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in Bioinformatics - State-of-the-Art, future
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Computers are incredibly fast, accurate, and stupid.
Human beings are incredibly slow, inaccurate, and

brilliant.
Together they are powerful beyond imagination
(Einstein never said that [1]).

Background
The life sciences, biomedicine and health care are
increasingly turning into a data intensive science [2-4].
Particularly in bioinformatics and computational biology
we face not only increased volume and a diversity of
highly complex, multi-dimensional and often weakly-
structured and noisy data [5-8], but also the growing
need for integrative analysis and modeling [9-14].
Due to the increasing trend towards personalized and

precision medicine (P4 medicine: Predictive, Preventive,
Participatory, Personalized [15]), biomedical data today
results from various sources in different structural dimen-
sions, ranging from the microscopic world, and in particu-
lar from the omics world (e.g., from genomics, proteomics,
metabolomics, lipidomics, transcriptomics, epigenetics,
microbiomics, fluxomics, phenomics, etc.) to the macro-
scopic world (e.g., disease spreading data of populations in
public health informatics), see Figure 1[16]. Just for rapid
orientation in terms of size: the Glucose molecule has a
size of 900 pm = 900× 10−12m and the Carbon atom

approx. 300 pm . A hepatitis virus is relatively large with

45nm = 45× 10−9m and the X-Chromosome much

bigger with 7µm = 7× 10−6m . We produce most of
the “Big Data” in the omics world, we estimate many Tera-
bytes ( 1TB = 1× 1012 Byte = 1000 GByte) of genomics
data in each individual, consequently, the fusion of these

with Petabytes of proteomics data for personalized medi-
cine results in Exabytes of data (1 EB = 1× 1018 Byte ).
Last but not least, this “natural” data is then fused together
with “produced” data, e.g., the unstructured information
(text) in the patient records, wellness data, the data from
physiological sensors, laboratory data etc. - these data are
also rapidly increasing in size and complexity. Besides the
problem of heterogeneous and distributed data, we are
confronted with noisy, missing and inconsistent data. This
leaves a large gap between the available “dirty” data [17]
and the machinery to effectively process the data for the
application purposes; moreover, the procedures of data
integration and information extraction may themselves
introduce errors and artifacts in the data [18].
Although, one may argue that “Big Data” is a buzz word,

systematic and comprehensive exploration of all these data
is often seen as the fourth paradigm in the investigation of
nature - after empiricism, theory and computation [19],
and provides a mechanism for data driven hypotheses
generation, optimized experiment planning, precision
medicine and evidence-based medicine.
The challenge is not only to extract meaningful informa-

tion from this data, but to gain knowledge, to discover pre-
viously unknown insight, look for patterns, and to make
sense of the data [20], [21]. Many different approaches,
including statistical and graph theoretical methods, data
mining, and machine learning methods, have been applied
in the past - however with partly unsatisfactory success
[22,23] especially in terms of performance [24].
The grand challenge is to make data useful to and use-

able by the end user [25]. Maybe, the key challenge is
interaction, due to the fact that it is the human end user
who possesses the problem solving intelligence [26],
hence the ability to ask intelligent questions about the
data. The problem in the life sciences is that (biomedical)
data models are characterized by significant complexity
[27], [28], making manual analysis by the end users diffi-
cult and often impossible [29]. At the same time, human
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experts are able to solve complicated problems some-
times intuitively [30], [31], [32], e.g., often without being
able to describe the exact rules or processes used during
their analysis and problem solving.
Many advances in powerful computational tools [33],

[34] in recent years have been developed by separate com-
munities with different philosophies: Machine learning
researchers tend to believe in the power of their statistical
methods to identify relevant patterns [35] - mostly auto-
matic, without human intervention [36]; however, the
dangers of modelling artefacts grow when end user com-
prehension and control are diminished [37].
Additionally, mobile, ubiquitous computing and sen-

sors, together with low cost storage, will accelerate this
avalanche of data [38], and there will be a danger of
drowning in data but starving for knowledge, as Herbert
Simon pointed it out 40 years ago: “A wealth of informa-
tion creates a poverty of attention and a need to allocate
that attention efficiently among the overabundance of
information sources that might consume it” [39].
Consequently, it is a grand challenge to work towards

enabling effective human control over powerful machine
intelligence by the integration and combination of
machine learning methods and advanced visual analytics
methods to support insight and decision making
[28,40-44].
We envision effectively tackling these challenges by

