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Abstract

Background: Biomedical event extraction has been a major focus of biomedical natural language processing
(BioNLP) research since the first BioNLP shared task was held in 2009. Accordingly, a large number of event
extraction systems have been developed. Most such systems, however, have been developed for specific tasks
and/or incorporated task specific settings, making their application to new corpora and tasks problematic without
modification of the systems themselves. There is thus a need for event extraction systems that can achieve high
levels of accuracy when applied to corpora in new domains, without the need for exhaustive tuning or
modification, whilst retaining competitive levels of performance.

Results: We have enhanced our state-of-the-art event extraction system, EventMine, to alleviate the need for task-
specific tuning. Task-specific details are specified in a configuration file, while extensive task-specific parameter
tuning is avoided through the integration of a weighting method, a covariate shift method, and their combination.
The task-specific configuration and weighting method have been employed within the context of two different
sub-tasks of BioNLP shared task 2013, i.e. Cancer Genetics (CG) and Pathway Curation (PC), removing the need to
modify the system specifically for each task. With minimal task specific configuration and tuning, EventMine
achieved the 1st place in the PC task, and 2nd in the CG, achieving the highest recall for both tasks. The system
has been further enhanced following the shared task by incorporating the covariate shift method and entity
generalisations based on the task definitions, leading to further performance improvements.

Conclusions: We have shown that it is possible to apply a state-of-the-art event extraction system to new tasks
with high levels of performance, without having to modify the system internally. Both covariate shift and
weighting methods are useful in facilitating the production of high recall systems. These methods and their
combination can adapt a model to the target data with no deep tuning and little manual configuration.

Background
Automatic extraction of biomedical events from texts
has been a major focus of biomedical natural language
processing (BioNLP) research in recent years. An event
consists of a trigger expression (usually a verb or nomi-
nalisation), zero or more participants (arguments) of the
events which may be entities or other events with their
roles (e.g., Theme, Cause), and hedge attributes (e.g.,

Negation, Speculation). Figure 1 illustrates an example
of event structures in the Cancer Genetics (CG) [1] task.
In this figure, there are three events (Gene_expression,
Negative_Regulation, and Pathway) that are represented
with triggers (Overexpression, inhibited, and signaling),
their roles (Cause, Theme, and Participant) and argu-
ment events or entities (e.g., Gene_or_gene_products).
Several event extraction systems have been developed as
a result of the BioNLP shared tasks (STs) since 2009
[2-4]. The systems have been applied both to PubMed
abstracts and PubMed Central full papers. The extracted
events have been successfully used in the creation of
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resources, e.g., [5,6] and in practical applications, e.g.,
for pathway curation and reconstruction (PathText [7]).
The use of these resources and applications has revealed

that a wider range of event types and structures needs to
be discovered by the event extraction systems than those
addressed in the earlier BioNLP shared tasks, in order that
the extracted events are able to cover as many as possible
of the phenomena described in biomedical articles. The
BioNLP Shared Task 2013 (BioNLP-ST 2013) introduced
several tasks to address the problem. In particular, the CG
and Pathway Curation (PC) [1] tasks defined a range of
new entity and event types in the context of biomedical
problems that had not previously been dealt with in the
shared tasks. Given that both CG and PC tasks cover a
greater number of bio-entity, role and event types than
previous tasks, e.g., GENIA [3], event recognition becomes
increasingly difficult since the systems need to extract cor-
rect event types and structures from a larger number of
possible types and structures. Although both the represen-
tation and format of events are shared among many of the
BioNLP subtasks, most event extraction systems partici-
pating in the BioNLP shared tasks have focussed only on a
limited number of specific subtasks. This is largely due to
the difficultly in applying a specific event extraction system
to different tasks without carrying out considerable modi-
fications to the system. It can thus be very costly and
time-consuming to tune an event extraction system to
deal with new event types. Accordingly, we have developed
a novel method which allows an event extraction system
to be applied to new tasks with competitive levels of per-
formance, but without the onerous effort of development
and tuning.
In this paper, we describe the integration of our novel

method within our state-of-the-art event extraction sys-
tem, EventMine [8], allowing it to be adapted to new
tasks without internal modification and only minimal
effort, without sacrificing performance [9]. EventMine
has been enhanced with configurability, that allows it to
be applied to new tasks with minimum manual effort and
adaptability, that allows it to retain competitive levels of
performance. Adaptation of the system to new tasks
requires only that changes are made to a configuration
file that is used to specify the task-specific information.
In order to allow the system to adapt itself to new task
specifications and achieve consistent performance, with-
out the need for exhaustive tuning of the (hyper-)para-
meters of machine learning algorithms in EventMine, we
have integrated a weighting method, a covariate shift

method [10,11], and their combination into EventMine.
The enhanced, adaptable version of EventMine has sub-
sequently been applied to new tasks, i.e., the PC and CG
tasks of BioNLP-ST 2013. The state-of-the-art perfor-
mance achieved by EventMine on these tasks (1st and
2nd ranking, respectively) clearly demonstrates that the
system can successfully be adapted to multiple new tasks
through the specification of only minimal configuration
information, and without the need for deep tuning.

