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Abstract

Background: The BioNLP Gene Regulation Task has attracted a diverse collection of submissions showcasing state-
of-the-art systems. However, a principal challenge remains in obtaining a significant amount of recall. We argue
that this is an important quality for Information Extraction tasks in this field. We propose a semi-supervised
framework, leveraging a large corpus of unannotated data available to us. In this framework, the annotated data is
used to find plausible candidates for positive data points, which are included in the machine learning process. As
this is a method principally designed for gaining recall, we further explore additional methods to improve precision
on top of this. These are: weighted regularisation in the SVM framework, and filtering out unlabelled examples
based on a probabilistic rule-finding method. The latter method also allows us to add candidates for negatives
from unlabelled data, a method not viable in the unfiltered approach.

Results: We replicate one of the original participant systems, and modify it to incorporate our methods. This
allows us to test the extent of our proposed methods by applying them to the GRN task data. We find a
considerable improvement in recall compared to the baseline system. We also investigate the evaluation metrics
and find several mechanisms explaining a bias towards precision. Furthermore, these findings uncover an intricate
precision-recall interaction, depriving recall of its habitual immediacy seen in traditional machine learning set-ups.

Conclusion: Our contributions are twofold:
1. An exploration of a novel semi-supervised pipeline. We have succeeded in employing additional knowledge
through adding unannotated data points, while responding to the inherent noise of this method by imposing an
automated, rule-based pre-selection step.
2. A thorough analysis of the evaluation procedure in the Gene Regulation Shared Task. We have performed an in
depth inquiry of the Slot Error Rate, responding to arguments that lead to some design choices of this task. We
have furthermore uncovered complexities in the interplay of precision and recall that negate the customary
behaviour commonplace to the machine learning engineer.

Background
The set of BioNLP shared tasks [1] form a biannual
challenge used by many to apply and develop state-of-
the-art methods in the field of biomedical information
extraction (IE). In 2013 in its third instalment, it again
succeeded in attracting a considerable amount of contri-
butions from an international community of researchers.
This work is spread over six different subtasks, each

with a focus on fine-grained IE to construct knowledge
bases in their respective domain.
The Gene Regulation Network subtask [2] tries to

attain the construction of a relation network encompass-
ing the extracted knowledge, in order to build models to
represent the behaviour of a system. This network can
then serve as a base for representing current knowledge,
and be leveraged for making inferences and predictions,
i.e. towards experiment design. In the case of this parti-
cular task, this system entails the whole of molecular
interactions between genes and proteins in a specific
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bacterium, the bacillus subtilis. An example sentence for
this task is given in Figure 1.
Participants are asked to extract a regulation network

from sentences taken from PubMed abstracts describing
these phenomena. This network is comprised of six dif-
ferent types of relations, which are related into a small
hierarchy (see Figure 2). At both train and test time, gold
standard annotations of entities are provided, making
this a pure relation extraction task, without the need to
do named entity recognition, a task with its own set of
difficulties and challenges. Of further note is the fact that
submissions are evaluated on the produced network as a
whole, namely the set of relations detected on the test
data as a whole. We discuss the impact of this global
scoring in the section Results and discussion. In the sys-
tems produced for this task, we notice a strong tendency
to favour precision, i.e. controlling the false positive rate.
The top submission [3] obtained a precision score of
68%, however only reaching a recall of 34%. While there
certainly is a need for reliable results when working with
biomedical knowledge, covering a sufficient proportion
of true positives (i.e. recall) can be equally fundamental
in many practical applications. Examples of these are
hypothesis generation and knowledge base construction,
especially in settings where adding more data can not
solve the problem of finding additional true positives (as
can be the case in e.g. texts describing recent findings).
Indeed, the interest in developing systems for inference
and/or prediction equally lies in the retrieval of a sizeable
hypothesis set, rather than reaching only those that can
be found with high confidence. One way to balance a sys-
tem in favour of recall is the exploitation of additional
unannotated data. By working in a semi-supervised fash-
ion, a learner can be made more aware of the wide vari-
ety of patterns encoding a relationship. This happens at
the cost of introducing more noise (and hence decreasing
precision), since there is no reliable way of labelling the
extra data. In this paper we explore a method to decrease
this cost, effectively keeping precision stable while
improving recall.
Basing ourselves on the model of [4], that achieved a

second place for this task, we explore how semi-super-
vised techniques can improve the performance that this

system obtains in its supervised form. We further inves-
tigate several techniques to counterbalance the noise
added by these methods. Next to the traditional measure
of weighing regularisation parameters, we go on to
develop a novel method based on probabilistic rule-find-
ing. Next, we look at the experimental set-up and com-
pare the results of the proposed methods. We also
discuss some of the properties of this task, and evaluate
how these can impact performance in terms of precision
and recall. This influence can be both direct, e.g.
because of data skewness or pre-scoring processing, and
indirect. An example of the latter is found in the choice
of the final scoring metric (the Slot Error Rate), altering
some of the parameter choices when designing and
selecting a model.
The section thereafter reviews related work. We finish

with conclusions and future research questions.

