the 20 standard amino acids in each column of the frequency profile are sorted in descending order. Top-1-gram
is the most frequent amino acid in each column of frequency profile. S can be represented as a sequence of Top-1-grms S’ by combining all the
obtained Top-1-grams according to their sequence order. Assuming that the distance threshold dyax is set as 2, the feature vector is the

combination of Top-1-gram pairs at distance 0, 1, and 2.
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Algorithm 1 Construct Feature Vector of Distant-based Top-1-grams

Input:

S’ the sequence of Top-1-grams

dyy distance threshold dazox

Output:

JfeatureVecror: Distant-based Feature Vector of S~

fori=0¢0 20+ 20 *20 * dyyyrdo  //Initialize

L

2 JSeatureVector[i] = 0

3:  end

4:  for Position= 0105 " Length— I do  //Calculate the occurrences of distance 0
5 SeatureVector[index(Top-1-gramArPosition)] +=1

6:  end

7. ford=1todyx&d d=< S’ Lengthdo

8: for FirstPosition = 0to S".Length— 1 —d do

9: SecondPosition = FirstPosition + d

10: indexF = index(Top-1-gramAtFirstPosition)

11: indexS = index(Top-1-gramAtSecoondPosition)

12: SeatureVector{20 + (d - 1) * 20° + indexF * 20 + indexS] += 1
13: end

14: end

Figure 2 Algorithm of construing the Distance-based Top-1-
gram feature vector. The input of this algorithm is the Top-1-gram
sequence S, distance threshold dyax, and the output is the feature
vector of distance-based Top-1-grams. The vector of alphabet Index
[ is the index of all the Top-1-gram in the alphabet A and 20 is the
size of A, for example, index 0 indicates the first Top-1-gram in the
alphabet A(t; = A), and index 19 is the last Top-1-gram in the
alphabet A(t;o = V).

measured the similarity between a pair of proteins by tak-
ing into account all the optimal local alignment scores
with gaps between all possible subsequences. BioSVM-2L
constructed two-layer SVM classifiers with profile-based
kernels. In SVM-Pairwise, each protein was represented as
a vector of pairwise similarities to all proteins in the train-
ing set. HHSearch is one of the best protein remote
homology detection methods, which employed a novel
profile-based hidden Markov models.
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Table 1 shows the predictive results of the two pro-
posed methods (SVM-DT, SVM-DR) and other nine
related methods. Generally speaking, profile-based meth-
ods are superior to sequence-based methods because
they use the evolutionary information in profiles for
protein remote homology detection. The proposed
sequence-based method SVM-DR outperforms two
sequence-based methods Monomer-dist, SVM-Pairwise,
and is highly comparable with SVM-LA. For the profile-
based methods, SVM-DT outperforms other methods
except for SVM-PDT-Profile in terms of average ROC
score. SVM-DT improves the SVM-Top-n-gram by con-
sidering the Top-n-gram pairs at different distances. The
experimental results demonstrate that this sequence-
order information is relevant for discrimination and the
average ROC and ROC50 scores can be improved by
4.1% and 10.4%, respectively.

Correlations between discriminative features and protein
family

According to the above results, the proposed Distance-
based Top-n-gram (SVM-DT) method showed the best
performance with low computational cost when the dis-
tance threshold d,;4x was taken as the value of 150. In
order to further investigate the importance of the features
and reveal the biological meaning of the feature space, we
followed the study [29] to calculate the discriminant
weight vector in the feature space. The sequence-specific
weight obtained from the SVM training process can
be used to calculate the discriminant weight of each fea-
ture to measure the importance of the features. Given the

Table 1 Average ROC and ROC50 scores over 54 families
for different methods.