Method
In this section we firstly introduce EventMine, and then
describe how it has been extended to facilitate more
straightforward adaptation to new tasks. We conclude
by describing how it has been applied for the BioNLP-
ST subtasks of CG and PC.

EventMine
EventMine [8] is an SVM-based pipeline event extrac-
tion system that has been applied to several biomedical
event extraction tasks, and has achieved the top-ranked
performance on several corpora [8,12], in comparison to
other systems. EventMine consists of four modules: a
trigger/entity detector, an argument detector, a multi-
argument detector and a hedge detector. The trigger/
entity detector enumerates the triggers/entities in the
training data, finds words that match the head words (in
their surface forms, base forms using parsers, or stems)
of the triggers/entities, and classifies each word into spe-
cific entity types (e.g., DNA_domain_or_region), event
types (Regulation) or a negative type that denotes
that the word does not participate in any events. For
example, the word of in Figure 1 has a negative type.
The argument detector enumerates all possible event-role
pairs among triggers and arguments that match the
semantic type combinations of the pairs in the training
data, and classifies each pair into specific event role types
(e.g., Binding:Theme-Gene_or_gene_product) or negative
role types (e.g., Binding:NONE-Gene_or_gene_product). In
Figure 1, there is no relation that holds between Overex-
pression and TGF-beta, so they have a negative role type.
Here, an event role type consists of a trigger type and an
argument type with its role type. Similarly, the multi-argu-
ment detector enumerates all possible combinations of
pairs that match the semantic type structures of the events
in the training data, and classifies each combination into
an event structure type (e.g., Positive_regulation:Cause-
Gene_or_gene_product:Theme-Phosphorylation) or a

Figure 1 Example of Event Structure in the CG task.

Miwa and Ananiadou BMC Bioinformatics 2015, 16(Suppl 10):S7
http://www.biomedcentral.com/1471-2105/16/S10/S7

Page 2 of 11



negative type. Here, an event structure type consists of a
trigger type and argument types with their role types. The
hedge detector attaches hedge attributes to the detected
events by classifying the events into specific hedge types
(Speculation and Negation) or a negative type.
All the classifications are performed by using one-vs-

rest support vector machines (SVMs). The detectors use
the types or type combinations mentioned above as their
classification labels. Labels with scores higher than the
scores of the separating hyper-plane of SVM and labels
with the highest scores are selected as the predicted
labels. Classification is treated as a multi-class, multi-
label classification problem with the requirement that at
least one label (including a negative type) is selected dur-
ing the prediction process. Classification makes use of
both lexical and syntactic features. These features consist
of character n-grams, word n-grams, shortest paths
among event participants within parse trees, and word
n-grams and shortest paths between event participants
and triggers/entities outside of the events within parse
trees. We replace all gold (given) entity names with their
types to avoid the models being tuned to specific entities.
To reduce feature space cost, we compress the feature
space to 220 by hashing [13]. We assign greater weights
to the positive instances to alleviate class imbalance and
we normalise the feature vectors for each type (e.g., the
word n-gram feature vector is normalised to a unit
length) as well as for the entire vectors, and set the C
parameter for SVM to 1.
EventMine generates training instances based only on

predictions by the preceding modules in the pipeline,
thus ensuring that training is not carried out on instances
that cannot be detected by the preceding modules. If the
generated instance corresponds to gold instances, then
the semantic types assigned to the gold instances are
assigned to the generated instance. Otherwise, a negative
type is assigned to the generated instance. This mode of
instance generation allows us to obtain similar distribu-
tions of training and test instances, as it is impossible to
detect them if the participants are missed by the preced-
ing modules.

Extension of EventMine
This section describes how EventMine has been
enhanced to allow it to be applied to new tasks with
minimum manual effort, whilst retaining good levels of
performance. We firstly explain the incorporation of a
configuration file that allows EventMine to be applied to
new tasks without internal modification of the system.
Subsequently, we introduce three methods which, based
on the information provided in the configuration file,
allow EventMine to adapt itself to carry out new extrac-
tion tasks without the need for parameter tuning.