Methods
Baseline model
We base ourselves on the model of [4]. The main rea-
sons for this are as follows:

• Their model came in second place, showing decent
performance;
• Unlike the winning entry, their model does not use
hand-crafted rules, and is based on Support Vector
Machines. Their set-up therefore lends itself per-
fectly to extension into a semi-supervised framework
as described below.

The main configuration of the system of [4] is a col-
lection of Support Vector Machines (SVMs, see [5]),
one per relation type. The authors construct a data
point for each couple of genic entities in a sentence,
effectively considering all potential agent/target pairs for
the relations. The kernel used is a Gaussian RBF kernel
(see [6] for the seminal work, and [7] for a good
overview).

Figure 1 Example sentence from task data set: there is an
Interaction:Requirement relation defined between entities GerE
and sspG. Entity annotations (full-line border) are given in the test
phase. The relation type (here: Interaction:Requirement) and which
entities are target and agent for the relation need to be predicted.

Figure 2 Hierarchy imposed on the output types of the GRN
task.
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The novelty of [4] lies in the feature construction. The
feature vectors for candidate relation tuples are built as
follows:

f = fbase � fcontext

This is a concatenation (symbolised by ©) of local fea-
tures fbase, complemented by what is referred to as con-
text features, fcontext. The local features consist of the
classical word information (stem + part-of-speech) along
with the biomedical compound type (e.g. Gene, Protein)
for the words that the entities comprise, with different
parts for the agent and target entities. The context part
is then constructed in the following fashion, also sepa-
rately for both entities:

fcontext(ω) =
1
z

∑

wi∈sentence
αd(w,wi)fbase(ωi)

with w being the words of the entities at hand, and
the sum going over all the wi words in the sentence.
d(w, wi) is the distance in number of words between w
and wi. This is in essence an average of the vectors
encoding the different non-entity words in the sentence,
weighted inversely by their distance to the entity words.
a is a constant controlling how fast the weights decay
with distance, and Z is a normalisation factor. Note that
the traditional fashion of including textual context exists
of concatenating these separate word vectors instead of
averaging. This leads to feature vectors with only values
of 0 or 1 as components, whereas the entries in fcontext
can take on all real values in the interval [0,1]. We
direct the reader to the work of [4] for further details.
A few specific differences are to be noted between our

implementation and that of the submitted system. We use
the LibSVM [8] package as provided by the Scikit-learn
Toolbox [9]; this difference in library used should be of
minor influence on results, and we are indeed able to
replicate their performance. Furthermore, as mentioned in
the original paper, the distance d used for the submitted
results was taken to be the distance in the parse tree,
where later tests proved to be more favourable towards
using a ‘flat’ sentence distance, as described above. We
compared both options in a cross-validation setting (utilis-
ing trees generated from the parser by [10]) and found
indeed the use of the latter to give better results. We use a
value of a = 0.9.

A distant learning approach
The main issue of a fully supervised system is the diffi-
culty to generalise towards unseen patterns. This pro-
blem is more apparent the sparser the data, and the
richer the representation. With our baseline system hav-
ing an elaborate feature representation, we suspect this
to be a big factor in this framework. Furthermore, new

data points will likely entail unseen words, in part coun-
terbalancing the effectiveness of this sort of feature
scheme, albeit widely used in NLP situations (as shown
in e.g. [11] and [12]). Because of these reasons, the base
system is likely to suffer from a poor generalisability, as
also testified by its poor recall score.
A corpus of related, but unseen data points can provide

a source of new patterns to incorporate in our learner.
Of course, the main obstacle is the lack of labelling for
this data; we have no knowledge what points are to be
marked as positive. Instrumental in any semi-supervised
framework are therefore:

• An approximation method to identify the labelling
of unseen data. As this can never fully substitute the
precision of annotations supplied by a human expert,
the uncertainty in this introduces additional noise.
Hence also the need for the next item:
• Means of managing the uncertainty in adding unla-
belled data. Since the labellings now contain more
noise, this inherently changes the optimal learning
strategy; a semi-supervised method needs to take
this into account.

