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Abstract

tools in the detection of splice variants.

reads.

Background: RNA-Seq provides remarkable power in the area of biomarkers discovery and disease
characterization. Two crucial steps that affect RNA-Seq experiment results are Library Sample Preparation (LSP) and
Bioinformatics Analysis (BA). This work describes an evaluation of the combined effect of LSP methods and BA

Results: Different LSPs (TruSeq unstranded/stranded, ScriptSeq, NUGEN) allowed the detection of a large common
set of splice variants. However, each LSP also detected a small set of unique transcripts that are characterized by a
low coverage and/or FPKM. This effect was particularly evident using the low input RNA NuGEN v2 protocol.

A benchmark dataset, in which synthetic reads as well as reads generated from standard (lllumina TruSeq 100) and low
input (NUGEN) LSPs were spiked-in was used to evaluate the effect of LSP on the statistical detection of alternative splicing
events (AltDE). Statistical detection of AltDE was done using as prototypes for splice variant-quantification Cuffdiff2 and
RSEM-EBSeq. As prototype for exon-level analysis DEXSeq was used. Exon-level analysis performed slightly better than
splice variant-quantification approaches, although at most only 50% of the spiked-in transcripts was detected. The
performances of both splice variant-quantification and exon-level analysis improved when raising the number of input

Conclusion: Data, derived from NuGEN v2, were not the ideal input for AltDE, especially when the exon-level approach
was used. We observed that both splice variant-quantification and exon-level analysis performances were strongly
dependent on the number of input reads. Moreover, the ribosomal RNA depletion protocol was less sensitive in
detecting splicing variants, possibly due to the significant percentage of the reads mapping to non-coding transcripts.

Background

The application of next-generation sequencing (NGS) to
transcriptomics analysis, namely RNA-Seq, has allowed
many advances in the characterization and quantifica-
tion of transcripts. Recently, several developments in
RNA-Seq methods have provided an advance in the
complete characterization of RNA molecules [1]. These
developments included improvements in transcription
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start site mapping, strand-specific measurements, gene
fusion detection, small/long non-coding RNA characteri-
zation and detection of alternative splicing events [1].
Further improvements in RNA-Seq methods are allowing
transcript quantification from very small amounts of cellu-
lar materials or single cells [2-6]. In this work we focused
on two of the major steps in RNA-Seq experiments:
Library Sample Preparation (LSP) and Bioinformatics
Analysis (BA), and their interplay. NGS applications
require specific LSP in which fragmented DNA or cDNA
molecules are attached to adapters, PCR amplified and
sequenced [7]. Since different LSPs can have a significant
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impact on downstream analysis and interpretation of
RNA-Seq results [8], therefore it is evident that robust and
unbiased library preparation methods are critical. Never-
theless it has also become clear that LSPs contain biases
that compromise the quality of NGS datasets, which can
lead to erroneous interpretations [7]. The LSPs available
on the market belong to two main classes: i) unstranded
and ii) stranded (PolyA™ selected, rRNA depleted or low
input RNA).

The choice of LSPs does not represent the only critical
step in RNA-Seq. Indeed, the sequencing data need to be
converted into transcript information (transcript structure,
transcript quantification, etc.), and this step requires
an accurate selection of the bioinformatics and statistical
analysis techniques to be used. The approaches used to
quantify known transcripts, i.e. transcripts annotated on
the reference genome, and not yet characterized tran-
scripts, i.e. transcripts not associated with an annotation
on the reference genome, are different and characterized
by different criticalities [9]. In this work we focused only
on the annotated splice variants. The BA pipelines for the
detection of differentially expressed transcripts are charac-
terized by multiple steps [10], and each of them has an
influence on the final results. BA pipelines for differential
expression can be divided in two categories: i) differential
expression based on splice variant quantification, and
ii) exon-based differential expression. This work focused
on the interplay of LSP and BA on the statistical detection
of AItDE. In detail, we investigated the effect of different
LSPs (NuGEN v2, TruSeq unstranded/stranded, Script-
Seq), as well as the effect of PolyA™ selection versus
ribosomal depletion, on splice variant detection.
Furthermore, we compared NuGEN low input protocol
with standard TruSeq protocol using BA tools for splice
variant-quantification (Cuffdiff [11] and RSEM-EBSeq
[12,13]) and for exon-level quantification (DEXSeq [14]).

Results

We analysed low input RNA (NuGEN) LSP and standard/
high input RNA LSP (Illumina TrueSeq and Epicentre
ScriptSeq). Sequencing data generated using TrueSeq
unstranded PolyA™ (100 ngs input total RNA) was used as
reference to simplify the comparisons among LSPs. This
was because 100 ng of total RNA input material represents
the RNA quantity that can be at best obtained from a wide
range of biological samples, e.g. animal models, biopsies,
FACS sorted cell populations etc. Furthermore, it repre-
sents one of the cheaper RNA-Seq experiments available
on the market.

Library sample preparation (LSP) effects on splice variants
detection and splice variants characterization.

