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Abstract
Background: Intracellular signal transduction is achieved by networks of proteins and small
molecules that transmit information from the cell surface to the nucleus, where they ultimately
effect transcriptional changes. Understanding the mechanisms cells use to accomplish this
important process requires a detailed molecular description of the networks involved.

Results: We have developed a computational approach for generating static models of signal
transduction networks which utilizes protein-interaction maps generated from large-scale two-
hybrid screens and expression profiles from DNA microarrays. Networks are determined entirely
by integrating protein-protein interaction data with microarray expression data, without prior
knowledge of any pathway intermediates. In effect, this is equivalent to extracting subnetworks of
the protein interaction dataset whose members have the most correlated expression profiles.

Conclusion: We show that our technique accurately reconstructs MAP Kinase signaling networks
in Saccharomyces cerevisiae. This approach should enhance our ability to model signaling networks
and to discover new components of known networks. More generally, it provides a method for
synthesizing molecular data, either individual transcript abundance measurements or pairwise
protein interactions, into higher level structures, such as pathways and networks.

Background
Signal transduction is the primary means by which cells
coordinate their metabolic, morphologic, and genetic re-
sponses to environmental cues such as growth factors,
hormones, nutrients, osmolarity, and other chemical and
tactile stimuli. Traditionally, the discovery of molecular
components of signaling networks in yeast and mammals
has relied upon the use of gene knockouts and epistasis
analysis. Although these methods have been highly effec-
tive in generating detailed descriptions of specific linear
signaling pathways, our knowledge of complex signaling
networks and their interactions remains incomplete. New

computational methods that capture molecular details
from high-throughput genomic data in an automated
fashion are desirable and can help direct the established
techniques of molecular biology and genetics.

DNA microarray technology has evolved to the point
where one can simultaneously measure the transcript
abundance of thousands of genes under hundreds of con-
ditions, producing hundreds of thousands of individual
data points. Similarly, high-throughput yeast two-hybrid
experiments have identified thousands of pairwise pro-
tein-protein interactions. Once a core pathway is estab-
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lished, these data can readily be integrated into model
refinements, as a recent study in systems biology elegantly
demonstrates [1]. However, synthesizing these data de
novo into models of pathways and networks remains a sig-
nificant challenge.

How can one bridge the gap from transcript abundances
and protein-protein interaction data to pathway models?
Clustering expression data into groups of genes that share
profiles is a proven method for grouping functionally re-
lated genes, but does not order pathway components ac-
cording to physical or regulatory relationships. Here we
present an automated approach for modelling signal
transduction networks in S. cerevisiae by integrating pro-
tein-protein interaction [2–4] and gene expression data.
Our program, NetSearch, draws all possible linear paths
of a specified length through the interaction map starting

at any membrane protein and ending on any DNA-bind-
ing protein. Microarray expression data [5–7] is then used
to rank all paths according to the degree of similarity in
the expression profiles of pathway members. Linear path-
ways that have common starting points and endpoints
and the highest ranks are then combined into the final
model of the branched networks.

Our approach is calibrated using the yeast MAPK (mi-
togen-activated protein kinases) pathways involved in
pheromone response, filamentous growth, and mainte-
nance of cell wall integrity (Fig. 1). These pathways are ac-
tivated by G protein-coupled receptors and characterized
by a core cascade of MAP kinases that activate each other
through sequential binding and phosphorylation reac-
tions; they are among the most thoroughly studied net-

Figure 1
MAPK signal transduction pathways in yeast. Membrane proteins are depicted in blue, transcription factors in red, and 
intermediate proteins in green. Figure adapted from [6].
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works in yeast and are therefore excellent benchmarks
against which to test our approach.

Results
Input data and parameters
Recent papers [2–4] have used the yeast-two-hybrid tech-
nique and literature surveys to identify and assemble over
7000 non-redundant protein-protein interactions among
more than 4000 proteins. While two-hybrid screens effi-
ciently identify fusion proteins that are able to interact,
the biological significance of the interaction for native
proteins acting in vivo generally requires verification, be-
cause the technique is susceptible to a high rate of false
positives [8]. To assess the possible contribution of false-
positive protein-protein interactions to the combined in-
teraction dataset, we analyzed the connectivity of each

protein and found that a small fraction of proteins had a
very high number of interactions (highlighted in red, Fig.
2). With these highly connected proteins included in our
data set, NetSearch generates 17 million candidate signal-
ing pathways of length seven or less, 95% of which in-
volve one of these twenty-two highly-connected proteins.
We excluded the highly interacting proteins from the in-
teraction dataset based on their nonspecific inclusion in
the predicted pathways and evidence of their susceptibili-
ty to systematic error. This yielded an interaction map that
contains 5560 interactions among 3725 proteins, an aver-
age of three interactions per protein.