We propose an expansion to the distant supervision fra-
mework (see [13,14]). In this line of methods, the classifier
is trained on a set of ‘bags’ of data points, with the defining
property that positive bags are only known to be partly
containing positively labelled points. The negative bags on
the other hand are more certain to effectively contain only
negative points. As shown in [14,15], one use case for this
set-up is exactly relation learning, in the event of having a
set of known relations between two entities, but when no
finer-grained annotations (i.e. on a document or sentence
level) are available.
Contrary to this framework, we do have at our disposal

the fine-grained annotations of our labelled data set.
However, the structure of these distant learning problems
points us to the aforementioned approximation method
to add unlabelled data to the training data. Namely, the
following observation is used: if a biological relation
exists between two entities (as seen in the labelled data),
there is a substantial probability that another (unlabelled)
sentence containing both entities will also encode this
relation. We therefore add any data point from the unan-
notated corpus that is composed of two such entities to
the training set, labelling it as positive. Note that, since
our main goal is to introduce new patterns to the classi-
fier, we also use the vocabulary from these sentences
when constructing feature vectors. This ensures that we
use an unbiased representation of these data points.
Opposite to the case of positive examples, the same

inference can not be performed here to extract negative
data points. Absence from a sparse set of known relations
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only marginally changes the probabilities on these points.
We therefore refrain from adding negatives from the
unlabelled data, barring further methods to obtain a
more accurate selection. This is where our case differs
from most distant supervision systems, who are able to
extract negative data points due to either explicitly pro-
viding negative seed examples, or having ample data to
employ a closed world assumption [16]. The latter pre-
sumes an adequate coverage of positive data, such that
everything outside of this knowledge is seen as negative.
As will be seen, the pre-selection filter we develop in the
following subsection provides us with an alternative
method to extract negatives; there we will revisit our
choice.
We will refer to the above method as the ‘basic’

method (cfr. in results Table 1 the entry [BASIC]), as
opposed to the systems augmented with the techniques
described below.

Methods of counterbalancing the added noise
Whenever reliability of labelling is affected, this directly
influences precision. The basic method proposed above
is guaranteed to introduce new patterns to the classifier,
which is expected to improve recall. However, this
comes at the cost of adding uncertainty to the labelling
of the data, which is prone to an increase in false
positives.
In this part, we will look at different methods to coun-

ter this effect and maintain adequate precision. We
study the effects of a general method known to deal
with different kinds of noise, namely having a non-con-
stant regularisation parameter in the SVM. We then
move on to develop a method of pre-selecting the data
that is added from the unlabelled corpus, leading to a
more fine-grained control of the introduced uncertainty.
Weighted regularisation
A conventional way to deal with noisy training examples
comes with the observation that, in the traditional set-
up, only the positive data points are plagued by this
noise. Hence, in a soft-margin SVM framework (as
developed by [17]), a different regularisation policy is

introduced for positive and negative examples, as first
proposed by [18], and later also employed by e.g.
[15,19]. Let c+, c− be the set of positive and negative
data points respectively, and j(x) be the feature repre-
sentation for x, this then leads to the following optimi-
sation formulation:

min
w,b,ξx

(
1
2

||w||2 + c+
∑
x∈χ+

ξx + c−
∑
x∈χ−

ξx

)

subject to:〈
w,φ(x)

〉
+ b ≥ 1 − ξx, ∀x ∈ χ+〈

w,φ(x)
〉
+ b ≤ −1 + ξx, ∀x ∈ χ−

ξx ≥ 0, ∀x ∈ χ+ ∪ χ−

w is the weight vector that defines the separating
hyperplane together with the constant b as a bias term.
The ξx serve in this optimisation problem as slack vari-
ables, allowing a trade-off of maximising the margin
against having a few points surpassing that margin. By
having two regularisation constants C+ and C− we can
allow the margin for positive points to be ‘softer’,
accounting for the additional uncertainty in this subset.
An automatic rule-detection algorithm for pre-selection of
unannotated data
Many machine learning systems that serve a specific
application make use of a framework that incorporates
specialist knowledge. A prevalent mechanism for this is
by having some rule-based pre-/post-processing. We pro-
pose a method for extracting some of this knowledge
from the labelled data in a fully automated fashion. This
mechanism covers many standard techniques regularly
used by system engineers, such as filtering on trigger
words that explicitly refer to interactions (‘transcription’,
‘binding’, ...) [16,3], or on the type of bio-molecule for
specific roles (e.g. the target of a Binding event is a Gene
or Site entity) [2,3]. However, the automatic nature of
our method discards the need for manually identifying
and pinpointing useful rules. Furthermore, it is agnostic
of the nature of the data, and hence perfectly adaptable
to texts in any domain or task.