The TEES-2.1 system [14] has a similar motivation to
ours regarding ease of adaptation to a range of different
tasks, and it has been applied to several event extraction
tasks in the BioNLP-ST 2013. Both TEES-2.1 and Event-
Mine are pipeline-based systems and extract labels
required for classification from the training data. However,
they vary in terms of their approaches to implementing
adaptability. TEES-2.1 does not require user-provided con-
figuration information and applies an automated, but
time-consuming, hyper-parameter tuning method that
uses the development data set. In contrast, EventMine
takes user-provided configuration information and
employs three methods that remove the requirement for
parameter tuning, as explained in the following section.
Configurability of EventMine
Configuration of EventMine to new tasks is facilitated
through the specification of task-specific information
within a configuration file. Figure 2 shows an example
configuration for the CG task. This configuration file
requires users to list the types of triggers (TRIGGERS in
Figure 2) and roles (ROLES in Figure 2) of interest with
listing gold trigger/entity types (GOLD in Figure 2) and
trigger/entity types that need to be predicted (PREDIC-
TION in Figure 2). Entities do not need to be explicitly
specified under another “heading” in the configuration
file because they can be calculated from the other “head-
ings”, i.e., entity types are those that are in GOLD and
PREDICTION, but not in TRIGGERS. Based on the
information provided in the file, EventMine enumerates
all the structures among the user-specified types under
both GOLD and PREDICTION that appear in the train-
ing data, and uses them to generate candidate instances
for use in training each of the detectors in the pipeline
introduced above. These type settings are also used so
that EventMine can automatically enumerate gold trig-
gers/entities in the training data and use them to gener-
ate candidate instances in the trigger/entity detector.
These type settings are further required so that Event-
Mine can be applied to annotated data without the need
to prepare separate gold (*.a1) and prediction (*.a2) files,
which are the official formats of the BioNLP STs. By spe-
cifying which types are gold in the configuration file,
EventMine can flexibly change the task settings, e.g., the
system can be configured to predict the types that are
specified in the a1 files, or to treat types in the a2 files.
Although this specification of types is indispensable for
EventMine, it can be automated by creating the config-
uration file from the training data in the BioNLP ST for-
mat. Manual configuration is required only when users
need to change the task settings and/or specify generali-
sations and other options, as detailed below.
The configuration file also includes two types of gen-

eralisations: one for labels and features (“Label and
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feature generalisations” in Figure 2) and one for instance
generation ("Instance generation generalisations” in
Figure 2). These generalisations are used in both train-
ing and prediction phases since they should be per-
formed in similar situations.
Label and feature generalisations reduce the number

of event role types and event structure types that are
used as classification labels, and the number of features
used by all detectors. The event role types and event
structure types are combinations of types of triggers and
participants with their roles, as explained in the Event-
Mine section. The generalisations help to reduce the
computational and space costs of both training and pre-
diction since these are dependent on the number of the
classification labels. The generalisations are indispensa-
ble for the two tasks in the BioNLP-ST 2013, since the
tasks cover a greater number of bio-entity, role and
event types than previous shared tasks, meaning that
there are thousands of potential event structure labels.
Considering all of these possible labels without carrying
out generalisations would create an intractable problem
for EventMine. Although the effects of the generalisa-
tions on event extraction performance cannot be evalu-
ated on the tasks since it is infeasible to run EventMine
without them, the generalisations have both advantages
and disadvantages: the generalisations may alleviate the
data sparseness problem during training, but they may
also induce over-generalised features when they are
applied to the tasks with enough training instances. The
generalisations are applied to event role and event struc-
ture labels, since the types in these labels include types
that are predicted by other detectors. For example, an
event role label Positive_regulation:Theme-Phosphoryla-
tion contains Positive_regulation and Phosphorylation,
which are predicted by the trigger/entity detector. Label
and feature generalisations are possible in the following

three cases: firstly, trigger/entity types are predicted by
the trigger/entity detector, so their prediction is not
required in the argument and multi-argument detectors.
Secondly, the role types are predicted by the argument
detector, so their prediction is not required in the
multi-argument detector. Thirdly, the numbered role
types, e.g., Theme, Theme2, are predicted in the multi-
argument detector, so their prediction is not required in
the argument detector. The numbered role types are
required in events since the numbers indicate the corre-
spondence between roles. For example, if an event has
two Themes and the second Theme has a corresponding
Instrument, their roles will be Theme2 and Instrument2
to differentiate from the first Theme and Instrument. It is
difficult to predict argument numbers without knowing
the other arguments involved in the event, so the num-
bers are predicted in the multi-argument detector. These
generalisations are also applied to the generation of the
features used by all detectors. For example, generalisa-
tions of gold entities can be used as the basis of generat-
ing features used by the argument/trigger detector.
Instance generation generalisations are used to expand

the possible event role types and event structure types
to create instances in prediction. The instance genera-
tion generalisations may introduce noisy instances but
they may also generate instances of event structures that
otherwise would not have been considered, due to lack
of evidence in the training data. For example, even if
there are no Positive_regulation:Theme-Gene_expression
instances in the training data, such instances are also
created in prediction when there are Regulation:Theme-
Gene_expression instances in the training data and there
is a rule in the configuration file specifying that Positi-
ve_regulation and Regulation event types should share
the event structures. The rules for the instance genera-
tion generalisations are applied whenever instances are