Using the NetSearch algorithm, this protein interaction
network was queried for paths up to length eight that be-
gin at membrane proteins and end at transcription factors.

Figure 2
Histogram of the number of proteins with a given number of protein-protein interactions. Interaction data 
obtained by high-throughput two-hybrid assays [2–4]. The highly interacting proteins in red were removed from the interac-
tion dataset (see text for details).
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The search generated approximately 4.4 million candidate
pathways of length eight or less whose biological plausi-
bility was assessed using gene expression data.

To score the pathways, we first used a k-means algorithm
to cluster all yeast genes into clusters based on their ex-
pression profiles. NetSearch then assigned each pathway a
statistical score [10] according to the number of pathway
members that clustered together. For example, a path with
six members in one cluster would score higher than a path
that only had five members in that cluster. Cluster size in-
fluenced path scoring such that a path that had three
members from a cluster of 30 elements would score high-
er than a path that had three members from a cluster of
100 elements. Also, a path with four elements in one clus-
ter and three elements in a second cluster would score
higher than a path that had four elements in cluster one,
but no more than two elements in cluster two.

Pathways were scored using NetSearch's 'sumprob' scor-
ing metric: Assuming N proteins total and a partitioning
of proteins into k clusters C1, C2,...Ck, with N1, N2,...Nk
members, respectively, and a pathway p of L proteins
p1→p2→...→ pL, where cp(i) = number of proteins in p
in cluster Ci, the sumprob score is computed as follows:

probp(i) scores a pathway for a cluster Ci such that path-
ways which are more concentrated in Ci have higher
scores. The summation in probp(i) computes the cumula-
tive hypergeometric probability of pathway p containing
cp(i) or more members of Ci. probp(i) assesses co-cluster-
ing of pathway members in the single cluster Ci.
sumprob(p), the sum of probp(i) values over all clusters
for which cp(i) >= 2, is a simple measure of co-clustering
across the entire collection of available clusters. The ra-
tionale for the restriction cp(i) >= 2 is that without it a
pathway could get a high score simply from having single
members in one or more rare clusters, in which case the
score would no longer reflect co-clustering.

The exact composition of paths discovered using NetS-
earch depend on the parameters used in path drawing and
path scoring. To ensure that NetSearch reproducibly gen-
erates statistically significant, biologically plausible paths,

we combinatorially varied every parameter value in the
path-drawing and path-scoring algorithms, and selected
parameter combinations that generate the most statistical-
ly significant pathways. Statistical significance was meas-
ured by drawing pathways from membrane proteins to
DNA-binding proteins through the experimentally deter-
mined protein-interaction map (henceforth called "real
pathways") and comparing these pathways with pathways
drawn through control interaction maps that were created
by randomizing all pairwise interactions in the original
dataset. (The randomization procedure was performed
three times and statistics were calculated on the average
output of these runs. Paths produced using these interac-
tion maps are henceforth referred to as "random path-
ways"). We ultimately chose parameters that maximized
the number of high-scoring pathways produced with real
interactions, while minimizing high-scoring pathways
from the randomized interactions.

The parameters we varied included the number of clusters
into which the genes were grouped, the microarray expres-
sion datasets used in clustering, the maximum path
length, and the scoring metric. Expression data were clus-
tered into 12, 25, 50, 100 and 250 clusters, and NetSearch
best discriminated between real pathways and random
pathways when genes were grouped into 25 clusters.
Three S. cerevisiae expression datasets were examined indi-
vidually, including the "Compendium" set, composed of
expression profiles in response to 300 diverse mutations
and chemical treatments [5]; the "MAPK" set, composed
of 56 conditions chosen to probe the behavior of MAPK
signal transduction [6]; and the "Cell Cycle" set, com-
posed of 77 conditions relevant to the cell cycle [7]. Com-
binations of these datasets were also examined, for a total
of five different sets that allowed us to compare the utility
of data that probes specific biological processes, such as
MAPK signaling or the cell cycle, and that which probes
the state of the cell more broadly, such as the Compendi-
um set and the combined sets. The composite data set that
combined all three individual sets (for a total of 433 con-
ditions) provided the best discrimination between real
pathways and random pathways, although the other sets
performed comparably.

The final input parameter that required evaluation was the
maximum path length allowable for NetSearch paths.
While short path lengths risk omission of key path mem-
bers, longer path lengths increase the likelihood of includ-
ing false-positive interactions. As a first step towards
determining the optimal maximum path length, we exam-
ined the path lengths connecting every possible pair of the
3725 proteins in the interaction dataset, regardless of sub-
cellular localization. The minimal path length between
any two proteins chosen at random contains on average
7.4 members. Secondly, we examined the fraction of path-
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ways with high coclustering ratios for various path
lengths. Consistent with our finding that the average path
length between any two proteins is 7.4, this fraction peaks
at eight, which we set as our maximum, unless otherwise
noted.