We observed how standard/high (100-1500 ng), low
(0.5-2 ng) input protocols, PolyA™ selection and
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ribosomal RNA depletion affect splice variants detection.
Specifically, we analysed the LSP effect on splice variants
coverage/fragment per kilobase of exon per million
reads mapped (FPKM), exons and exon-exon junctions
counts. Total RNA, extracted from the mouse dendritic
cell line D1 [15], was split in aliquots and converted in
libraries using the following sample preparation kits:
NuGEN v2, ScriptSeq v1, TruSeq unstranded/stranded
(Table 1). The total RNA input material used for
NuGEN v2 was 0.5 ng (nu05), 2 ng (nu2) and 100 ng
(nul00), while it was 1500 ng for ScriptSeq v1 (ss1500,
for short ss), 100 ng (ts100) and 1000 ng (ts1000) for
TruSeq unstranded, finally 100 ng for TruSeq stranded
(tss100, for short tss). All above-mentioned LSPs were
performed after PolyA™ selection, but for NuGEN v2
and TruSeq stranded LSP, which was also used in asso-
ciation with the ribo-zero ribosomal RNA depletion
(tss_total). For each experimental condition (nu05, nu2,
nul0o0, ss, ts100, ts1000, tss, tss_total) 80 million paired-
end reads were collected. The 80 million reads for each
condition were assembled combining multiple runs
(Additional file 1). We tested the reproducibility among
different sequencing runs using deepTools webserver
[16]. Correlation between different runs was investigated
one chromosome at a time, and the results were
reported for chromosome 1 (Additional file 2). Data
obtained for the other chromosomes provided similar
results (data not shown). Runs clustered on the basis of
different LSPs. Ts1000, ts100 and ss cluster together
with a Sperman correlation of 0.9. Tss_total clustered
together with ts1000, ts100 and ss with a Spearman cor-
relation between 0.77 to 0.83. Tss clustered with ts1000,
ts100 and ss with a Spearman correlation between 0.74
to 0.76. NuGEN runs were the least similar, sharing
with ts1000, ts100, ss a correlation between 0.60 to 0.67.
It was also notable that nu05 runs were very different
with respect nu2 and nul00 with a correlation between
0.54 to 0.57.

Reads were mapped against the mouse genome ver-
sion 9 (mm9). At least 83% of all reads generated by any
of the LSPs could be mapped to the reference genome
(Table 2). The percentage of reads characterized by mul-
tiple mappings ranged from 7% to 20% in all LSPs but
in tss_total, for which it went over 40%. Mapped reads
were associated with their corresponding transcript
using UCSC annotation and Cufflinks [17], as prototypic
method for splice variant quantification. For each
experimental condition we retained only the transcripts
characterized by FPKM > 0.1 and average coverage > 0
(Table 2). As reported in Figure 1, the number of com-
mon detected transcripts was greater than 80% for all
LSPs but nu05 and tss_total. The Nu05 shared between
87 to 91% transcripts with the other LSPs but tss_total.
Over 90% of tss_total transcripts were detectable by
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Table 1. Library preparation information

RNA selection RNA concentration (ng)
Poly A* rRNA depletion 0.5 2 100 1000 1500
NuGEN v2 nuo5 nu2 nu100
ScriptSeq v1 v sS
TruSeq unstranded v ts100 51000
TruSeq stranded v v tss (PolyA™) tss_total (rRNA depl)

other LSPs (Figure 1). On the other hand less than 50%
of the transcripts detected by the other LSPs were also
detected by tss_total. Similar observation similarly
applied to nu05 even if at a lower extent.

Ts100 and ts1000, which were the two libraries pre-
pared with TrueSeq unstranded using respectively
100 ng and 1000 ng of input material, allowed the
detection of nearly the same number of transcripts
(given the chosen minimal threshold of FPKM > 0.1). A
possible explanation for the lack of an apparent advan-
tage in using high versus low, PolyA* RNA input in
TruSeq unstranded libraries might be due to transcript
quantification sensitivity. Transcripts quantification was
done using Cufflinks, because Steijger et al. [18] showed
that it provided a good sensitivity with respect to other
methods. However, Cufflinks sensitivity was significantly
reduced at very low coverage [18]. Thus, it was specu-
lated that, since PolyA™ mRNAs represented a tiny sub-
set of the total input RNA, the increment in input
material from 100 ng to 1000 ng was not enough to
bring low expressed splice variants in the range of sensi-
tivity of Culfflinks for transcript quantification, given as
threshold FPKM > 0.1.

It was notable that the increase of input material
affected the overall library yield (Additional file 3). The
optimal starting material amount to obtain the higher
library yield using TrueSeq (TS) was approx. 200 ng of

total RNA. Further increase in the input material signifi-
cantly reduces the library yield.