Table 1. Comparative table of results for our different systems

System S D I C M Recall Prec. F1 SER

Original submission of [4] 15 53 5 20 40 22.7 50.0 31.3 0.830

[BASIC] 28 18 100 42 170 47.7 24.7 32.6 1.659

[W_REG] 30 12 204 46 280 52.3 16.4 25.0 2.795

[PRE_SEL]

select POS, no NEG 28 20 77 40 145 45.5 27.6 34.3 1.420

select POS, select NEG 13 39 21 36 70 40.9 51.4 45.6 0.830

select POS, all NEG 13 43 22 32 67 36.4 47.8 41.3 0.886

All results are obtained on the official test set. (S = substitutions, I = insertions, D = deletions, C = correct predictions, M = number of predictions, N = 88 =
number of arcs in reference network).
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In the framework of our semi-supervised system, this
can then be used to obtain a more fine-grained selection
from our unlabelled corpus. We do this by extracting
patterns from the features of the labelled training data,
and including from the unannotated data only those
points that also adhere to these observed patterns.
As we are dealing with a pre-selection step on what is

expected to be positive, our main focus is on detecting
sufficient conditions in the feature space for negativity.
In order to find such a rule implicitly present in the
data, we observe the following:

(fi ∈ Vi → 0) ⇒ (1 → fi /∈ Vi)
⇒ P(fi ∈ Vi|1) = 0

where fi is the ith feature of a data point, Vi a set of
values, and 0,1 have been used as shorthand for the
(negative resp. positive) labelling of that point. The
extension towards rules that conjoin several features is
immediate.
While the above observation is necessary for a nega-

tive labelling, it is by no means sufficient, i.e. finding a
zero frequency can not exclude chance, especially in
small datasets. To see how much of a factor fi effectively
is in the labelling of the point, one could look at prob-
abilistic measures such as Mutual Information, Bayes
Factor or the Kullback-Leibler divergence. However,
most of these measures are only meaningful on non-
zero probabilities, mainly because of the occurrence of
logarithms or divisions of these probabilities.
To escape the ill-behaved nature in this situation, we

look at the probability mass P(fi ∈ Vi | 0), and demand
it to be above a certain threshold. This avoids the con-
fusion of rarely occurring feature values with rules, since
this significantly lowers the probability that all mass
ends up with negative points by chance.
In the algorithm we construct below, we select good

features to extract rules from, as well as combinations
of two feature dimensions. While it is feasible to explore
the use of even more features simultaneously in a rule,
we abstain from doing so to preserve the balance
between exhaustiveness and system performance. The
steps to efficiently find these rules are as follows:
1: initialise R = [ ], T = [ ]
2: for all i do divide the values for fi into two bins Vi,

V̄i
3: end for
4: for all i do
5: if Count(fi ∈ Vi, 0) > threshold then
6: Add i to T
7: if Count(fi ∈ Vi, 1) = 0 then
8: Add rule (fi ∈ Vi ® 1) to R
9: end if
10: end if

11: end for
12: for all i; j ∈ T do
13: if Count(fi ∈ Vi; fj ∈ Vj, 1) = 0 and Count(fi ∈

Vi; fj ∈ Vj, 0) > threshold then
14: Add rule (fi ∈ i ∧ fj ∈ Vj ®0) to R
15: end if
16: end for
A few things to note:

• As many of our features can take any real value in
the interval [0,1], bins are constructed to re-establish
a binary nature, i.e. membership of Vi is analogous
to fi = 0 in the case of bi-valued features. Respec-
tively, Vi designates fi = 1.
• For the sake of legibility, we implicitly assume Vi,
Vj to be the ‘right’ bins. In reality, membership to
both Vi and V̄i, respectively Vj and V̄j are checked.
• Because P(fi ∈ Vi | 0) = P (fi ∈ Vi, 0)/P(0) and P(0)
is a constant for a given training set, it is more effi-
cient to work with joint probabilities.
• Because Count(fi ∈ Vi , fj ∈ Vj, 0) ≤ min(Count( fi ∈
Vi, 0), Count(fj ∈ Vj, 0)), we can already eliminate
many combinations of feature dimensions to consider;
this is the function of the set T. In our experiments,
this reduces the number of combinations to check
from 3.7 million to 30,000 and keeps the above algo-
rithm tractable.