NetSearch output
Using a maximum path length of eight, and 25 gene clus-
ters from 433 conditions [5–7], NetSearch generated ~4.4
million pathways each for the real and randomized pro-

tein interaction datasets. From the experimental ("real")
data, 4059 pathways had a coclustering score ≥ 16 (Fig. 3).
At this cutoff, randomized interaction data produced on
average only ~1% this number of pathways (32 pathways,
P = 7 × 10-6). However, we emphasize that NetSearch se-
lects paths based on their rank relative to all paths be-
tween selected starting and endpoints. The absolute score
depends on the particular expression data set used, and
varies from network to network depending on the degree

Figure 3
Histogram of pathways with a given coclustering score for experimental and randomized protein-protein 
interactions. Histogram of the number of pathways with a given coclustering score for experimental and randomized protein-
protein interactions. Shown here is the tail of the distribution with the highest coclustering scores. The paths were drawn with 
a depth-first search algorithm [43] from membrane to DNA-binding proteins. It is evident that at high coclustering scores, 
pathways from the experimentally observed interactions (blue) outnumber those generated from randomized interactions (red 
– an average of three separate randomizations). The total number of paths for experimental and randomized interaction data 
(averaged) were within 5% of each other.
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of coregulation in the cell under the conditions tested in
the expression data.

The signaling network models generated by NetSearch for
the pheromone response, cell wall integrity and filamen-
tation pathways are depicted in Fig. 4. In each case, the
starting protein (receptor, depicted in blue) and ending
protein (transcription factor, depicted in red) were select-
ed as inputs, and NetSearch draws all possible paths be-
tween these points. The size of each vertex is proportional
to the sum of scores of the paths in which that protein is
found, providing a useful visual clue to the potential im-
portance of a protein in the given network. Comparison
with Fig. 1 shows that NetSearch reproduced many of the
essential elements of these MAPK pathways, while provid-
ing a detailed account of the experimentally determined
interconnections among network elements. Of the three
network models, the one generated for the pheromone re-
sponse pathway originating at Ste3p (Fig. 4A) exhibited
the highest co-clustering scores. Every protein NetSearch
included in this network model has a description in the
Yeast Proteome Database (YPD) [9] consistent with a
known or plausible role in mating. Of the nineteen pro-
teins we have included in our depiction of the pheromone
response network, eighteen are annotated as playing a
role in the fungal cell differentiation by MIPS [10]. The
probability that this selection would have occurred by
chance was calculated with the hypergeometric distribu-
tion was found to be P = 5 × 10-24. Our model does differ
in several respects from the canonical pheromone re-
sponse pathway depicted in Fig 1. It includes more mem-
bers of the heterotrimeric G protein complex, including
the alpha, beta, and gamma subunits, the GDP-GTP ex-
change factor, and the GTPase-activating protein (Gpa1p,
Ste4p, Ste18p, Cdc24p, and Sst2p, respectively). It in-
cludes Far1p, a protein necessary for pheromone-induced
cell cycle arrest in G1 [11], Mpt5p, a protein necessary for
recovery from cell cycle arrest [12], and Bem1p and Sph1,
both of which are necessary for establishment of cell po-
larity during shmooing and budding [13,14]. In our pro-
tein-interaction map there is no direct interaction
between a pheromone receptor (Ste2p or Ste3p) and any
component of the heterotrimeric G protein complex
(Ste4p/Ste18p/Gpa1p), so NetSearch drew indirect paths
through Akr1p, a known inhibitor of signaling in the phe-
romone pathway [15]. The predicted network does not in-
clude the GTPase Cdc42p (paths were instead drawn
preferentially through its cofactor Cdc24p, which physi-
cally interacts with Ste4p) or Ste20p, because of missing
interactions in the protein-interaction map.

Fig. 4B depicts the pheromone response network at sever-
al different score cutoffs, and demonstrates how higher
co-clustering score cutoffs reduces the complexity of the
protein-interaction map. NetSearch detects 354 paths of

length eight from Ste3p to Ste12p, and incorporates 70
different proteins into those paths. The top graph in Fig.
4B shows the network constructed from all 354 paths
(with each protein arranged on the perimeter of an ellipse
for clarity). In the middle graph, all paths that scored be-
low the median have been eliminated, leaving only 27
proteins. On the bottom of Fig. 4B, only the highest scor-
ing paths (those used to construct the network in Fig. 4A)
with 19 proteins, are depicted. Comparison of these net-
works indicates that most proteins are eliminated by sim-
ply excluding the pathways that score in the bottom half;
further modifications to the cutoff affect the results incre-
mentally. In setting a precise cutoff for pathway inclusion
in the final network models, one seeks to strike a balance
between the inclusion of false-positives and the omission
of true-positives. We set the cutoff such that the top fifteen
paths for each network were included.