Figure 2 Example of Configuration for the CG task. Some types are omitted for brevity.
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created for prediction. The instance generation generali-
sations are included separately from the label and
feature generalisations since the latter may introduce
illegal or unrealistic event structures. For example, if we
specify to share the event structures of Phosphorylation
and DNA_methylation in instance generation in CG and
transfer the event structures of Phosphorylation to
DNA_methylation, DNA_methylation with Molecule as
Theme will be illegally created (DNA_methylation takes
only Gene_or_gene_product as Theme in the task
definition.)
In addition to the task specific settings, the configura-

tion file is designed to specify other options, e.g., parsers,
domain adaptation methods, dictionaries, etc. Although
we acknowledge that the achievement of high levels of
performance on a specific task is largely dependent on
determining the most appropriate combination of various
methods and resources such as the above, our aim here is
to demonstrate the configurability and adaptability of
EventMine, rather than trying to achieve the highest pos-
sible performance for the tasks considered. Accordingly,
the settings for the configuration options introduced
above are the same as those used in our previous applica-
tion of EventMine to the EPIgenetics and post transla-
tional modifications (EPI) task, as described in [8], unless
otherwise noted. Specifically, we employ both a deep syn-
tactic parser, Enju [15] and a dependency parser, GDep
[16]. We utilise liblinear-java [17] with the L2-regularised
L2-loss linear SVM setting for the SVM implementation,
MurmurHash2 [18] for hashing, and Snowball [19] for
stemming. We use no external resources (e.g., diction-
aries) or tools (e.g., a coreference resolver) except for
when we use external corpora to create stacked models
for the PC task, as explained later.
Adaptability of EventMine
Although the above-described configuration file allows
EventMine to be straightforwardly configured to new
tasks, this does not in itself guarantee that the perfor-
mance of the system on such new tasks will be of an
acceptable quality. In other words, we need to ensure
that EventMine is adaptable to new tasks. In all four
modules of the event extraction pipeline, EventMine
needs to solve classification problems. Some of the
issues relating to the 1-vs-rest classification method
employed are dependent of the settings of the hyper-
parameters, which should be tuned to allow the classi-
fiers to work to their full potential. However, it is costly
and time-consuming to search for the best setting from
the many possible hyper-parameter combinations. There
is no general, efficient method to automatically tune the
parameters within in a pipeline setting and it is also
unrealistic to assume that the hyper-parameters can be
effectively tuned for new tasks without exhaustive
searching and knowledge of how the system works.

In order to ensure effective and efficient adaptability of
EventMine, we have developed a novel adaptation pro-
cess that avoids the need to carry out hyper-parameter
tuning when the system is being configured for new
tasks. This process makes of two different methods, i.e., a
weighting method and a covariate shift method [11]. The
latter is a novel approach, which has not been employed
in any other event extraction system. We also combine
the methods, and investigate the potential benefits of this
combination. The weighting method adds weights to the
positive instances in the training data. Although this
method has previously been integrated into EventMine
[8] and its application in the context of event extraction
is not novel, we introduce in order to realise our goal of
achieving maximum adaptability of the system, and in
order to investigate its combination with the covariate
shift method. Weighting positive examples has been
empirically shown to improve several event extraction
tasks, since it alleviates the class imbalance problem. This
weighting method modifies the objective function of an
L2-regularised L2-loss linear SVM as follows:

argmin
w

wTw +
nn
np

C
np∑

i

loss(xpi) + C
nn∑

i

loss(xni) (1)

Here, xp and xn are the positive and negative
instances, nn and np are the numbers of negative and
positive instances, and loss is a squared hinge loss that
is defined as loss(xi) = max(0,1 - yi wxi)

2. Weighting is
used in the BioNLP shared task evaluation (2013). This
objective function makes the cost of the errors for all
the positive instances close to one for all the negative
instances, in order to encourage the classifiers to avoid
prediction scores that are biased by class imbalances.
The function also assigns greater penalties to rare
instance errors. nn is usually larger than np in the 1-vs-
rest SVM, and this function achieves high recall for
each module and consequently for the entire pipeline
process. High recall is desirable for practical applications
like semantic search, since such applications need to
recognise as many events as possible. Achieving high
recall in each individual module of the pipeline can
additionally be advantageous, since it can increase the
number of training instances available for training suc-
cessive modules in the pipeline. Covariate shift methods
generally aim to address the problem of varying distri-
butions of instances between a training data set (on
which a model is trained) and a target data set (to
which the model is applied). Our method estimates
instance distributions in the target data set by solving
an additional binary classification problem between
training and target data sets using a logistic regression
classifier [11]. The additional classification problem
treats training data sets as one class and target data sets
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as another class. Equation 2 shows the objective func-
tion of SVM with the covariate shift method.