Important to note is that this algorithm now gives us
a tool to also select for negative examples in a distant
supervision-like fashion. The basic selection criterion
adapted from this general framework relies on the aug-
mented probability of having a positive label, given that
the relation exists in the labelled data. As argued before,
a similar reasoning generally does not hold for negatives,
rendering selection for them infeasible. However, the
rules extracted by the above algorithm can serve not
only to eliminate very unlikely candidates for positive
labelling, as previously done. In fact, because these rules
try to encode sufficient conditions for negativity, we can
also employ them to distinguish a subset of all the other
unlabelled data as being very likely negative. This offers
us the opportunity to add both positive and negative
points from our unannotated corpus, a technique not
feasible in the basic distant learning framework.
The threshold effectively decides the amount of rules

extracted from the labelled data, and can be seen as an
additional hyperparameter in the model. Based on our
dataset, we found a threshold of 20 - 30% of the size of
the (annotated) data set to give the most balanced
results in terms of precision vs. recall. Depending on the
application requirements, a lower threshold will improve
precision, while a higher threshold would have us expect
an improvement in recall.
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Results and discussion
Subject and data
The Gene Regulation Network Task tries to accomplish
detection of relations overarching a diverse set of molecu-
lar interactions. Specifically, six different types of relations
are to be extracted: inhibition, activation, requirement,
binding, transcription and regulation. The training and
development set consists of 134 sentences, jointly encoding
230 interactions. On average this amounts to 38 examples
per relation type. Considering the specialised language and
grammar often used in scientific publications, the amount
of training data seems rather sparse to learn a good general
representation in such a complex output space.
As previously argued, this is the main motivation for

including additional data for use in the methods
described above. We therefore augment the dataset we
have with all sentences from PubMed abstracts respond-
ing to the query for “bacillus subtilis sporulation” (as
accessed on 16/08/2013). Beginning from the annotated
data points, we add a sentence from those unannotated
texts if it contains at least two entities that also occur in
our annotated data. Without these entities, a sentence
could indeed never encompass a candidate data point
for a relation. As such, from the initial 14,109 sentences,
only 1,859 are retained, resulting in 11,778 possible
entity pairs. Although of minor influence on the end
result, we also leave out sentences that are already in
the training set. In Table 2 we have shown the average
amount of data points that effectively got added to the
training set for each system.

Evaluation
The Slot Error Rate
From the predictions, a network gets constructed with
the entities as the nodes and the relations between them
as arcs. This network is then used for measuring perfor-
mance: it gets compared to the reference by means of
the Slot Error Rate (SER). This measure is defined by
[20] as:

SER =
S + I +D

N

with:

• S the number of substitutions, i.e. edges that are
predicted, but with the wrong type;
• I the number of insertions (false positives);
• D the number of deletions (false negatives);
• N the number of arcs in the reference network.

For the following analysis, we further define

• C the number of correctly predicted relations;
• M the number of arcs in the prediction.

With this notation, precision and recall can be written
as:

P =
C
M

=
C

C + S + I
; R =

C
N

=
C

C + S +D

The main motivation of [20] in proposing this error
measure is the observation that F1, the often-used har-
monic mean of precision and recall, can be seen to be:

F1 = 1 − 2S + I +D
N +M

This derivation leads to believe that substitutions get
overweighted in the use of this scoring mechanism.
While by no means questioning the usefulness of the
separate components (precision and recall), the SER gets
proposed as a more balanced way of combining them as
a means to compare systems.
The devil is however in the details; or rather, the

denominator. While it is true that S gets a bigger weight
in the numerator, one has to account for the weighting
of the different components in the denominator, since

N +M = 2(C + S) +D + I

where we use that N = C + S + D and M = C + S + I.
A similar weight scheme can hence be seen in the
denominator as well, softening the argumentation
against it. With a similar derivation, one finds:

SER =
N − C + I

N
= 1 − recall +

1
N
.

This insight shows us that in attempting to lower the
weight for S, this error rate has become completely
independent of this factor altogether (since N is a con-
stant, given the reference network)! Furthermore, the
unboundedness of this measure can be fully attributed
to the number of insertions. This can explain the preva-
lence of conservative systems that this task has received:
as can be seen from the official results, all but one sub-
mission have a very low number of arcs in their predic-
tion, which could be attributable to pursuing a low I
figure.

