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Abstract
Background: For over a decade the idea of representing biological sequences in a continuous
coordinate space has maintained its appeal but not been fully realized. The basic idea is that any
sequence of symbols may define trajectories in the continuous space conserving all its statistical
properties. Ideally, such a representation would allow scale independent sequence analysis –
without the context of fixed memory length. A simple example would consist on being able to infer
the homology between two sequences solely by comparing the coordinates of any two
homologous units.

Results: We have successfully identified such an iterative function for bijective mappingψ of
discrete sequences into objects of continuous state space that enable scale-independent sequence
analysis. The technique, named Universal Sequence Mapping (USM), is applicable to sequences with
an arbitrary length and arbitrary number of unique units and generates a representation where map
distance estimates sequence similarity. The novel USM procedure is based on earlier work by these
and other authors on the properties of Chaos Game Representation (CGR). The latter enables the
representation of 4 unit type sequences (like DNA) as an order free Markov Chain transition table.
The properties of USM are illustrated with test data and can be verified for other data by using the
accompanying web-based tool: [http://bioinformatics.musc.edu/~jonas/usm/] .

Conclusions: USM is shown to enable a statistical mechanics approach to sequence analysis. The
scale independent representation frees sequence analysis from the need to assume a memory
length in the investigation of syntactic rules.

Background
For over a decade the idea of representing biological se-
quences in a continuous coordinate space has maintained
its appeal but not been fully realized [1–3]. The basic idea
is that sequences of symbols, such as nucleotides in ge-
nomes, aminoacids in proteomes, repeated sequences in
MLST [Multi Locus Sequence Typing, 4], words in lan-
guages or letters in words, would define trajectories in this
continuous space conserving the statistical properties of

the original sequences [3,5–9]. Accordingly, the coordi-
nate position of each unit would uniquely encode for
both its identity and its context, i.e. the identity of its
neighbors [10]. Ideally, the position should be scale-inde-
pendent, such that the extraction of the encompassing se-
quence can be performed with any resolution, leading to
an oligomer of arbitrary length. The pioneer work by Jef-
frey published in 1990 [5] achieved this for genomic se-
quences by using the Chaos Game Representation
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technique (CGR), defining a unit-square where each cor-
ner corresponds to one of the 4 possible nucleotides. Sub-
sequent work further explored the properties of CGR of
biological sequences, but two main obstacles prevented
the realization of its early promise – lack of scalability
with regard to the number of possible unique units and
inability to represent succession schemes. Meanwhile,
Markov Chain theory already offered a solid foundation
for the identification of discrete spaces to represent se-
quences as cross-tabulated conditional probabilities –
Markov transition tables. This Bayesian technique is wide-
ly explored in bioinformatic applications seeking to meas-
ure homology and align sequences [11]. In a recent report
[12] we have shown that, for genomic sequences, Markov
tables are in fact a special case of CGR, contrary to what
had been suggested previously [13]. This raised the pros-
pect of an advantageous use of iterative maps as state spac-
es not only for representation of sequences but also to
identify scale independent stochastic models of the suc-
cession scheme. That work [12] is hereby extended and
further generalized to be applicable to sequences with ar-
bitrary numbers of unique component units, without sac-
rificing the inverse correlation between distance in the
map and sequence similarity independent of position. Ac-
cordingly, the technique is named Universal Sequence
Map (USM).

Results
The Results are divided in two sections. The first section
presents the foundations for identifying an iterative func-
tion with the desired properties. The second section de-
scribes algorithm implementation illustrated with a
sample data set. Both sections are best understood by us-
ing the accompanying web-based tool (see Abstract for ad-
dress) where the different steps of the procedure can be
verified and reproduced with the test data or the reader's
own data.

Conceptual foundations
The USM generalization proposed here is achieved by ob-
serving two stipulations: A-alternative units in the itera-
tive map are positioned in distinct corners of unit block
structures', and B – sequence processing is bi-directional.