argmin
w

wTw + CCS

n∑

i

l(xi)loss(xi), l(xi) =
ntrain
nt arg et

· Pt arg et(xi)
Ptrain(xi)

, CCS =
n∑n

i l(xi)
C (2)

Here, ptrain(xi) and ptarget(xi) are the outputs of the
logistic regression classifier, and ntrain and ntarget are the
numbers of training and target instances. This puts
weights l(xi) on all the training instances according to
their likelihood of appearing in the target data set. l(xi)
represents the test-to-training ratio p(x|θ)/p(x|l), where
l denotes the training distribution and θ denotes the test
distribution, and it is known that the loss on the test dis-
tribution can be minimised by weighting the loss on the
training distribution with the ratio [10]. In contrast to
the originally proposed method in [11], our novel method
introduces Ccs that keeps the balance between the regu-
larisation and loss terms, since the l(xi) can suffer from
overfitting of the training and target instances and the
imbalance of the numbers of training and target
instances. If we set all the weights l(Xi) to 1, this is equal
to the objective function of SVM. This objective function
tries to make the distribution of the instances close to
one for the target data set. This means that it encourages
the classifiers to learn more about instances that seem to
appear in the target data set.
The weighting and covariate shift methods are not

exclusive and it is possible to combine them. To take
advantage of the strengths of both methods, we also
propose in a novel way to merge the two objective func-
tions in a straightforward manner.

argmin
w

wTw +

∑nn
i l(xni)∑np
i l(xpi)

CCS

np∑

i

l(xpi)loss(xpi) + CCS

nn∑

i

l(xni)loss(xni) (3)

If we set all the weights l(⋅) to 1, this is equal to
Equation 1.
The weighting and covariate shift methods are incor-

porated into EventMine by applying them to all the clas-
sifications in the four modules of the system. The hyper-
parameter C is kept to 1 for all the experiments, as
mentioned in the previous section. These methods may
not necessarily produce the same levels performance
that could be achieved by parameter tuning through
exhaustive search. However, given the costly nature of
such parameter tuning, as described above, our method
makes the problem of adapting EventMine to new tasks
much more feasible, whilst still allowing good levels of
performance to be achieved. Since it is difficult to carry
out exhaustive parameter tuning, it is not possible for us
to compare the results of our novel methods with those
that could be achieved through such tuning. Instead, we
show in our experiments that incorporation of the new
methods within EventMine can improve the perfor-
mance of the system on both the PC and CG tasks of

the BioNLP-ST 2013, to a level that is competitive with
other systems that participated in these tasks.

Configuration of EventMine for BioNLP-ST 2013 tasks
In the following sections, we describe EventMine’s con-
figuration for the CG and PC tasks, based on the
notions of configurability and adaptability.
Configuration for the CG task
The Cancer Genetics (CG) task [1] aims to extract infor-
mation from bio-processes related to the development
and progression of cancer. The annotations in the train-
ing data were based on the Multi-Level Event Extraction
(MLEE) corpus [20].
The configuration for our shared task submission used

several label and feature generalisations, which are shown
in Figure 2. For the event role types, generalisations for
the trigger types, role types and argument types were
applied as follows. In terms of the trigger types, we gen-
eralised the three regulation types, i.e., Positive_regula-
tion, Regulation and Negative_regulation into a single
REGULATION type, and post-transcriptional modifica-
tion (PTM) types (e.g., Acetylation, Phosphorylation) into
a single PTM type. In terms of role types, numbered role
types were generalised as non-numbered role type (e.g.,
Participant2®Participant). In terms of argument types,
event types were generalised as a single EVENT type and
entity types were generalised as a single ENTITY type.
These generalisations, except for the entity generalisa-
tions, are the combination of the generalisations used in
the GENIA, EPI, and Infectious Diseases (ID) [4] anno-
tated corpora of the BioNLP-ST 2011 [8]. For the event
structure types, the same generalisations are applied,
except for numbered role types, which are retained, since
these are important in differentiating different types of
event structures. Unlike other types, the numbered role
types in events are not predicted by any other modules
than the multi-argument detector as we explained in the
Configurability of EventMine section.
Further experiments carried out after the shared task

involved a more fine-grained classification of entities
into three general types defined in the hierarchy of
entity types defined for the CG task, i.e., anatomical,
pathological, and molecular, instead of using a single
ENTITY type, as in our shared task submission. In
terms of instance generation generalisations, we applied
them only to the regulation event types, to avoid intro-
ducing unexpected event structures.
Configuration for the PC task
The Pathway Curation (PC) task [1] aims to support the
curation of bio-molecular pathway models, with the
training texts selected to cover both signalling and
metabolic pathways.
For our shared task submission for this task, we incor-

porated a stacking method [21], by training our models,
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using the same configuration as described above, on
seven other available corpora: GENIA, EPI, ID, DNA
methylation [22], Exhaustive PTM [23], mTOR [24] and
CG. The stacking method uses the prediction scores of
all the models as additional features in the detectors.
Although some of these corpora may not be directly
related to the PC task and the models trained on them
can produce noisy features, we have used all the cor-
pora, since stacking has been shown to improve perfor-
mance [12,20]. Also in common with our work on the
CG task, we have carried out further experiments after
the shared task. The stacking method was not employed
in this latter set of experiments, since our aim was to
focus on the three methods introduced in the section
on Adaptability of EventMine.
We employ the same type of generalisations as in the