Table 2. Number of data points from unannotated corpus
used in our system, averaged over the six separate SVMs
(one per relation type)

System positives negatives

[BASIC] 616 0

[PRE-SEL], select POS, no NEG 563 (= 91.3 %) 0

[PRE-SEL], select POS, select NEG 563 9,967 (= 90.6 %)

Also mentioned is the percentage of the respective total candidate pool this
is. The positive candidate pool consists of all data points conforming to the
distant supervision criterion (# = 616) as seen in the [BASIC] system, while the
negative pool is the complement of this (# = 11,162).
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Error measures: uses for comparison and model
optimisation
By this analysis, we wish by no means to imply that the
SER is a bad scoring mechanism per se. This kind of
word error rates is widely used in several research
branches, and with good reason. However, as the name
somewhat shows, these are situations where a more or
less fixed number of slots need to be ‘filled’, such as
(speech) phoneme recognition or named entity recogni-
tion. In our notation, this would be equivalent to
M ∼= N. If this constraint is taken into account, one can
show that SER ∼= 1.5(1 − F1), which is exactly what [20]
find in their comparative analysis of measures.
In different settings however, where the above approx-

imation is not sure to hold, the choice of SER implies
an additional degree of freedom, of which the conse-
quences are not evident to grasp. In this more general
case, SER is seen to overly reward precision in a great
part of the result space. This can even occur at the cost
of recall, as will be shown below. We believe there is an
interesting opportunity for further research and discus-
sion on this matter. Interesting, more general analyses
can be found in both [21] and [22]. In the light of this
study however, we mainly wish to highlight the inherent
bias towards precision this design choice entails. As we
are investigating methods of obtaining recall, this is cer-
tainly a factor to take into account.
Comparison of performance between different systems

(intersystem performance) is not the only function of a
measure. The same measures get generally used for
intrasystem measurements as well: in the comparison of
multiple incarnations of models, and more commonly,
hyperparameter optimisation. In order to asses the beha-
viour of the latter under different performance mea-
sures, we consider an ideally automated setting of
optimising, not unlike running a gradient descent/ascent
algorithm. In contrast to the case of general convex
optimisation however, there is no convergence to a
unique optimum. Rather, we are limited by the bound-
ary of our system’s performance, generally known as the
precision-recall curve: the maximum precision that can
be obtained for any required recall. Hence, we are dri-
ven by the measure’s gradient until that border is
reached. As we can see in Figure 3, the gradient field of
SER shows some interesting behaviour. In a substantial
region of the recall-precision space, there is an enor-
mous push towards increasing precision. In the region
of precision below 50%, this even happens at the cost of
maintaining recall. As a result, a system optimised for
this measure will generally show good performance, but
has little focus on improving recall. For comparison, the
analogous field for the F1 measure is shown in Figure 4,
which displays a better balance between favouring recall
or precision, based on which is most lacking.

As previously argued, there are use cases where an
adequate amount of recall is called for. With this in
mind, we point out that F1 is embedded in a larger
family of F-measures:

Fβ = (1 + β2)
PR

β2P + R

where b is a measure of the relative value to the end
user of recall with respect to precision [23]. We obtain
F1 for the case of b = 1, meaning precision and recall

Figure 3 SER gradient field, normalised. The vector field of SER
gradients in recall-precision space, when there is no change in S.
The vectors are normalised, with their colour indicating their size, in
logarithmic scale. Furthermore their direction is reversed, since this
is a minimisation problem, and hence calls for gradient descent.

Figure 4 F1 gradient field, normalised. The vector field of F1
gradients in recall-precision space. The vectors are normalised, with
their colour indicating their size, in logarithmic scale. Of note is the
scale difference with Figure 3.
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are balanced in evaluation. This parameter b can be a
great tool for the system or task designer to designate
the proportion of importance he wishes to place on the
precision/recall trade-off. If precision is to be targeted, a
value of b < 1 will accomplish this, without having gra-
dients go ‘against the grain’ of increasing both basic
measures.
Aggregation of predictions and impact on scoring
A final concern is the aggregational processing that
occurs before calculating the performance measures. In a
traditional machine learning setup, scores are calculated
in a local scope; meaning, every predicted point is com-
pared to a ground truth, and from the numbers extracted
for correct predictions, substitutions, insertions and dele-
tions, the necessary proportions are calculated.
In the GRN task [2], performance is measured in a

global fashion, due to the processing on the solution set
that takes place before calculating the score. This hap-
pens in two steps:

• From the predicted classifications a network is
built. All scoring is done with respect to this, imply-
ing that multiple classifications of a same relation
get collapsed into one.
• ‘Resolution of redundant arcs’: recall that the dif-
ferent types of relations are ordered into a taxonomy
(Figure 2). Before scoring, any relation between two
entities that is less specific (i.e. higher up the tree)
than another appearing in the set, is removed.