Effect of PolyA* selection versus rRNA depletion.
All LSPs allowed the detection of a similar number of
transcripts (Figure 1) except for tss_total, generated
using total RNA upon ribosomal depletion. In tss_total,
the percentage of transcripts was slightly below 46%
even if the total percentage of mapped reads did not dif-
fer from the other experiments (Table 2). For this LSP,
41% of the reads were mapped on multiple locations on
the genome. This increase in multiple mapping reads
was most probably due to non-coding genes, which
often are represented in multiple copies in the genome,
e.g. tRNAs, miRNA, lincRNA, etc. Coding transcripts
undetectable in tss_total were characterized by low cov-
erage/FPKM distributions in ts100, while the transcripts
detected both by tss_total and ts100 showed similar cov-
erage and FPKM distributions (Figure 1). We think that,
coding transcripts characterized by low expression
might not be sampled in tss_total because of the signifi-
cant reduction of reads mapping to these single copy
genes with respect to the other LSPs.

Transcripts detection in low input protocol. We
observed that the number of detected transcripts in
NuGEN v2 depends on the amount of input material
(Table 2). It was notable that the library yield increased
as the input total RNA increased (Additional file 3).

Table 2. A) Number of splice variants detected using Cufflinks [17] starting from 80 million reads generated by

different Library sample preparation.

Names KIT selection  input % of single/multiple mapped % of mapped Splice variants (FPKM > 0.1,
(ng) reads reads Coverage > 0)
(STAR) (STAR)

nu05 NuGEN None 05 68.49/20.31 88.80 21707

nu2 NuGEN None 2 80.19/10.07 90.26 24410

nu100 NuGEN None 100 80.10/9.85 89.95 25901

SS ScriptSeq PolyA* 1500 75.69/7.92 83.61 24135

t$1000 TruSeq PolyA* 1000 87.41/9.20 96.61 24857
unstranded

100 TruSeq PolyA* 100 86.65/9.11 95.76 24701
unstranded

tss TruSeq stranded ~ PolyA™ 100 81.18/14.67 95.85 24318

tss_total  TruSeq Total Ribo- 100 45.49/41.66 87.15 11993

Zero
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Figure 1 Percentage of common transcripts (FPKM > 0.1, Coverage > 0) between different LSPs. Red indicates a percentage greater than
90%. Orange a percentage ranging between 80% and 90%. Yellow a percentage ranging between 70% and 80%. Green is below 70%

ts1000 | ts100 | tss | tss total

However, since NuGEN is a two-steps protocol, the
overall library yield depended also on the amount of
cDNA used in the second step (Additional file 3). The
number of transcripts in common with the ts100
increased from 0.5 to 100 ng of total RNA input. More-
over, also the number of NuGEN specific transcripts
(Table 2 Figure 3A) increased. The coverage of NuGEN
detected transcripts (Figure 3B, yellow and green boxes)
was lower than ts100 detected transcripts (Figure 3B,
violet boxes). This effect was particularly evident for
NuGEN specific transcripts (Figure 3B, yellow boxes).
However, the behaviour observed for the coverage did
not apply to FPKM distribution (Figure 3C). Unless for
the nu05 dataset, NuGEN detected transcripts showed
FPKM distribution (Figure 3C, yellow/green boxes) simi-
lar to that observed for the ts100 dataset (Figure 3C,
violet boxes).

We analysed coverage and FPKM distributions for ss,
tss and ts1000 with respect to ts100 (Figure 4). Coverage
and FPKM distributions of transcripts in common
between ss, tss, ts1000 and ts100 were very similar to
each other. On the other side the LSP specific tran-
scripts were always characterized by very low coverage/
FPKM distributions (Figure 4). Thus, the low coverage
for LSP transcripts in common with ts100 seemed to be
a peculiarity only of data derived from NuGEN LSP.

We further investigated this point by analysing the
raw count distribution for exons belonging to the tran-
scripts detected by NuGEN and for those transcripts in
common with ts100 (Figure 3D). From this analysis it
was clear that exons belonging to transcripts detected
by NuGEN, are characterized by low exon coverage
(Figure 3D, black boxes). This was particularly evident

for the nu05 sample, where the mean of its exon-counts
distribution was not shown since the majority of the
exons have 0 counts (Figure 3D, black boxes). Instead, a
mean value lower than 10 count was observed in samples
nu2 and nul00 (Figure 3D, green/violet boxes). For exons
detected by both nu and ts100, the exon counts distribu-
tion was lower for nu05, nu2, and nul00 (Figure 3D,
green boxes) with respect to ts100 (Figure 3D violet
boxes). The presence of lower coverage for transcripts/
exons detected by NuGEN could represent a critical issue
in splice variant differential expression, since it might
affect the bioinformatics quantification of the transcripts/
exons.

Finally we checked the presence of detectable differ-
ences in the number of exon-exon junctions in tran-
scripts specific for nu05, nu2 and nul00 with respect to
those in common with ts100 (Figure 5). The exon-exon
junction counts distribution was narrow for transcripts
identified using the NuGEN LSP with respect to TruSeq
LSP (Figure 5A). The average detection ratio of exon-
exon junctions was similar in NuGEN LSP with respect
to TruSeq LSP (Figure 5B). Considering only splice
variant-specific exon-exon junctions, i.e. exon-exon junc-
tions allowing discrimination between different splice
variants, the differences in average detection ratio were
also negligible (Figure 5B).