CG task described in the previous section, except for
entity types. For our shared task submission, entity
types were generalised to a single ENTITY type, simi-
larly to our submission for the CG task. For our experi-
ments that followed the shared task, a different type of
entity generalisations to the one performed for the CG
task was carried out, according to the different entity
type definition for this task. The only type of entity gen-
eralisation we performed in the context of the PC task
was to collapse the Gene_or_gene_product and Complex
types into a single PROTEIN type. The other two entity
types used in the corpus, i.e., Simple chemical and Cel-
lular component, retained their original labels. The gen-
eralisation is based on the reference resources of the
entity type definition [1].

Results and Discussion
We have evaluated EventMine using the various config-
urations introduced in the previous sections. We firstly
evaluated the system using settings employed for our
shared task submission, which incorporated the use of
the configuration file and the weighting method, but not
the covariate shift method and task-specific entity gener-
alisations. We compare our official results with those
achieved by the best system that participated in the PC
and CG tasks apart from EventMine, i.e., TEES-2.1 [14].
This evaluation is also presented in [9]. Subsequently,
we evaluated the differences in performance that were
obtained through the integration of the weighting
method, the covariate shift method and their combina-
tion, together with the refined entity generalisation
settings.

Evaluations on instance generation
generalisations and stacking
We evaluated the effect of applying instance generation
generalisations and stacking to the PC development data
set. The results are summarised in Table 1. For this

evaluation, we used the same settings as those used in
our shared task submission, i.e., we added weights to
positive examples as in Equation 1 and we generalised
all entity types into a single type. The scores were calcu-
lated using the evaluation script provided by the organi-
sers with the official evaluation metrics (soft boundary
and partial recursive matching). The generalisations
improved recall at the slight expense of precision, and
they slightly degraded the F-score. The generalisations
were applied to the test set in our shared task submis-
sion, since slightly higher recall is favourable for practi-
cal applications like semantic search [7]. Whilst the use
of the stacking method slightly improved performance,
this improvement is not statistically significant (p =
0.14) using the approximate randomisation method
[2,25].

Official scores for the shared task
Tables 2 and 3 show the official scores of EventMine
when applied to the test data sets for the CG and PC
tasks. Our system ranked second in the CG task and
first in the PC task. There were six participants for the
CG task and two participants for the PC task, and the
scores of the top performing systems (TEES-2.1 [14],
NCBI [26], and RelAgent [27]) are shown in Table 2,
and the scores of the best system among the other parti-
cipating systems (TEES-2.1) are shown for reference in
Table 3. The performance of the third-ranked system is
5.71% lower than our system, in terms of F-score, as
shown in Table 2. Therefore, we will focus on the com-
parison with TEES-2.1. Our system achieved the highest
recall for both tasks, which is considered favourable, as
mentioned above. This high recall is understandable,

Table 1. Effect of instance generation generalisations and
the stacking method on the PC development data set

Generation Stacking Recall Precision F-score (%)

× × 42.87 47.72 45.16

✓ × 43.37 46.42 44.84

✓ ✓ 43.59 48.77 46.04

Instance generation generalisations (Generation) and the stacking method
(Stacking) are applied to the PC development data set.

Table 2. Official best and second best scores on the CG
and PC tasks

Task System Recall Precision F-Score (%)

CG EventMine 48.83 55.82 52.09

TEES-2.1 48.76 64.17 55.41

NCBI 38.28 58.84 46.38

RelAgent 41.73 49.58 45.32

PC EventMine 52.23 53.48 52.84

TEES-2.1 47.15 55.78 51.10

Highest scores are shown in bold.
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since we solved the problems as multi-label classification
tasks in which the class imbalance problem was
addressed through the application of the weighting
method and the incorporation of instance generation
generalisations. The performance of EventMine on both
the CG and PC tasks (in terms of F-score) is slightly
lower than that achieved by the system on the GENIA
and ID tasks in the BioNLP-ST 2011 [8], but is compar-
able to the performance obtained on the EPI task. This
may be partly because the GENIA and ID tasks deal
with fewer event types than the other tasks.
Although EventMine did not achieve the best overall