Methods ROC ROC50 Profile Sequence Source
T T T T T SVM-DR 0919 0715 No Yes This
g . . study
094 [ p—ee® . Monomer-dist 0919 0508 No  Yes 30
! SYM-LA (8 = 05) 0925 0649 No  Yes 18]
— SVM-Pairwise 0901 0399 No Yes [16]
s | e ] SVM-DT 0948 0800 Yes  No This
8 . /’l-. - study
8 090 | an’ i SVM-Top-n-gram 0907 0696  Yes No [28]
e / SVM-Top-n-gram-LSA 0939 0767  Yes No [28]
o —=— SVM-DR :
= ‘J SVM-PDT-Profile (8 =8, 0950 0.740  Yes No [29]
o | ®  SVM-DT _
Z 088 [ / - n=2)
/ PseAACIndex-Porfile 0922 0712 Yes No [41]
. =9
i ] BioSVM-2L (1st+2nd 0927 0888 Yes  No [42]
1 . 1 L 1 " I . 1 Iayers)
0 50 10 150 200 HHSearch 0915 0990 Yes  No [4]
Distance threshold d,
The columns “Profile” and “Sequence” denote whether the method belongs to
Figure 3 The average ROC scores of the SVM-DR and SVM-DT a class ("Yes”) or not ("No”), where “Profile” indicates the method uses profile
with different distance threshold values of djay. to extract the features, “Sequence” means that the method only uses the

sequence composition of proteins to construct the feature vectors.
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weight vectors of the training set with N samples obtained
from the kernel-based training a= [, 0, 03,..., 0], the
discriminant weight vector w in the feature space can be
calculated by the following equation:

(3)

Where M is the matrix of sequence representatives.
The magnitude of the element in w represents the dis-
criminative power of the corresponding feature. We
used the Ly-norm of the discriminant weight vector w
of each Top-1-gram pairs and residue pairs to measure
the importance of the features.

Family 2.5.1.3 was selected as a target family for the
feature analysis. The predictive results of SVM-DT on
this family are obviously higher than those of the SVM-
DR (0.993 VS 0.844 in terms of average ROC score).
The Ly-norm of 400 Top-1-gram pairs and residue pairs
for these two methods are depicted in Figure 4. Accord-
ing to the figure, interestingly, the top two most discri-
minative pairs are (G, G), (L, L) for both of the two
methods (the two darkest spots in each subfigure of
Figure 4), which indicates the importance of amino acid
G (Glycine) and L (Leucine). The strong discriminative
power of Top-1-gram pair (G, G) on protein family
2.5.1.3 (Multidomain cupredoxins) is not surprising,
because highly conserved sequence PHGGGWGQ are
abundant in cupredoxins [44], and Top-1-gram pair (G, G)
can capture this sequence pattern, which would be the rea-
son for better performance of SVM-DT on this protein
family.

Figure 5(A) and 5(B) show the discriminant weights of
the top two most important Top-1-gram pairs (G, G)
and (L, L) of the SVM-DT on family 2.5.1.3, and the

w=M"a

Page 7 of 10

discriminant weights of the top two most important
residue pairs (G, G) and (L, L) of the SVM-DR are
shown in Figure 2(C) and 2(D), respectively. As indi-
cated by the above results, short distances are more
important for discrimination than longer distances,
which coincides with the ladder-shaped structure of dis-
criminant values for distances. These results demon-
strate that using the Top-1-gram pairs with distances
shorter than a given distance threshold d,;4x to con-
struct the feature vector is an efficient strategy to reduce
computational cost, because shorter distances are more
important than longer distances for protein remote
homology detection. Figure 5(A) shows the discriminant
weight of pair (G, G) of SVM-DT and the magnitude of
zero-distance shows the importance of Glycine fre-
quency for discrimination. Most of the distances
between Top-1-gram pairs (G, G) show positive discri-
minative power, while only a few distances show nega-
tive discriminative power, such as the distances 3, 25,
26. Figure 5(B) shows the discriminant weight of pair
(L, L) of SVM-DT, which shows similar patterns. Note
that the Top-1-gram pairs with zero-distance always
show higher discriminative power than other distance
values for both of the two features, indicating the local
structure, especial the subsequence of proteins are very
important for protein remote homology detection.
Figure 5(C) and 5(D) show the discriminant weights of
the top two most important residue pairs of the SVM-
DR on family 2.5.1.3 after SVM training process. These
two subfigures also show similar ladder-shaped struc-
ture, but there are more features show positive discrimi-
native power than those in the SVM-DT as shown in
Figure 5(A) and 5(B).