Benchmark datasets

The observations reported in the previous paragraph
enlightened that NuGEN v2 influenced transcript quan-
tification in a different way with respect to standard/
high input LSPs (TruSeq unstranded/stranded, Script-
Seq). NuGEN protocol using 0.5 ng of input total RNA
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coverage were calculated at transcript level using Cufflink (2.2.0)
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Figure 2 Coverage and FPKM of splice variants in tss_total. A) Coverage distributions. The left-most boxplot refers to the coverage observed
in ts100 for the set of splice variants that were not detectable in tss_total. The central (tss_total) and the right-most boxplot (ts100) report the
coverage distribution for the splice variants that have been detected in both tss_total and ts100. B) As for A, but with respect to FPKM
distributions. The left-most boxplot in panel A and B indicate that splice variants undetectable in tss_total are characterized by expression lower
than that observable for the subset of the splice variants detectable by both tss_total and ts100. These low expression splice variants were not
sampled in tss-total because the number of reads mapping to single copy genes were lower compared to other experiments. FPKM and

(nu05) had a very limited ability (-23% with respect to
ts100, Figure 1) in detecting splice variants with respect
to TruSeq unstranded protocol using 100 ng input total
RNA (ts100). The splice variant detection with NuGEN
protocol using 2 ng (nu2) or 100 ng (nul00) still
remained less efficient than ts100 with respect to the
other LSPs. Although nul00 lost, with respect to ts100,
only 12% of the detected transcripts (Figure 1) it is not
generally used in standard experiments because of the
higher complexity/cost of the protocol compared to
other LSPs. Nu2 represents the best compromise
between the need of a low input RNA quantity and the
number of detected splice variants (-16% with respect to
ts100, Figure 1). Therefore, we decided to compare the
effect of nu2 and ts100 on the detection of differential
splice variant expression by BA pipelines. To address
this comparison we created benchmark datasets where
nu2 and ts100 reads were spiked-in, within a common
background made of TruSeq unstranded data (Figure 6,
Additional file 4). Specifically, to create the backgrounds
C1-C5 and T1-T5 we used reads of 5 technical replicates
of ts 100 and 1000 ng of starting material respectively
(Additional file 1). The choice of two different back-
grounds was driven by the desire of creating a dataset

resembling a biologically replicated experiment. However
it should be noted that the two backgrounds were extre-
mely similar (Additional file 2 and 7) for the detection of
number of exons (Additional file 7A) and expression at
exon-level (Additional file 7B).

We spiked-in reads derived from 20, 40 and 80 million

reads of both nu2 (20/40/80 NU datasets, Additional file 4)
and ts100 dataset (20/40/80 TS, Additional file 5). With
this design, we generated a splice variant-level differential
expression between C and T groups for 27 transcripts
(Figure 7).
Furthermore, to investigate the dependency of the BA
approaches on gene-specific splice variants complexity we
constructed a synthetic dataset that also included complex
expression composition of splice variants for the same
gene (Additional file 6). Synthetic reads were characterized
by having a uniform distribution over all transcripts and
58 differentially expressed transcripts between C and
T groups were generated (Figure 6, 7).

Spikes-in were distributed in both C and T background
datasets with respect to two disjoint sets of isoforms, to
generate skipping and insertion events resembling biolo-
gical environmental situation. The differences between
backgrounds were negligible (Additional file 2 and 7)
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therefore we postulated that swapping spikes-in between
C and T backgrounds would not affect the alternative
splicing detection, as we indeed observed in our experi-
ments (not shown).

All datasets are available at GEO repository with the
ID: GSE58001.

Splice variants differential expression analysis

The identification of differentially expressed splice var-
iants was investigated on the above mentioned datasets
using Cuffdiff [11] and RSEM-EBSeq [12,13], as prototy-
pic for direct splice variants-quantification approaches,
and DEXSeq [14], as prototypic for exon-level analysis.
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The increase of the number of reads also increased
the detection of differentially expressed splice variants,
independently of the dataset under analysis, i.e. 20/40/
80NU or 20/40/80TS (Figure 8A). For Cuffdiff we used
also the more recent version V2 (Cuffdiff2 for short)
that includes the estimation of the over-dispersion due
to biological replications [11]. Cuffdiffl detected a fixed
number of transcripts independently of the number of
the reads used to generate the spikes-in for the TS data-
set (Figure 8A, blue bar). Otherwise, on the NU dataset
the differential expression detection increased on the
basis of the number of reads used in the spike-in gen-
eration. It was notable that, in 8ONU dataset, Cuffdiffl
detected the same number of alternative spliced tran-
scripts discovered using 20TS dataset. Thus, the detec-
tion in Cuffdiffl seemed to be quite inefficient when
NU datasets were used.