results in the CG task, we still consider that the perfor-
mance level achieved is promising, given that we did not
incorporate any external resources, and we did not carry
out any tuning of parameters (e.g., C in SVM). A detailed
comparison with TEES-2.1 shows that TEES-2.1 outper-
formed EventMine in the recognition of anatomical and
pathological event categories, which constitute event
types that have not been addressed in previous shared
tasks. This indicates EventMine missed some of the novel
structures introduced in these new event types. However,
EventMine performed better than TEES-2.1 in the recog-
nition of some other types of events involved in the task.
The performance range of EventMine in recognising the
various event types covered by the CG task is similar to
the scores achieved by the system when applied to the
MLEE corpus (52.34-53.43% F-Score [20]) although we
cannot directly compare the results since the corpora are
not completely same and the test sets are different. The
ranges of the scores are around 60% to 70% F-score for
non-nested events (e.g., SIMPLE), 40% for nested events
(e.g., REGULATION) and 30% for modifications (e.g.,
MOD). This large range of scores may be caused by a
cumulative combination of errors in predicting triggers,
participants and modifications, since a similar spread of
accuracy has been observed for previous tasks (e.g.,

GENIA, EPI, and ID results in [8]). Also, previous tasks
like GENIA provided more training instances per type
than the CG task, but the ranges of scores are broadly
similar. These results indicate that further improvements
to the performance of the system may require more than
a simple increase in the training instances. EventMine
performed particularly well on the PC task which is an
encouraging result in demonstrating the adaptability of
the enhanced system, since it was a completely novel task
for the system. The recall achieved by our system was
considerably higher than that obtained by TEES-2.1.

Evaluations on the weighting and covariate shift
methods
Our next set of experiments evaluated the weighting
method, the covariate shift method, and their combina-
tion, explained in section on Adaptability of EventMine
(see. Equations 1-3.) As a baseline system comparison,
we used the version of EventMine that did not incorpo-
rate these methods.
As explained in the description of the task-specific

configurations of the system above, this evaluation dif-
fered from the other evaluations in two ways. Firstly,
stacking was not employed for the PC task. Secondly,
we used refined entity type generalisations, i.e., detailed
entity type generalisations based on the individual task
definitions were employed in the task settings.
We show the results of the evaluations for the CG and

PC development data sets in Table 4. Without the inte-
gration of the new methods, EventMine tends to pro-
duce high precision results, but with a large imbalance
between precision and recall. The tendencies towards
high precision are also seen in the results obtained by
EventMine in the BioNLP-ST 2013 evaluation (see
Table 2).
As evidenced in Table 4, the use of both the weighting

and covariate shift methods improve the recall by a

Table 3. Recall / Precision / F-scores for event categories on the CG and PC tasks

Task Category EventMine TEES-2.1

Recall Precision F-Score Recall Precision F-Score (%)

CG ANATOMY 69.43 73.28 71.31 73.11 81.79 77.20

PATHOL 56.51 63.44 59.78 61.69 74.54 67.51

MOLECUL 72.03 73.53 72.77 67.33 78.76 72.60

GENERAL 48.74 58.26 53.08 44.72 62.68 52.20

REGULAT 37.00 43.02 39.79 37.17 51.21 43.08

PLANNED 40.05 40.98 40.51 34.78 45.51 39.43

MOD 22.85 43.44 29.95 24.89 57.07 34.66

PC SIMPLE 66.42 64.80 65.60 60.40 67.87 63.92

NON-REG 69.07 62.69 65.72 61.16 65.74 63.37

REGULAT 37.73 42.79 40.10 35.17 44.76 39.39

MOD 23.56 34.65 28.05 22.41 40.00 28.73

Highest F-scores are shown in bold. We refer the reader to the papers of the tasks [1] for the details of the event categories.
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significant margin. Additionally, the previously men-
tioned discrepancies between precision and recall
become far less pronounced when these methods are
employed. In most cases, a slight increase in F-score is
obtained, with the exception of when the weighting
method alone is applied to the PC development set. In
terms of results achieved when the weighting and covari-
ate shift methods are combined, the improvement
observed on the CG development set is statistically sig-
nificant, i.e., p = 0.014. This improvement is surprising,
since the discrepancy of the distributions between the
training and test data sets is considered to be small. This
is because the shared task data sets are controlled - the
documents in the training and development data sets are
selected using the same criteria and the separation aims
for an even distribution of instances between the training
and development data sets. This improvement serves to
demonstrate the difficulty in preparing controlled separa-
tion of data sets. The covariate shift method accesses the
target data in advance and tunes the system for the target
data, meaning that the model is not suitable for applica-
tion to other data. Thus, it may not be appropriate to
compare the results obtained on the test set with the
results of other experiments. The improvement observed
through the application of this method, however, pro-
vides evidence that it is possible refine the model based
on the target data in a general way. This is important
when we apply the models to other document collections,
such as PubMed. The results in Table 4 demonstrate how
the incorporation of the adaptation methods enhances
the performance of the system on the PC development
set, compared to the version of the system used for the
shared task (Table 1). The comparison of these tables
shows that exhaustive entity type generalisation (i.e., the
removal of all semantic information about entities) had a
negative effect on precision for the PC task, and that
incorporating some simple task specific knowledge, by
assigning generalised semantic types to the entities,
according to the individual task descriptions, can boost
the performance of the system. We also compared the
baseline method with the combination of the weighting