We can see that this procedure renders the precision-
recall trade-off a lot more intricate than in a traditional
machine learning setting. In a local scoring procedure, the
number of true positives can never decrease by adding
more predictions; this is the main logic behind Receiver
Operating Characteristic (ROC) curves as monotonously
non-decreasing functions. Analogously, in the recall-preci-
sion space, this ensures a non-increasing curve of attain-
able points. Furthermore, this curve spans the whole range
of recall: a recall of 100% is always attainable with a preci-
sion of at least the ratio of positives in the test set, a worst
case that corresponds with classifying all test points as
positive (see [24] for a thorough analysis of this and a per-
formance measure that ensues from this, the Area Under
Precision Recall Curve (AUCPR)). These principles no
longer hold when removing predictions prior to measur-
ing; adding a more specific prediction to an existing true
positive renders the latter as non-existent, and recall at the
end of the precision-recall curve will be limited by the
ratio of positives that have the most specific relation (the
leaves of the hierarchical tree in Figure 2). This dynamic
stands orthogonal to research on performance measures
in a hierarchical setting (as in [25]), which is pursuing less
level-dependence in assessing predictions.

This demonstrates that attaining sufficient recall is a
greater challenge than in a regular setting. Furthermore,
by adding a layer of complexity, it convolutes multiple
tools that are basic in systems engineering: error analy-
sis, model selection and comparison. We therefore wish
to advocate the addition of local, unprocessed evaluation
figures in future instalments of this task.

Experiments
Results for our experiments can be seen in Table 1. Each
system has seen its hyperparameters optimised separately
by a grid search, 25-fold cross-validated over the training
data. The basic method we propose is entry [BASIC] in
this table. Even without any added noise-balancing mea-
sures, the distant learning framework can already show-
case more than a doubling in recall compared to the
original submission results of [4]. In light of the previous
discussion, this demonstrates a manifest improvement in
this dimension. Results for the probabilistic pre-selection
approach we developed can be found in the entries under
[PRE-SEL]. There we explore several possibilities. In the
first (select POS, no NEG), we only include (and filter)
positives from our unlabelled set, in the fashion of our
basic method. The second entry, select POS, select NEG,
also employs the found rules to further add negatives
from the unannotated corpus. Both are able to display a
further improvement in F1, while still maintaining a good
recall-precision balance. Especially the application of the
filter to add negatives (select POS, select NEG) warrants a
substantial rise in F1 score through an additional
improvement in precision compared to the model that
only selects positives.
To further evaluate the value of our pre-selection step,

we also include the entry select POS, all NEG, which
includes all negatives without filtering them. Compared
to disregarding negatives from the unlabelled set alto-
gether (select POS, no NEG), this can be seen as greatly
improving precision, but at a sizeable cost to recall. This
strengthens the contribution of our algorithm, as the
entry select POS, select NEG shows an even greater
increase in precision without overly damaging recall,
leading to an impressive rise in F1.
From Table 2, we can see that this model filters out

less than 10% of the potential negatives; this is enough
to alleviate the most disruptive noise.
These results confirm the value of filtering the unla-

belled data before presenting them to the learning algo-
rithm. As this has been done here exclusively based on
the limited amount of labelled data, leveraging additional
knowledge in this step could generate even more signifi-
cant gains.
Weighted regularisation (entry [W_REG]), a method tra-

ditionally suggested to handle additional noise in semi-
supervised frameworks, also obtains a high recall for this
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test. This comes however at a very severe cost to its preci-
sion, compared to our newly developed solutions. This
demonstrates the idiosyncratic nature of our methods as
applied to this particular task with respect to mainline dis-
tant supervision methods, and further validates their con-
tribution compared to utilising standard approaches.
Deeper study is required on the impact of our meth-

ods, since the performance of a system greatly depends
on e.g. the features it uses. It remains an open question
what the impact is of these implementation choices,
such as the feature representation used, data preproces-
sing, etc. in comparison to the higher-level model
choice. We suspect that a more fine-grained encoding of
sentence context could further contribute to the perfor-
mance of any system in this field.