In case of Cuffdiff2, there was an increment in the
detected transcripts that was correlated to the number
of reads used to generate the spikes-in; this was obser-
vable both in TS and NU datasets (Figure 8A, orange
bar). Cuffdiff2 detected a greater number of differentially
expressed transcripts than Cuffdiffl in all datasets
except for 20TS (Figure 8A, blue and orange bars).

Dillies and Soneson [20,21] have shown that FPKM does
not represent the best normalization approach for differ-
ential expression analysis. Cuffdiff2 offers two alternative
library normalization approaches other than FPKM:
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geometric and quartile. The geometric normalization is
also used in the DESeq. We have repeated the Cuffdiff2
analysis on the 80TS dataset using both geometric and
quartile normalization. Although there were some differ-
ences in the number of the transcripts detected, the overall
number of detected spikes-in was not affected by the dif-
ferent normalization procedures (Additional file 8). The
analysis based on RSEM-EBSeq (a tool that works with
raw counts) provided a number of detected spikes-in
greater than those detected by Cuffdiff2. The difficulties in
detecting transcripts differentially expressed in NU data-
sets were still present also using RSEM-EBSeq but at a
lower extent with respect to Cufflink. A similar improve-
ment was not observable for the synthetic transcripts.
However, the false positive detection was 6 times greater
than Cuffdiff (Figure 8C violet bars).

The exon-level analysis, performed using DEXSeq, was
quite inefficient with respect to Cuffdiff (both versions)
and REM-EBSeq for the NU dataset (Figure 8A, green
bar) and in general in the samples characterized by a low
number of input spike-in reads. DEXSeq detected a higher
number of differential expressed transcripts compared to
Cuffdiff in 80TS (Figure 8A green bar). However, DEXSeq
detection rate was lower than RSEM-EBseq (Figure 8A
violet bar). Indeed 81% of true spikes-in detected in 80TS
by RSEM-EBSeq were associated with a false discovery
rate approx. 10 times bigger than the one observed using
DEXSeq (Figure 8D).

_________________________________________ R
5 m cuffdiffl 500 - 500 -
m cuffdiff2 78% 50
2] ] dexseq
e 20 @ rsem-EBSeq 400 - 400 -
= 40
3] 59%
e 154 52%
L 48% 30 300 300
)
o _ 37%; .
g 10 30% 26°Q 30% 30%" 269 2] 200 - 200 -
£ 1ol 2% W 22% 22900 288 ;R
a d 5%11%OI 7%I . 10 { Ba®® 100 100
<4 dd I
0
i ' 0 0 0
20NU  40NU 8ONU  20TS  40TS  80TS 80TS/NU SONU 80TS

Figure 8 Statistical detection of spliced variants. A) True positive transcripts detected as differentially expressed between C1-C5 and T1-T5
groups as function of the spike-ins (20, 40, 80 million reads) and of the LSP (NU, TS) out of 27 spiked-in transcripts. B) True positive synthetic
transcripts detected as differentially expressed between C1-C5 and T1-T5 out of the 58 differentially expressed synthetic transcripts with known
fold change between T1-T5 and C1-C5. Only the 80 millions spike-in was considered since the synthetic spike-ins are identical over all the
datasets. C) False positive transcripts detected in the dataset 80 NU dataset with spike-in derived from 80 million reads, depending on the BA
used in the analysis. Only the 80 millions spike-in is considered since the false positive are nearly in the same amount for 20, 40 and 80 millions
spikes-in. D) False positive transcripts detected in the TS dataset with spike-in derived from 80 million reads depending on the BA used in the
analysis. Only the 80 millions spike-in was considered since the false positive are nearly in the same amount for 20, 40 and 80 millions spikes-in.
The numbers on the top of each bar indicates the % of detectable spikes-in.
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The experiments performed on the synthetic dataset
revealed inferior detection efficiency for all methods
(Figure 8B). The best results were obtained by Cuffdiffl,
which detected approximately 34% of the total true posi-
tive splice variants.

Discussion

In this work we present the first comparative evaluation
of the combined effect of Library Sample Preparation
and Bioinformatics Analysis on alternative splicing
detection.

Library Sample Preparations using as starting material
at least 100 ng of total RNA and undergoing PolyA"*
enrichment (ss, tss, ts100, ts100), showed a similar beha-
viour for common detected transcripts. The transcripts
detection was significantly impaired for the low
expressed transcripts when comparing ribosomal deple-
tion versus PolyA™ selection protocols.

Transcripts that were specifically detected only by a
single LSP showed poor coverage and they were probably
not very informative for splice variant detection, because
of the non-uniform coverage at exon-level. As for
NuGEN low input protocol, the number of LSP-specific
transcripts increased with the rise of the amount of total
RNA input. However, those LSP-specific transcripts were
characterized by low coverage and in general by very low
exon-level counts. FPKM estimation for those transcripts
could be misleading, since it had a very similar behaviour
to that observed for the transcripts in common with the
LSP based on the TruSeq protocol. Nu05, nu2 and nul00
showed a lower coverage with respect to ts100 for the
common transcripts as well as for the exon count. The
experiments on the benchmark datasets revealed that the
lower exon counts generated from NU datasets (20/40/
80NU) negatively affected the ability of exon-level based
approach (DEXSeq) to detect alternative splicing events.
On the other side, when a high number of input reads
was used and the preparation was done using the TruSeq
protocol (e.g. 80TS dataset), the exon-level based
approach provided the best results. Exon-level analysis
provided also the best compromise between detection
and false discovery rate using the TruSeq protocol.