bringing together the best of two worlds: A synergistic
combination of theories, methods and approaches from
Human-Computer Interaction (HCI) and Knowledge
Discovery from Data (KDD). Such approaches need
a trans-disciplinary methodology. For example, the

understanding of complex structures, such as regulatory
networks, is a challenging objective and one that cannot
be tackled within a single, isolated discipline [45]. Also,
advances in network-based methods are enabled by
novel applications. This relates to the exploration of
methods and measures [46,47] to investigate global and
local structural properties of complex networks or to
study their interrelations [48-50]. While the relevant lit-
erature of the last decades has portrayed the definition
of infinitely many network measures and methods as a
relatively simply undertaking; overall, understanding this
complex mathematical apparatus has turned out to be
very complicated [51,52].
There is no doubt about the usefulness of such techni-

ques in general. However, this branch of science some-
what failed to demonstrate the usefulness and
interpretability of the underlying mathematical appara-
tus. In fact, while this development led to a vast amount
of network measures/methods, exploring their structural
interpretation and meaning has been often overlooked.
This calls for generating more results to interpret the
measures/methods more properly.

Knowledge Discovery process
The traditional method of turning data into knowledge
relied on manual analysis and interpretation by a domain
expert in order to find useful patterns in data for decision
support. An early example from medical diagnostics
includes the work by Reeder & Felson (1977) [53]. Today,
far beyond pattern recognition, this process has been given
a variety of names, including: data mining, knowledge
extraction, information discovery, information harvesting,

Figure 1 The trend towards personalized and molecular medicine brings together data from very different sources.
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data archaeology, and data pattern processing [54]. In the
classic work by Fayyad et al. (1996), [55], this process is
described by different steps starting from data selection,
pre-processing, data transforming, data mining and inter-
pretation. In this definition, Data Mining is actually a sub-
set of Knowledge Discovery, and although the original
notion was Knowledge Discovery in Databases (KDD),
today, in order to emphasize that Data Mining is an
important subset of the knowledge discovery process, the
current most used notion is Knowledge Discovery and
Data Mining (KDD). It is important to note that KDD can
be seen as a process and encompasses the complete value
added chain from the very physical side of data to the very
human side of knowledge, the latter defined from a cogni-
tive point of view: knowledge as a set of expectations [56].
We further extend the original definition by Fayyad et al.
(1996) by interaction and include the human-into-the-
loop. Interaction, communication and sensemaking are
core topics in Human-Computer Interaction (HCI)
[25,57-61], consequently, a novel approach is to combine
HCI & KDD [8,44].
The central premise of HCI-KDD is to enable end users

interactively to find and characterize previously unknown
and potentially useful and usable information. It may be
defined in the classical sense as the process of identifying
novel data patterns, with the goal of understanding these
patterns. The domain expert in Figure 2 possesses explicit
domain knowledge and by enabling them to interactively
explore the data sets, they may be able to identify, extract
and understand useful information, to gain new, and pre-
viously unknown knowledge [21].
KDD historically builds on three fields: machine learn-

ing; databases and artificial intelligence to design and
develop tools and frameworks that let the end users
gain insight into the nature of massive data sets [54],
[24], [62].

Future research directions
Figure 2 illustrates the complete knowledge discovery
process, and we will use this “big picture” for the
description of some problems and challenges - starting
(in this Figure) from right to left - from the computer
to the human - segmenting it into four large areas:

Area 1: Interactive data integration, data fusion and pre-
selection of data sets
Many different biological species (humans, animals, bac-
teria, virus, plants, ...) deliver large amounts of data,
together with the enormous complexity of medicine per
se [42] and the limited computational power in compar-
ison of the complexity of life (and the natural limitations
of the Von-Neumann architecture) these pose a lot of
problems, which can be divided into three categories:

• Heterogeneous data sources (need for data fusion);
• Complexity of the data (high-dimensionality);
• Noisy, uncertain data, dirty data, the discrepancy
between data-information-knowledge (various defini-
tions), Big data sets (when is data big? when manual
handling of the data is impossible) [24].

In comparison to research systems, commercially
available information systems have only limited data
fusion capabilities, if any at all [63]. It is a huge chal-
lenge to integrate and fuse the biological data together
with classical patient records, physiological data or med-
ical image data [64], [65]. The issues are so big that
there is an own conference series called “data integra-
tion in the life sciences” [66].