The network model generated for the cell wall integrity
pathway is depicted in Fig. 4C. Membrane proteins in par-
ticular may fail to produce interactions when forced into
the nucleus by the requirements of the standard two-hy-
brid technique. We observed this to be the case for the cell
wall integrity pathway, as neither Wsc1p, Wsc2p, Wcs3p
or Mid2p were observed to interact in any of the high-
throughput screens. To reconstruct this network, we there-
fore started with the momomeric GTPase Rho1p, and re-
stricted our search to a length of seven because of the
omission of the initial signal sensor. Of the 18 proteins in-
cluded in this network model, all but Smd3p have de-
scriptions consistent with a role in cell wall maintenance.
NetSearch included both GTPase constituents of this
pathway, Rho1p and Cdc42p, as well as associated GAPs
and other interactors, including Rdi1p, Rga1p, and Gic2p.
Other included network elements are Fks1p, the 1,3-βglu-
can synthase of which Rho1p is a subunit [16], the actin
protein Act1p, and the proteins Bni1p, Bud6p, and
Sph1p, which are associated with Rho-mediated signal
transduction, actin filament organization, cell polarity es-
tablishment, and bud growth. Smd3p forms a complex
with the Sm core spliceosomal proteins [17], and we are
not aware of any role it may play in maintaining cell wall
integrity. Its inclusion is most likely a result of its expres-
sion correlation with BUD6 in one of the microarray data-
sets, but it seems unlikely that the observed interactions of
Smd3p with Spa2p and Slt2p have biological significance.
In the NetSearch-generated model, Bck1p is downstream
of Mkk1p because, although it interacts with both Mkk1p
and Mkk2p, it has been shown specifically not to interact
with Pkc1p in two-hybrid assays [18].

The network model for filamentous growth (Fig. 4D) in-
volves 21 proteins, 20 of which are known to play a role
in filamentous growth, or have functions consistent with
that role, with the exception of Fus1p. As in the pherom-
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Figure 4
Network models produced by NetSearch. Pathways predicted by NetSearch for (A, B) pheromone response, (C) cell 
wall integrity, and (D) filamentation pathways, with the starting membrane protein for path drawing (blue), intermediate pro-
teins (green) and transcription factor (red). In each case, the fifteen highest ranked paths between common endpoints were 
combined to form the signaling network. For the cell wall integrity pathway, the sensor proteins that initiate signal transduction 
Wsc/1/2/3p and Mid2p did not have any productive interactions. For this pathway, we began our searches at Rho1p and 
searched for a path length of seven. The size of each vertex is proportional to the sum of the scores of the paths in which it 
was included. Network graphs were produced with PAJEK graph drawing software [44], http://vlado.fmf.uni-lj.si/pub/networks/
pajek.
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one response and cell wall integrity network models, key
components of the Ras GTPase are included, such as
Cdc25p (the Ras guanine nucleotide exchange factor),
Cyr1p (the Ras-associated adenylate cyclase), and Srv2p,
which enables the activation of adenylate cyclase by
Ras2p. Several proteins with roles in actin filament organ-
ization, cell polarity establishment, bud growth, and GT-
Pase-mediated signal transduction are shared with the cell
wall integrity pathway, including Bni1p, Spa2p, Bud6p,
and Act1p. NetSearch depicts interactions between Abp1p
and both Srv2p and Act1p, consistent with the function of
Abp1 in tethering Srv2p to the cytoskeleton. The ade-
nylate cyclase and associated proteins mentioned above,
along with Hsp82p and Hsc82p, activate the cAMP path-
way [19], a pathway that acts in parallel with the MAPK
pathway to promote filamentation. Hsp82p is a chaper-
one protein known to interact with a number of signaling
pathway components [20]. It is required for activation of
the pheromone signaling pathway [21], and for the gener-
al response to amino acid starvation [22]. It may play a
similar role in response to nitrogen (ammonia) starva-
tion, a trigger for filamentation. Fus1p, included in our
predicted network, does not have a documented role in
filamentation; it is required for cell fusion during phe-
romone initiated mating. Its transcript levels are signifi-
cantly upregulated in response to pheromone, but are
unchanged in tec1∆ strains [6]; that study notes, however,
that in dig1∆ dig2∆ cells, fus1 is constitutively activated,
and both mating and invasive growth are observed. Tec1p,
conspicuously absent in our model, has not been ob-
served to interact with any proteins in high-throughput
two-hybrid screens.