and covariate shift methods on the CG and PC test data
sets, as shown in Table 5. Similarly to Table 4, the com-
bination method improved the recall performance on
both test data sets by a large margin in total (TOTAL in
Table 5). As a result, the method improved the F-scores
achieved by the system. For the CG test set, the use of
the combined method shows a slight improvement over
the use of either of the methods individually (when used
with task-specific entity generalisations). For the PC task,
a lower F-Score was obtained than for the original shared
task results shown in Table 2. Since that version of the
system made use of the stacking method, the positive
effect of making use of information from multiple cor-
pora is clearly demonstrated. Table 5 also shows that the
combination method improves the recall performance on
all the categories, and improves the F-scores except for
ANATOMY (anatomical events) and PATHOL (patholo-
gical events) in the CG task and NON-REG (non-regula-
tion events) in the PC task. This result indicates that the
combination method does not work well on these cate-
gories, and this might be one of the reasons why Event-
Mine cannot match the performance of TEES-2.1 on the
ANATOMY and PATHOL categories. In particular, the
method significantly improved the performance on MOD
(modifications). This is partly because the high recall
increased the number of training instances for modifica-
tions, and also partly because the method reduces the
imbalance between precision and recall.

Conclusions
In this paper, we have described the development of an
adaptable event extraction system, which accepts task-
specific information in the form of a configuration file,
and employs methods that alleviate the need to carry out
extensive tuning of the system to allow it to be applied to
new data sets. The new system has been created by
enhancing an existing state-of-the-art event extraction
system, EventMine. The configuration file is used to spe-
cify the definitions of types (e.g., entity and event types)
and generalisations over these types that are used to
adapt the system to new tasks. The provision of this con-
figuration information alleviates the need to carry out
task-specific modification of the system. Furthermore, to
avoid the costly process of extensive parameter tuning to
make the system suitable for application to new data sets,
three adaptation methods are employed, i.e., a weighting
method, a covariate shift method and their combination.
The weighting method aims to alleviate class imbalance,
while the covariate shift method aims to automatically
adjust the differences in the distributions of instances in
the training and target data sets. The enhanced system
was applied to the CG and PC tasks with minimal task
specific configuration. In the context of the BioNLP-ST
2013, only the weighting method was employed to

Table 4. Effect of the weighting and covariate shift
methods on the development data sets

Task Weighting Covariate shift Recall Precision F-score (%)

CG × × 40.70 62.19 49.20

✓ × 50.11 50.68 50.39

× ✓ 44.42 59.78 50.96

✓ ✓ 48.83 54.10 51.33

PC × × 37.89 61.26 46.82

✓ × 44.23 49.18 46.57

× ✓ 40.65 55.81 47.04

✓ ✓ 42.73 52.13 46.97
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facilitate the adaptation of the system to the specific
tasks. This version of the system achieved the second
best performance in the CG task and the best perfor-
mance in the PC task. Following the shared task, we were
able to further improve the results, though the incorpora-
tion of the covariate shift method, combined with task-
based generalisation of entity types, the latter of which
preserves some semantic information about entities that
was lost in the more extreme generalisation of the enti-
ties used in the shared task version of the system.
The positive results obtained through the integration of

our novel methods demonstrate that the enhanced version
of EventMine can be effectively adapted to new tasks,
without the need to make changes to the system itself.
The weighting method, covariate shift method, and their
combination have all been demonstrated to be useful in
facilitating automatic tuning of the system to the new
tasks. The success of applying the covariate shift method
to the shared task data underlines its potential importance
in future event extraction research, as a means to resolve
the differences between the training and target data sets,
which is a vital step to support the development of accu-
rate and practical applications. Based on these results, our
future work will involve investigating the feasibility of
applying the covariate shift method to larger data sets e.g.,
PubMed, as a basis for the development of more practical
applications. In this scenario, however, and in contrast to
the training and test data sets of the shared tasks, there
remain several issues to be resolved. These issues include
the much larger differences in distributions between the
training and target data sets, the vast number of target
documents and the lack of standard evaluation criteria.
Moreover, unlike in the shared tasks, the named entities
are not given and their detection exhibits similar problems
to the above. Whilst these problems are all challenging, we
believe that it is vital for them to be addressed, in order to

facilitate a significant improvement in the adaptability of
event extraction systems to new tasks, and to allow their
use in new practical applications.
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