All our experiments were based on 50-bp paired-end
sequences. This choice was a compromise between the
performance of the experiment and the sequencing costs.
However, the optimal solution, as suggested in the 2011
ENCODE white paper on RNA-seq (https://genome.ucsc.
edu/ENCODE/protocols/dataStandards/ENCODE_RNA-
seq_Standards_V1.0.pdf), would have been 76-bp paired-
end sequencing, since the average insert size in the
majority of LSP is 150-bp. The use of longer reads could
be particularly useful in approaches like TopHat2/Cuf-
flinks, where read splitting is used to detect intron-exon
junctions.
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Conclusions

Our results indicate that a low input protocol, such as
NuGEN v2, is not suitable for alternative splicing analy-
sis due to the limited coverage at exon-level. Moreover
the performances of both splice variants-quantification
approaches and exon-level analyses were in general
comparable. However, it was notable that, for high num-
ber of input spike-in reads, exon-level analysis provided
a higher detection rate of alternative splicing events
with a reduced level of noise.

Furthermore, we provide to the research community a
dataset that can be re-used as benchmark to compare
the performance of software devoted to the identifica-
tion of alternative splicing events. However, because of
the intrinsic characteristics of the short sequencing
reads, spikes-in generated by extracting reads mapping
to a transcript do not necessarily guarantee that they
come from that specific transcript. It was impossible to
discriminate between different transcripts when reads
mapped to exons that were shared between two or more
of them. However, since our benchmark dataset con-
tains also synthetic spike-in the combination of the two
different types provides a new benchmarking tool to be
used to compare software dedicated to alternative spli-
cing detection.

Materials and methods

RNA isolation and purification

Total RNA was extracted from D1 mouse cell line [15].
Total RNA was extracted with Trizol Reagent (Invitrogen)
followed by RNeasy micro clean-up procedure (Qiagen) as
per manufacturer’s instructions. Total RNA integrity was
assessed by Agilent 2100 Bioanalyzer (Agilent) and the
RNA Integrity Number (RIN) was calculated; RNA sample
had a RIN = 9.5.

Library preparation

The following steps were repeated for all library pre-
parations: 1). ERCC RNA Spike in Control Mix 1
(Ambion) was added to D1 total RNA as a first step of
each protocol. 2). Two additional rounds of purification
of the cDNA libraries were done using Agencourt
Ampure XP SPRI beads (Beckman Courter) to remove >
600 bp double stranded cDNA. 3). The length distribu-
tion of the cDNA libraries was monitored using DNA
1000 kits on the Agilent Bioanalyzer. 4). Libraries were
subjected to an indexed PE sequencing run of 2x51
cycles on an Illumina HiSeq 2000.

lllumina TruSeq RNA

Ilumina TruSeq RNA Sample Preparation kit version 1
(Low Sample Protocol) was used with slight modifica-
tions. Briefly, PolyA™ containing RNA molecules were
purified using polyT oligo-attached magnetic beads.
Thermal fragmentation followed after two rounds of


https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf
https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf
https://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAseq_Standards_V1.0.pdf

Carrara et al. BMC Bioinformatics 2015, 16(Suppl 9):52
http://www.biomedcentral.com/1471-2105/16/59/S2

enrichment for PolyA* mRNA. cDNA was synthesized
using reverse transcriptase (Superscript II) and random
primers. This was followed by second strand cDNA
synthesis, end repair process, adenylation of 3’ ends and
ligation of the adapters. The products were then purified
and enriched with 12 cycles of PCR to create the cDNA
library.

NuGEN Ovation RNA-Seq system version 2 - Dedicated
Read Barcode

Total RNA was processed for cDNA synthesis using Ova-
tion RNA-Seq system version 2 (NuGEN Technologies)
according to the manufacturer’s protocol. Briefly, first
strand cDNA was prepared from total RNA using a
unique first strand DNA/RNA chimeric primer mix and
reverse transcriptase (RT). The primers have a DNA por-
tion that hybridizes either to the 5" portion of the poly(A)
sequence or randomly across the transcript. A DNA/
RNA heteroduplex double-stranded cDNA was generated
by fragmentation of the mRNA within the cDNA/mRNA
complex, allowing the DNA polymerase to synthesize a
second strand. The DNA then underwent SPIA amplifi-
cation. SPIA ¢cDNA were sheared to get a size range of
25 bp to 400 bp with the bulk of the material at 150 bp.
This was done by sonication (Covaris model S2) with
duty cycle 10, intensity 5 and cycle/burst 100 for 300 s.
100 ng and 500 ng of the sheared DNA were used for
library preparation using the Encore Rapid Library
Systems (NuGEN Technologies) according to manufac-
turer’s protocol; the fragmented DNA underwent end
repair, adaptor ligation (with 6 bases indexing tags), and
final repair to produce the final library. 4 pl of each puri-
fied library underwent 10 cycles of PCR amplification
using Illumina TruSeq PCR reagents.