Discussion
The utility of yeast protein-protein interaction maps for
generating signaling network models has previously been
suggested [23], and they have been used to predict meta-
bolic pathways [24]. Expression data has been used to
generate and refine models for genetic regulatory net-
works without the benefit of protein-protein interaction
data [25]. In this study, we have used expression data to
rank candidate pathways of interacting proteins. This ap-
proach has a strong biological and experimental rationale:
proteins used in the same signaling network must exist si-
multaneously with its activation. The genes encoding
these proteins must be transcribed at approximately the
same time, and under the same environmental conditions
in which the signaling network is required. Furthermore,
experimental evidence suggests that when a signaling net-
work is activated, positive feedback mechanisms upregu-
late the expression of genes that encode pathway proteins
[26], implying that this rationale is also applicable to "sur-
veillance" pathways, whose protein components may
need to be constitutively present in small quantities, but
whose concentration increases with activation. This bio-

logical rationale is borne out by evidence that interacting
proteins have more highly correlated expression profiles
than do non-interacting proteins [27]. However, if a single
component of a signaling network is independently (and
differentially) regulated, it would not necessarily be ex-
cluded using our approach, if for instance, it connected
two halves of a pathway which had similar average expres-
sion profiles.

NetSearch can be used to predict new signaling pathways,
identify previously unknown members of documented
pathways, or identify smaller clusters of interacting pro-
teins. Until we have a more complete protein-interaction
set, a user who wishes to explore a particular pathway ht
tp://arep.med.harvard.edu/NetSearch needs to specify
pathway starting points and ending points (such as mem-
brane and DNA-binding proteins, respectively). This se-
lection can be based on a known genetic interaction, a
shared mutant phenotype, a shared functional classifica-
tion, or signature expression profile. This is the approach
we have followed in constructing the networks depicted in
Fig. 4. Those networks are comprised of all highest rank-
ing linear paths connecting the receptors and transcrip-
tion factors for that pathway.

The pheromone response pathway is commonly depicted
as a simple, linear transmission of the mating signal from
the membrane receptor, Ste2p (for alpha-factor) or Ste3p
(for a-factor), to the nuclear effectors, Ste12p and Mcm1p,
via a MAPK cascade. However, mating pheromone expo-
sure also induces other cellular processes such as those re-
quired for polarized growth, cell cycle arrest, and recovery
from cell cycle arrest. Furthermore, the topology of the
protein interactions required for these processes is consid-
erably more complicated than a series of pairwise interac-
tions. In addition to accurately depicting the MAPK
cascade, our predicted pheromone response network
identifies many proteins necessary to execute the coordi-
nated processes of growth polarization and cell cycle ar-
rest, and reflects the complex topology of the interaction
network.

The complexity of these interactions are observed in large,
multifunctional complexes of possibly dynamic composi-
tion. For example, products of Ste18, Ste4, Cdc42, Cdc24,
Far1, Bem1, Ste20, Ste5, and other proteins are thought to
constitute a complex that has numerous interactions
among components, and that mediates many different
cellular processes [14,28]. The complex may coordinate
mating pheromone detection with (1) cell cycle arrest via
Far1p, (2) MAPK signal transduction via Ste5p and
Ste20p, and (3) cell polarity via Bem1p and Far1p (among
others) [29,30].
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Given that several of these networks share components of
the MAPK cascade, the mechanism by which input-output
specificity is maintained remains one of the most impor-
tant questions in the field of molecular signal transduc-
tion. One well accepted hypothesis is that scaffolding
proteins such as Ste5p and Pbs2p tether the MAPK mod-
ule to the appropriate input and output components [31].
The recent identification of numerous Ste5p analogs in
yeast and mammals makes this hypothesis even more in-
triguing [26]. Beyond scaffolding proteins, higher-order
protein complexes have been hypothesized to play a role
in maintaining signal specificity [32]. Our computational
results suggest that this may indeed be the case. When
comparing the minimal pathways for pheromone re-
sponse and filamentation as depicted in Fig. 1, it appears
that maintaining signal specificity would be a considera-
ble challenge. But when comparing the two network pre-
dictions depicted in Fig. 4, one notes many differences, all
of which may help ensure specificity. The network per-
spective suggests not a single scaffolding protein, but
many scaffolding proteins – in fact, a "scaffolding net-
work." The possibility exists that relatively nonspecific ki-
nases function simply as "phosphorylation modules,"
operating inside insulating networks that are the primary
determinant of signaling specificity.