Related work
In information extraction −and relation extraction in
particular− a major bottleneck is the lack of sufficient
annotated examples. The manual labelling of enough
training instances in order to build an accurate classifier
is often prohibitively expensive. On the other hand, col-
lecting a large quantity of unlabelled textual data is
cheap. Thus, it is interesting to train the extraction sys-
tem on a small annotated corpus and in some way
improve the quality of the learned classification patterns
by exploiting the unlabelled examples. This had lead to
bootstrapping, semi-supervised and even unsupervised
learning techniques. A good overview on semi-super-
vised learning, the framework in which this work is
embedded, can be found in both [26] and [27].
The oldest methods regard self-training and co-train-

ing, where a classifier is trained iteratively. In self-train-
ing, examples from the pool of unlabelled instances are
chosen in the next training step to which the current
classifier assigns labels with most certainty. In co-train-
ing, examples are chosen in the next training step to
which two or more current classifiers that possibly use
an independent feature set assign labels with most cer-
tainty [28]. Such a set-up promotes that the newly intro-
duced training examples have similar patterns as the
originally labelled examples, so no radical new patterns
are learned at least not in the first steps of the iteration.
This approach also does not offer an answer to the dan-
ger that the obtained classification function drifts away
from the real classification boundary. In a variant sce-
nario, a generative probabilistic classifier is used (i.e.,
probabilities are not estimated directly, rather they are
estimated indirectly by invoking Bayes’ rule, e.g., a naive
Bayes classification) for the training of the initial classi-
fier based on the seed set of labelled examples. The
Expectation Maximization (EM) algorithm is then used
to train the classifier that learns both from the labelled

and unlabelled examples [29], but the algorithm can
easily get stuck in a local maximum.
In so-called open domain information extraction, fre-

quently occurring patterns that signal a relation between
two entities are identified in a large set of unlabelled
data [30,31]. These techniques are not well suited for
the extraction of relations in the biomedical domain,
especially when the detection of infrequent relations is
targeted.
Another line of research is the generation of addi-

tional features from the unlabelled data. One recent
work is [32], building on the work of [33]. Those meth-
ods generally obtain state-of-the-art performance, but
fail to improve on them significantly.
The relation extraction models that we present in this

paper are closest to the work of [15]. These authors find
sentences in Web documents that contain two given
entities. It is a priori known that these entities are
involved in the sought relation. The selected sentences
contain positive as well as negative examples of the
sought relation. The negative examples for training the
classifier are sentences in Web documents that contain
two given entities for whom it is known that the sought
relation does not hold between them [14,16] on the
other hand approximate this by the equally often-used
closed world assumption, which dictates that all relations
are in the knowledge database. To cope with the noise
in the set of positive examples, weighted regularization
is used when training a SVM, as we do in this paper.
Our experiments on texts from the biomedical literature
show that this weighted regularization did not yield the
best results for semi-supervised learning. We have pro-
posed a semi-supervised model with probabilistic pre-
selection of positive and negative examples from the
pool of unlabelled examples that makes use of the
knowledge in the labelled examples in a demonstrated
effective way in order to select unlabelled examples.
This model improves the results of state-of-the-art
weighted regularisation techniques.

Conclusions
We have explored the addition of unlabelled data to
increase the recall of our system. However, the noisy
nature of this data tends to affect precision negatively.
We have designed a pipeline to autonomously counter-
balance this effect, based on no additional external
knowledge. A promising extension of this method would
be to include specialised external knowledge, either
injected directly into the feature representation, or in
the process of attributing labels to unannotated data.
This could prove to be a powerful technique in attaining
a more precise overall system. Another interesting
approach could be to construct a more extensive
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pipeline, using one of the more precision-bearing tech-
niques to improve upon our proposed system.
Promising methods in general information extraction

make use of language models (e.g., probabilistic models
of word distribution) trained on huge amounts of unla-
belled examples in order to find valuable replacements
of words in the relation patterns or to identify valuable
correlated word features used in the classification
[12,34,35]. Recent work in biomedical event extraction
already touches upon such ideas [32]. This is a path we
intend to further explore in future work.
Another particularly interesting approach is showcased

by [36], training a classifier jointly on both labelled and
unlabelled data. A promising direction could be to apply
similar methods to specialised language corpora, such as
the biomedical texts explored in the BioNLP tasks.
We argue for the importance of recall in any informa-

tion extraction task, to serve as a driving force for auto-
mated knowledge collection. This study contributes to
gaining a deeper insight in the different factors at play in
the 2013 BioNLP GRN task with respect to measuring
performance, and the interplay of precision and recall in
particular. We hope this will spark further discussion and
analysis of both task organisation and submitted systems,
thus helping this shared task in driving forward the field
of biomedical IE.
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