Epicentre ScriptSeq v1

PolyA™ containing mRNA molecules were selected using
RiboMinus™ Eukaryote kit (Life Technologies) for
RNA-Seq according to manufacturer’s instructions. The
RNA samples were chemically fragmented using the
StarScript Reverse Transcriptase Buffer and the cDNA
Synthesis Primer was annealed to the RNA. 5’ end-
tagged cDNA (equivalent to the 3’ end of the original
RNA) was produced by random-primed cDNA synth-
esis. This was followed by 3'-Terminal Tagging of the
cDNA using the Terminal-Tagging Oligo (TTO) which
randomly annealed to the ¢cDNA, including to the 3’
end of the cDNA and served as template for the exten-
sion of the cDNA by DNA polymerase. The resulting
di-tagged were purified using Qiagen MinElute PCR
Purification Kit. Enrichment of the purified di-tagged
c¢DNAs was done with 12 cycles of PCR.

lllumina TruSeq Stranded Total RNA

[lumina TruSeq Stranded Total RNA Sample Prepara-
tion kit (Low Sample Protocol) was used with slight
modifications. The removal of ribosomal RNA was done
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using Ribo-Zero Gold rRNA removal beads (Epicentre),
which deplete samples of both cytoplasmic and mito-
chondrial ribosomal RNA. After depletion, the RNA was
purified and fragmented using divalent cations and ther-
mal fragmentation. First strand cDNA synthesis was
performed using reverse transcriptase (Superscript II)
and random primers. This was followed by second
strand cDNA synthesis using DNA Polymerase I and
RNase H and dUTP in place of dTTP. Libraries were
prepared as described above for the TruSeq RNA proto-
col except for the end repair process.

lllumina TruSeq Stranded mRNA

Mlumina TruSeq Stranded mRNA Sample Preparation kit
(Low Sample Protocol) was used with slight modifications.
Briefly, polyA containing mRNA molecules were selected
using polyT oligo-attached magnetic beads. Fragmentation
and library preparation was done as described above for
the TruSeq Stranded Total RNA protocol.

Spikes-in dataset
The common background of the spikes-in dataset was
made using paired-end reads generated preparing, with
the TruSeq unstranded protocol, 5 libraries, starting with
1000 ng of total RNA extracted from the D1 cell
(C1-C5), and 5 libraries starting with 100 ng of total
RNA D1 cells (T1-T5) (Additional file 1). The true posi-
tive set (TP) of transcripts was defined in the following
way: exon counts for samples C1-C5 and T1-T5 were
loaded in R using DEXseq package [14] and UCSC mm9
annotation (28232 genes). Genes characterized by at least
three splice variants were selected (6582). Then we
selected genes having at least one transcript characterized
by at least one exon discriminating it from the other
splice variants, for a total of 6313 genes. The genes were
further filtered, removing all transcripts characterized by
having, for the discriminating exons, less than 10 counts
in total in C1-C5 and T1-T5 samples (leaving 2970
genes). Out of the 2970 genes 27 were selected, after the
inspection of a set of more than a hundred randomly
chosen one, and from them one of the splice variant was
used for spike-in experiment (Additional file 4).
Sequences (generated with NuGEN v2, using as input 2
ng input total RNA, and with TruSeq unstranded, using
100 ng input total RNA), were used to construct three
datasets made respectively of 20, 40 and 80 million reads
named 20NU, 40NU, 80NU and 20TS, 40TS, and 80TS
accordingly. Each dataset was mapped against the mouse
genome (mm9) and the reads mapping to the 27 tran-
scripts were extracted and spiked in C1-C5 or in T1-T5
to simulate transcripts up and down-regulation within
two experimental conditions (Additional file 4).

It is worth to remark that the selection of the tran-
scripts to be spiked-in is a time-consuming process, due
to the complexity in the identification of different types
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of alternative splicing events (e.g. 5'-end extension, 3’-
end reduction, cassette skipping/insertion) for genes
having more than one expressed splice variant. Specifi-
cally, we selected, as putative targets for spike-in, only
those set of splice variant that were expressed both in C
and T datasets. This restriction was meant to avoid
those cases in which the alternative splicing detection
problem reduces to differential gene expression
identification.