Because our protein-protein interaction data is only a
small fraction of a truly complete interaction map, one
finds portions of a network that cannot be connected us-
ing available protein-protein interaction data. This was
the case in our attempts to model the HOG network.
While NetSearch correctly identified the upstream ele-
ments of this pathway (Sln1p → Ypd1p → Ssk1p →
Ssk22p), it was unable to form any connections to Pbs2p
or Hog1p that ended in a transcription factor. In some cas-
es, a missing interaction can be circumvented, however. In
the model for the pheromone response network, NetS-
earch inserted Akr1p, a known inhibitor of the pherom-
one pathway [15], between Ste3p and the G protein
complex (Ste4p/Ste18p/Gpa1p). Although the protein-in-
teraction dataset we used contained no direct interaction
between Ste2p/Ste3p and Ste4p, Ste2p-Ste4p has been
shown to interact in a targeted yeast two-hybrid study
[33].

Our failure to model the HOG pathway underscores the
fact that, for the purposes of this algorithm, missing inter-
actions (false-negatives) are a more significant obstacle
than are false-positive interactions. Missing interactions
cannot be "created" by the algorithm, but false-positive
interactions are de-emphasized as a result of the bias im-
posed by ranking paths according to the similarity of ex-
pression profiles. Bearing this out, of the fifty-eight
proteins included in our networks, only Smd3p seems to
be included as a result of false-positive interactions. (This

is distinct from the case of Fus1p, which may be mis-
placed in the filamentation pathway, but whose interac-
tions with Act1p and Ste7p are real.) This highlights a
general observation on the integration of genomic tech-
nologies. Two-hybrid and microarray expression studies
are both known to have a sizable fraction of systematic er-
rors (for instance, self-activators in two-hybrid experi-
ments, and cross-hybridization in microarrays), but when
looking at the intersection of the two, the true signals tend
to reinforce one another, whereas the systematic errors in
the two tend to be different and are reduced further into
the noise. These effects may help explain why we observe
so few false-positive proteins inserted into our predicted
networks.

In addition to using more complete interaction datasets,
such as those found in Ho [35] and Gavin [36], one could
improve this approach by integrating more types of data.
Homology modelling could be used to differentially
weight the inclusion of molecules likely to be involved in
signal transduction (e.g. kinases), and genetic interactions
could weight the inclusion of the two proteins in the same
path. Signaling motif identification [36] and data from
protein kinase chips [37] could also easily be incorporat-
ed into this framework. Based on the interaction data
available, the networks depicted in Fig. 4 are static, with
all interactions given equal weight, and without informa-
tion on the direction of information transfer. In reality,
signaling networks are dynamic and vectorial complexes,
with interactions of varying strengths among component
proteins [38]. The technology necessary to generate data
which will allow modelling of these network properties
are beginning to emerge. Kinase chips [37] will allow one
to incorporate information about the direction of infor-
mation flow. The strength of protein interactions (with
DNA) has been measured on chips in a highly parallel
manner [39] and the same could be done for protein-pro-
tein interactions [40]. Data on the spatial and temporal
co-localization of signaling components is being generat-
ed by new imaging techniques [41], which will yield in-
sight into the mechanism with which the cellular response
to a signal is modulated by the intensity and the duration
of the signal [42], and the interplay with parallel path-
ways.

Conclusions
The approach we have presented allows one to query the
intersection of two enormous sets of functional genomic-
derived molecular data. One can, in effect, simultaneously
browse protein-protein interaction and gene expression
data. It allows one to extract a group of highly-connected,
highly-correlated proteins from global data to isolate a
sub-network of particular interest. Significantly, this ap-
proach does not require prior knowledge of pathway in-
termediates. The interaction data determines the
Page 9 of 11
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pathways that are considered, and gene expression data is
used to rank the pathways. Although we have focused on
signaling pathways, this approach should be applicable to
modelling the relationships among any group of interact-
ing proteins that cooperate to perform a given function
within a cell, and the web-version of the software allows
for these queries. As many genomic techniques are gener-
ating increasingly large amounts of molecular data, new
tools such as this will be required for the synthesis of
"parts into pathways" in order that we may understand
how cells regulate the many processes necessary for
growth and development.

Authors' contributions
M.S. conceived of the study, performed the network mod-
elling and drafted the manuscript. A.P. wrote program
code, analyzed the network models and drafted the man-
uscript. J.A. devised algorithms, wrote and refined pro-
gram code and constructed the associated web pages. P.D.
performed statistical analyses and examined the protein
interaction maps. G.C. guided the study and coordinated
the project. All authors read and approved the final man-
uscript.

Supplementary website
Supplementary website – http://arep.med.harvard.edu/
NetSearch Web interface for NetSearch: http://
arep.med.harvard.edu/NetSearch/runprog.html

Acknowledgements
We thank Lisa Pacella, Aimee Dudley and Vasudeo Badarinarayana for ex-
cellent advice and assistance and all members of the Church and Winston 
labs for helpful discussion. We also thank the Lipper Foundation, ONR, 
NSF and DOE grant DE-FG02-87ER60565.