(A) L2-norm of Top-1-gram pairs

—
o

second Top-1-gram
<S<EAVTNMZ RrZO=IMONTRID

ARDCQEHIGNLKMFPSTWYYV
first Top-1-gram

and y-axis in figure (B) indicate the first residue and the second residue i
the mapping of L,-norm values.

Figure 4 The discriminative power (L,-norm) of discriminant vectors for all possible combinations of Top-1-gram pair (A) and residue
pair (B) of protein family 2.5.1.3. The amino acids are identified by their one-letter code. The amino acids labeled by x-axis and y-axis in
figure(A) indicate the first Top-1-gram and the second Top-1-gram in Top-1-gram pairs of SVM-DT, respectively; the amino acids labeled by x-axis

(B) Lz-norm of residue pairs

second residue
<<E—HWVWIVNMZEA-rZO~IMONOUAIP

ARDCQEHIGNLKMFPSTWYYV
first residue

n residue pairs of SYM-DR, respectively. The adjacent color bar shows
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(A) Top-1-gram pair (G,G) of SVM-DT (B) Top-1-gram pair (L,L) of SVM-DT
20 — T T T T T T T T T T T T 3 0T T T T T T T T T T T 5
10 8 10 — .
5o | I W‘r\h' UL mmmmg” o e ! l}[' N Rlﬂlf“w'wlﬂﬁ
2 p]” W IR ‘I I W“ [ T T v
520 €20} 1
g =
'=-30 1=-30t .
% 2
S 40 F 1S 40t .
-50 | : ; . i ; : L 1 -50F ; i ; ; ; ; L
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
distance distance
(C) Residue pair (G,G) of SVM-DR (D) Residue pair (L,L.) of SVM-DR
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Figure 5 The discriminant weights of the most discriminative Top-1-gram pairs (G, G) and (L, L) of SVM-DT for family 2.5.1.3 are
shown in figure (A) and (B), respectively; the discriminant weights of the most discriminative residue pairs (G, G) and (L, L) of SVM-
DR for family 2.5.1.3 are shown in figure (C) and (D), respectively.

Conclusion

In this study, we proposed two methods SVM-DT and
SVM-DR for protein remote homology detection, in
which the feature vectors were constructed based on the
occurrences of Top-n-gram pairs or residue pairs at dis-
tances shorter than a distance threshold d,;4x. These
approaches can be viewed as position dependant meth-
ods that incorporate the sequence-order information.
SVM-DR is a sequence-based method, its advantage is
that it doesn’t need time consuming multiple sequence
alignment step. SVM-DT is a profile-based method,
which achieves more accurately predictive performance
but higher computational cost is required due to the

generation of Top-n-grams. Recently, position depen-
dant methods have been attracted much attention.
Remote homology proteins share low sequence similar-
ity, and therefore, structure information is a key to
improve the predictive performance. These position
dependant methods partly incorporate the structure
information by considering the relative orders of resi-
dues or other building blocks of proteins occurring in
protein sequences, such as Monomer-dist proposed by
Linger et al [30]. This method used the distances
between short oligomers to produce the feature vectors,
which gave rise to very high-dimensional feature vectors.
In contract, SVM-DR efficiently reduced the dimension
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of feature vectors by only considering the residue pairs
at distances shorter than a distance threshold dj 4.
SVM-DT further improved SVM-DR by using Top-n-
grams to replace the residues in proteins and produced
feature vectors based on Top-n-gram distances. This
profile-based method used the evolutionary information
in profiles and therefore showed better performance
than the sequence-based methods and the position inde-
pendent methods, such as SVM-Top-n-gram [28], indi-
cating that the distance-based approaches are relevant
for discrimination. Recent studies showed that besides
sequence and profile information, other features describ-
ing the physicochemical properties of amino acids can
accurately detect the protein homologies, such as the
amino acid index (AAlIndex) [29,41]. We are looking
forward to incorporating these features into the pro-
posed distance-based framework and exploring new
mathematical and statistical models for the representa-
tion of protein sequences.
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