Synthetic dataset

Out of the 2970 transcripts 58 were selected, with a similar
procedure as above and for each transcript we spiked-in a
specific number of reads (Additional file 5). Since spiking-
in the identical amount of synthetic reads in all samples of
a replication group would represent an oversimplified
experimental design, we selected the number of reads to
be spiked-in according to a normal distribution, as could
be observed in biological replications. We selected the
number of reads to be spiked in each sample on the basis
of a normal distribution for 10° elements having a mean
equal to the number of reads to be spiked-in, e.g. 100, and
a standard deviation 10 times smaller than the mean. For
example, we decided to spike-in 100 reads in the 5 repli-
cated of ts100 background (C1-C5), thus 5 random values
from a normal distribution of 10° elements with mean 100
and standard deviation 10 were chosen (e.g. 86, 112, 81,
98, 89) and used to define the number of spike-in reads to
be placed in each of the 5 replicates. The required syn-
thetic paired-end reads 2x51nt were constructed to guar-
antee a uniform distribution both at exon and exon-exon
junction level. Reads were then associated with a quality
score of 40 and used to generate fastq files. Scripts used to
generate the synthetic data set are available upon request.

Splice variants quantification and statistical detection of
alternative spliced variants

Nu05, nu2, nul00, ts100, ts1000, ss, tss, tss_total, C-1-C5
and T1-T5 fastq data were mapped with STAR (2.3.1n)
[22] using default settings. For nu05, nu2, nul00, ts100,
ts1000, ss, tss and tss_total splice variant quantification
was done with Cufflinks (1.3.0 or 2.2.0) [23]. Exon-level
quantification was done using DEXSeq (1.10.8) [14] and
exon-exon junction quantification was done with subjunc
function of the Rsubread (1.14.2) [24] Bioconductor
package. Cuffdiff 1 (1.3.0), Cuffdiff2 (2.2.0) [11], RSEM
(1.2.15) [12], EBSeq (1.4.0) [13] prototypic BA based on
splice variant-quantification, were used for detection of
alternative spliced variants between C1-C5 and T1-T5
groups using mm9 UCSC annotation. All Cuffdiff and
RSEM-EBSeq analyses were run with standard para-
meters, unless in the case of the evaluation of the effect
of different library normalization procedures done only
with Cuffdiff 2 (library-norm-method geometric and
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library-norm-method quartile). Splice variants were con-
sidered differentially expressed if characterized by q-
value < 0.05 and FDR < 0.05. for RSEM-EBSeq. Exon-
level analysis made use of DEXSeq [14]. Splice variants
were considered differentially expressed if at least one
splice variant-specific exon was detected as differentially
expressed between C1-C5 and T1-T5 groups with a Ben-
jamini & Hochberg adjusted p-value < 0.05.

Additional material

Additional file 1: List of datasets generated with different LSPs on
the same total RNA sample

Additional file 2: reproducibility between different sequencing runs. The
datasets used to compare different LSPs were generated combining
different sequencing run. Using deepTools webserver [16] we correlated
the bam files generated on the same total RNA using different LSPs
(Additional file 1). The comparison is reported only on chromosome 1
(the longest one) because of limitation on data uploading per
experiment on the deepTools web-server.

Additional file 3: Effect of total RNA input on library yield. The yield
of library is shown with respect to the increment of input total RNA.
TrueSeq protocol has a narrow range for the optimal library yield that is
about 200 ng (blue dots). The increment of input total RNA for NUGEN
protocol resulted in an increment on library yield. The overall yield is
dependent also on the amount of cDNA used in the second step of the
library preparation (green triangle, red square).

Additional file 4: Background Paired-end reads datasets.

Additional file 7: Exon-level analysis of ts100 and ts1000 dataset used as
background for the construction of the spike-in dataset. A) Number of
detectable exons, i.e. at least 1 reads mapped of an exon, with respect to
the increase of total number of reads. The number of exons detectable
by ts100 and ts1000 is very similar, although, over 50 millions reads,
ts1000 seems to catch few more exons with respect to ts100. B) Exon-
level differential expression calculated comparing the 5 technical
replicates from ts100, used as background in T1+T5, with respect to the
5 technical replicates of ts1000, used as background in C1+C5. In red are
shown the 84 exons detected as differentially expressed between the
two groups, FDR < 0.1. In the inset box is shown the distribution of the
log, fold change associated to the 84 differentially expressed exons. The
two dataset are very similar and even though few exons are detected as
differentially expressed their log, fold change difference is negligible.

Additional file 5: Endogenous and spikes-in counts.
Additional file 6: Synthetic spikes-in data.

Additional file 8: Effect of different library normalization
procedures in Cuffdiff analysis. Cuffdiff offers the possibility to use
three types of library normalization: FPKM, geometic and quartile.
Differentially expressed transcripts detected using 80TS dataset. A) 80TS
spikes-in. B) Synthetic spikes-in.

Additional file 9: Scatter plot of ts100 versus tss. A) log,o(FPKM). B) log;o
(coverage). Transcripts having in ts100 or tss at least FPKM > 0.1; for level
of FPKM lower than 0.1 the value in the plot was set by default to -2.
The overall data shows a linear relation both for FPKM and for coverage.
Red arrows highlight transcripts that are not correlated in expression in
the two LSPs.
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