References
1. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, R

Bumgarner, Goodlett DR, Aebersold R and Hood L Integrated ge-
nomic and proteomic analyses of a systematically perturbed
metabolic network. Science 2001, 292:929-934

2. Schwikowski B, Uetz P and Fields S A network of protein-protein
interactions in yeast. Nat Biotechnol 2000, 18:1257-1261

3. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lock-
shon D, Narayan V, Srinivasan M and Pochart P A comprehensive
analysis of protein-protein interactions in Saccharomyces
cerevisiae. Nature 2000, 403:623-627

4. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M and Sakaki Y A com-
prehensive two-hybrid analysis to explore the yeast protein
interactome. Proc Natl Acad Sci U S A 2001, 98:4569-4574

5. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour
CD, HA Bennett, Coffey E, Dai H and He YD Functional discovery
via a compendium of expression profiles. Cell 2000, 102:109-
126

6. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett
HA, He YD, Dai H, Walker WL and Hughes TR Signaling and cir-
cuitry of multiple MAPK pathways revealed by a matrix of
global gene expression profiles. Science 2000, 287:873-880

7. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB,
Brown PO, Botstein D and Futcher B Comprehensive Identifica-
tion of cell cycle-regulated genes of the yeast Saccharomy-
ces cerevisiae by microarray hybridization. Mol Biol Cell 1998,
9:3273-3297

8. von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S and
Bork P Comparative assessment of large-scale data sets of
protein-protein interactions. Nature 2002, 417:399-403

9. YPD™ 
10.
11. Peter M and Herskowitz I Direct inhibition of the yeast cyclin-

dependent kinase Cdc28-Cln by Far1. Science 1994, 265:1228-
1231

12. Chen T and Kurjan J Saccharomyces cerevisiae Mpt5p interacts
with Sst2p and plays roles in pheromone sensitivity and re-
covery from pheromone arrest. Mol Cell Biol 1997, 17:3429-3439

13. Madden K and Snyder M Cell polarity and morphogenesis in
budding yeast. Annu Rev Microbiol 1998, 52:687-744

14. Pruyne D and Bretscher A Polarization of cell growth in yeast.
I. Establishment and maintenance of polarity states. J Cell Sci
2000, 113:365-375

15. Pryciak PM and Hartwell LH AKR1 encodes a candidate effector
of the G beta gamma complex in the Saccharomyces cerevi-
siae pheromone response pathway and contributes to con-
trol of both cell shape and signal transduction. Mol Cell Biol
1996, 16:2614-2626

16. Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Wa-
tanabe T, Levin DE and Ohya Y Identification of yeast Rho1p GT-
Pase as a regulatory subunit of 1,3-beta-glucan synthase.
Science 1996, 272:279-281

17. Roy J, Zheng B, Rymond BC and Woolford JL Jr Structurally relat-
ed but functionally distinct yeast Sm D core small nuclear ri-
bonucleoprotein particle proteins. Mol Cell Biol 1995, 15:445-
455

18. Paravicini G and Friedli L Protein-protein interactions in the
yeast PKC1 pathway: Pkc1p interacts with a component of
the MAP kinase cascade. Mol Gen Genet 1996, 251:682-691

19. Geymonat M, Wang L, Garreau H and Jacquet M Ssa1p chaperone
interacts with the guanine nucleotide exchange factor of ras
Cdc25p and controls the cAMP pathway in Saccharomyces
cerevisiae. Mol Microbiol 1998, 30:855-864

20. Pratt WB The hsp90-based chaperone system: involvement in
signal transduction from a variety of hormone and growth
factor receptors. Proc Soc Exp Biol Med 1998, 217:420-434

21. Louvion JF, Abbas-Terki T and Picard D Hsp90 is required for phe-
romone signaling in yeast. Mol Biol Cell 1998, 9:3071-3083

22. Donze O and Picard D Hsp90 binds and regulates Gcn2, the lig-
and-inducible kinase of the alpha subunit of eukaryotic trans-
lation initiation factor 2. Mol Cell Biol 1999, 19:8422-8432

23. Tucker CL, Gera JF and Uetz P Towards an understanding of
complex protein networks. Trends Cell Biol 2001, 11:102-106

24. Zien A, Kuffner R, Zimmer R and Lengauer T Analysis of gene ex-
pression data with pathway scores. Proc Int Conf Intell Syst Mol Biol
2000, 8:407-417

25. Hartemink AJ, Gifford DK, Jaakkola TS and Young RA Using graph-
ical models and genomic expression data to statistically val-
idate models of genetic regulatory networks. Pac Symp
Biocomput 2001, 422-433