Area 2: Interactive sampling, cleansing, preprocessing,
mapping
The problem of merging multiple data sets concerning
common entities is frequently encountered in KDD, often
called the Merge/Purge problem, it is difficult to solve
both in scale and accuracy [67]. Cleansing data from
impurities is an integral part of every data processing and
has led to the development of a broad range of methods to
enhance the accuracy and thereby the usability of existing
data [68]. Many machine learning algorithms, for example,
struggle with high-dimensional data. This has become well
known as the curse of dimensionality [69]. A further issue
is that most medical data is incomplete, with missing data
values, inconsistent value naming conventions, etc. or
requires the detection and removal of duplicate data
entries [70] - so the central goal of data quality poses a
number of problems and challenges [71], [72]. The quality
of data finally, influences the quality of information [73].

Area 3: Interactive advanced data mining methods,
pattern discovery
Many data mining methods are designed for collections of
objects well-represented in rigid tabular formats. However,
besides massive sets of unstructured information and non-
standardized information (text) [74-76], we are increas-
ingly confronted with large collections of interrelated
objects whose natural representation is in point cloud data
or typed graphs [77] (e.g., protein structures, protein inter-
action networks, etc.).
Advanced data mining approaches include:

1) graph-based data mining [78], [79], [80], [81],
2) entropy-based data mining [47,82], [83-85], and
3) topological data mining [86,87].

We emphasize that these approaches are interdisciplin-
ary and complementary albeit having common goals, and
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have been proven useful to perform translational research,
e.g., [47,82,84,85].
In particular, entropy-based graph analysis is based on

using information theory and graph theory. Generally,
information theory [88] relates to quantifying informa-
tion and to investigating communication processes. To
translate this concept to graph theory has been intricate.
As a result, various graph entropies have been developed
but the literature lacks exploring interrelations with
other network measures. An example thereof can be
found in [47]. Much future research is necessary in this
area in the future.

Area 4: Interactive visualization, HCI, analytics, decision
support
Finally, the results gained by the application of sophisti-
cated algorithms in high dimensional spaces in area 3
must be mapped back to R

2 because humans have diffi-
culties in comprehending higher dimensional data.
We can say that, while our world is highly dimensional

mathematically, we can only perceive lower dimensions.
This leads to the definition of visualization as the mapping
from the higher into the lower dimensional space, a process

that always suffers the danger of modelling artefacts.
Although Visualization is a mature field with a back-
ground of several decades, there are still a lot of challen-
ging and open research issues, especially in the context of
interactive data mining with application to the biomedical
domain. A major issue is the absence of a complete toolset
that supports all analysis tasks within a biomedical work-
flow, including the many steps of data preprocessing [89].
It is very interesting to note that although there are many
sophisticated visualization techniques available [90-102], -
these are rarely applied in routine applications, especially
in business enterprise hospital information systems, where
such approaches really could bring benefits to the profes-
sionals. An extremely important issue is the limited time,
e.g., in average a medical doctor in a public hospital has
only five minutes to make a decision [103,104]; This
strongly calls for interactive tools. Naive visualization
attempts are often ineffective or even actively misleading,
due to the fact that the development of effective visualiza-
tions is a complex process and requiring a basic under-
standing of human information-processing and a solid
grounding in the existing body of work in the visualization
community [105-107].

Figure 2 The knowledge discovery process in the life sciences.
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Horizontal area: Privacy, data protection, data security,
data safety
Whenever we deal with biomedical data issues of priv-
acy, data protection, data security and data safety and
the fair use of data are of paramount importance [108],
including data accessibility, temporal limits, legal restric-
tions (such as in situations where copyright or patents
may be relevant), confidentiality and data provenance.
We face a range of research challenges in developing
data mining methods to properly handle these complex
restrictions.

Additional aspects to consider
Some additional aspects to consider include:

Cross-disciplinary cooperation with domain experts
Building a project consortium comprising of experts
with complementary expertise but common interests is
a success factor in each project. Bringing together
domain experts from diverse areas in a cross-disciplinary
manner is a challenge to stimulate fresh ideas and
encouraging multi-disciplinary work [109]. For example,
the application of principles from HCI to data-driven
projects in biomedical contexts has been lacking and
has been receiving increasing attention in recent years
[59], [110]. In the life sciences domain, experts are both
data producers and end users at the same time, knowl-
edge engineers and analysts help to organize, integrate,
visualize, analyze and evaluate the data. For example, in
“systems biology” intertwining these two may lead to
improving both the models and the experimental results.
In such complex domains as in biomedicine, we need
experts who understand the domain, the problem, and
the data sets, hence the context [111].