26. Elion EA Pheromone response, mating and cell biology. Curr
Opin Microbiol 2000, 3:573-581

27. Kemmeren P, van Berkum NL, Vilo J, Bijma T, Donders R, Brazma A
and Holstege FC Protein interaction verification and function-
al annotation by integrated analysis of genome-scale data.
Mol Cell 2002, 9:1133-1143

28. Leeuw T, Fourest-Lieuvin A, Wu C, Chenevert J, Clark K, Whiteway
M, Thomas DY and Leberer E Pheromone response in yeast: as-
sociation of Bem1p with proteins of the MAP kinase cascade
and actin. Science 1995, 270:1210-1213

29. Nern A and Arkowitz RA A Cdc24p-Far1p-Gbetagamma pro-
tein complex required for yeast orientation during mating. J
Cell Biol 1999, 144:1187-202

30. Butty AC, Pryciak PM, Huang LS, Herskowitz I and Peter M The role
of Far1p in linking the heterotrimeric G protein to polarity
establishment proteins during yeast mating. Science 1998,
282:1511-1516

31. Garrington TP and Johnson GL Organization and regulation of
mitogen-activated protein kinase signaling pathways. Curr
Opin Cell Biol 1999, 11:211-218

32. Madhani HD and Fink GR The riddle of MAP kinase signaling
specificity. Trends Genet 1998, 14:151-155
Page 10 of 11
(page number not for citation purposes)

http://arep.med.harvard.edu/NetSearch
http://arep.med.harvard.edu/NetSearch
http://arep.med.harvard.edu/NetSearch/runprog.html
http://arep.med.harvard.edu/NetSearch/runprog.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11101803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688190
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10929718
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10657304
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8066461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8066461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9154842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9154842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9154842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9891811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9891811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10639324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10639324
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8649369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8649369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8649369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8602515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8602515
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7799953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7799953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7799953
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8757399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8757399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8757399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10094633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10094633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10094633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9521088
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9802897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=84941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=84941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=84941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10567567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11306254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11306254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10977101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10977101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11262961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11121776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12049748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12049748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7502048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7502048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7502048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10087263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822386
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10209154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10209154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9594663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9594663


BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/34
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

33. Ongay-Larios L, Savinon-Tejeda AL, Williamson MJ Jr, Duran-Avelar
M and Coria R The Leu-132 of the Ste4(Gbeta) subunit is es-
sential for proper coupling of the G protein with the Ste2 al-
pha factor receptor during the mating pheromone response
in yeast. FEBS Lett 2000, 467:22-26

34. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A,
Taylor P, Bennett K and Boutilier K Systematic identification of
protein complexes in Saccharomyces cerevisiae by mass
spectrometry. Nature 2002, 415:180-183

35. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A,
Schultz J, Rick JM, Michon AM and Cruciat CM Functional organi-
zation of the yeast proteome by systematic analysis of pro-
tein complexes. Nature 2002, 415:141-147

36. Yaffe MB, Leparc GG, Lai J, Obata T, Volinia S and Cantley LC A mo-
tif-based profile scanning approach for genome-wide predic-
tion of signaling pathways. Nat Biotechnol 2001, 19:348-353

37. Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, Klemic KG,
Smith D, Gerstein M, Reed MA and Snyder M Analysis of yeast pro-
tein kinases using protein chips. Nat Genet 2000, 26:283-289

38. Endy D and Brent R Modelling cellular behaviour. Nature 2001,
409:391-395

39. Bulyk ML, Huang X, Choo Y and Church GM Exploring the DNA-
binding specificities of zinc fingers with DNA microarrays.
Proc Natl Acad Sci U S A 2001, 98:7158-7163

40. Lueking A, Horn M, Eickhoff H, Bussow K, Lehrach H and Walter G
Protein microarrays for gene expression and antibody
screening. Anal Biochem 1999, 270:103-111

41. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki
A and Matsuda M Spatio-temporal images of growth-factor-in-
duced activation of Ras and Rap1. Nature 2001, 411:1065-1068

42. Marshall CJ Specificity of receptor tyrosine kinase signaling:
transient versus sustained extracellular signal-regulated ki-
nase activation. Cell 1995, 80:179-185

43. Cormen T, Leiserson C and Rivest R Introduction to Algorithms.
Cambridge, MA, MIT Press 1990, 

44. Batagelj V and Mrvar A Pajek – Program for Large Network
Analysis. Connections 1998, 21:47-57
Page 11 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10664449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10664449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10664449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11062466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11062466
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11404456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10328771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10328771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10328771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11429608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11429608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7834738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7834738
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7834738
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Input data and parameters
	NetSearch output

	Discussion
	Conclusions
	Authors' contributions
	Supplementary website
	Acknowledgements
	Acknowledgements

	References