Interpretability
As we broaden workflows for data mining, we have to
expand metrics used to evaluate our results. It is no longer
sufficient to focus on performance metrics, such as ROC
[112], accuracy, precision and recall (although precision
and recall still are the measures in data mining [113]), one
must also consider how non-functional requirements are
satisfied, such as interpretability. In the biomedical
domain, where it is necessary to explain or justify the
results of a decision, data mining alone is definitely irrele-
vant: It is necessary to produce results that are explainable
to others. In a SIAM conference in 2007 an interesting
panel was held, where the panelists including Christos
Faloutsos (Carnegie Mellon University), Jerry Friedman
(Stanford University), Ajay Royyuru (IBM Research), and
Mehran Sahami (Google Research), together with the
moderator Haym Hirsh (Rutgers University), formulated a
couple of interesting questions, which are very relevant up

to the present [23], for example: How can we quantita-
tively and qualitatively measure interpretability? Similar to
the concepts of interest or beauty [114], interpretability is
in the eye of the beholder and possibly dependent on the
previous knowledge and the level of expertise of the deci-
sion maker [115], consequently, we need adaptive tools to
satisfy both novices and experts.

Computing resources
As our computing machinery evolves, from large main-
frame servers to multi-core CPU/GPU clusters we need
to optimize data mining algorithms, processes and
workflows to best fit the environment. The potential of
so-called On-Demand Hardware along with the Software
as a Service (SAAS) paradigm [116] can no longer be
denied, and there are several examples yet of Cloud
Computing approaches, e.g. in drug discovery research,
medical imaging and applications for doctors in rural
areas [117-119]. However, much data in biomedicine
and healthcare has strict privacy requirements and
therefore privacy, security safety and data protection
issues are of enormous importance with such future
approaches. Major internet companies offer already such
services for data-intensive computing and a similar
strategy led to the developing of large computing grids
for massive data analysis, such as IBM’s World Commu-
nity Grid (http://www.worldcommunitygrid.org), [120].

Benchmarking against gold-standards
To measure the quality of data mining approaches, the
production of benchmarks it very important. These data
sets can be used as so-called gold-standards (e.g.,
[121-123], which allow us to compare results across com-
peting methods and are thus important for information
quality issues [124,125].

Reproducibility
A big general issue among our modern research commu-
nities is that rarely one can reproduce the results of other
researchers. Often it is not possible to verify and to repli-
cate experiments, which is the case for example in classical
non-computing experimental sciences [126]. One of the
major issues is “sloppiness in data handling” and the
resulting exponentially growing retraction of papers [127].
So, a mega challenge is in ensuring that results can be
replicated from other groups at other places.

Embedded data mining
Whilst existing research has shown the value of data-
driven science, we need to further integrate knowledge
discovery and visualization pipelines into biological and
biomedical and especially clinical workflows to take full
advantage of their potential [23].
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Complexity of data analysis methods
Deciding which method is the most suitable for solving
a particular data analysis problem is often critical as the
interdependencies make the selection non-linear [128].
Hence to perform data analysis efficiently, a deep under-
standing of the underlying mathematical apparatus is
necessary.

Conclusion
We are just at the beginning of a turning point towards
data intensive life sciences, which entails many chal-
lenges and future research directions. Within this over-
view we have highlighted only a few issues.
Summarizing, we may say that the grand challenge is in
building frameworks for enabling domain experts to
interactively deal with their data sets in order to “ask
questions” about the data, for example: “Show me simi-
larities/differences/anomalies of data set × and data set
Y”, hence the discovery of novel, previously unknown
patterns in complex data. Which mathematical frame-
work should we use? One challenge is that such a fra-
mework must be usable for domain experts without
prior training in mathematics or computational sciences.
We need machine intelligence to deal with the flood of
data, but at the same time we must acknowledge that
humans possess certain problem solving and cognition
abilities, which are far beyond computation. A possible
solution is in the cross-disciplinary combination of
aspects of the better of two worlds: Human-Computer
Interaction (HCI) and Knowledge Discovery from Data
(KDD). A proverb attributed perhaps incorrectly to
Albert Einstein illustrates this perfectly: “Computers are
incredibly fast, accurate, but stupid. Humans are incred-
ibly slow, inaccurate, but brilliant. Together they may be
powerful beyond imagination”.
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