Basis for USM generalization:

A. Each unique unit is referenced in the map for positions
that are at equal n-distances from each other, and possibly,
but not necessarily, defining a complete block structure[3].
n-distances are defined as the maximum distance along
any dimension, e.g. n-distance between [a1, a2, ...,an] and
[b1, b2, ...,bn] is max(|b1 - a1|, |b2- a2|, ..., |bn - an|), see also
Equation 3. It will be shown that this stipulation leads to
the definition of spaces where distance is inversely pro-
portional to sequence similarity, independent of position.

In this respect, USM departs from previous attempts to
generalize Chaos Game Representation that conserve the
bi-dimensionality of the original CGR representation
[8,15–17].

B. The iterative positioning is performed in both direc-
tions. Therefore, there will be two sets of coordinates, the
result of forward and backward iterative operations. It will
be shown that, by adding backward and forward map dis-
tances between two positions, the number of identical
units in the encompassing sequences can be extracted di-
rectly from the USM coordinates. As a consequence, two
arbitrary positions can be compared, and the number of
contiguous similar units is extracted by an algebraic oper-
ation that relies solely on the USM coordinates of those
very two positions.

Implementation of USM algorithm
The algorithm will be first illustrated for the first and last
stanzas of Wendy Cope's poem "The Uncertainty of the
Poet" (14), respectively, "I am a poet. I am very fond of
bananas." and "I am of very fond bananas. Am I a poet?".
The procedure includes four steps:

1. Identification of unique sequence units – e.g. these two
stanzas have 19 unique characters, (table 1), i.e. uu = 19.

2. Replacement of each unique unit (in this case units are
alphabetic characters) by a unique binary number – e.g. in
table 1 each of the 19 unique units is replaced by its rank
order minus one, represented as a binary number. Other
arrangements are possible leading to the same final result
as discussed below. The minimum number of dimensions
necessary to accommodate uu unique units, n, is the upper
integer of the length of its binary representation: n =
ceil(log2(uu)). For W. Cope's stanzas, n = ceil(log2(19)) =
5. The binary reference coordinates for the unique units
are defined by the numerals of the binary code – for exam-
ple, a will be assigned to the position U'a' = [0,0,1,0,1].
Each symbol is represented as a corner in a n-dimensional
cube (Table 1). The purpose of these first two steps is to
guarantee that the reference positions for each unique se-
quence unit component are equidistant (stipulation A) in
the n-metric defined above. Any other procedure resulting
in equidistant unique positions will lead to the same final
results independently of the actual binary numbers used
or the number of dimensions used to contain them.

3. The CGR procedure [5] (Eq. 1) is applied independent-
ly to each coordinate, j = 1,2, ...,n, for each unit, i, in the
sequence of length k, uj

(i) with i = 1,2, ...,k, and starting
with a random map position taken from a uniform distri-
bution in [0,1]n, i.e. Unif([0,1]n). The random seed is not
fundamentally different from using the middle position
in the map as is conventional in CGR and it has the added
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feature that it prevents the invalidation of the inverse log-
arithmic proportionality of n-distance to sequence similar-
ity [12] for sequences that start or end with the same
motif.

For a sequence with k units, the USM positions i = 1,..., k
for the j = 1,..., n dimensions are determined as follows:

4. The previous step generated k positions in a n-dimen-
sion space by processing the sequence forward (Eq. 1).
This subsequent step adds an additional set of n dimen-
sions by implementing the same procedure backward (Eq.
2), again starting at random positions for each coordinate.
Consequently the first n dimensions of USM will be re-
ferred as defining a forward map and the second set of n di-
mensions will define a backward map. Put together, the
bidirectional USM map defines a 2n-unit block structure.

The n additional backward coordinates are determined as
follows:

The forward USM map for genomic sequences, where uu
= 4, and, consequently, n = 2, is the same as the result gen-
erated by CGR. However, by freeing the iterative map
from the dual-dimensional constraint of conventional
CGR, the USM forward map alone achieved the goal of
producing a scale independent representation of sequenc-
es of arbitrary number of unique units. These properties
will be briefly illustrated with W Cope's example. The 16th

unit of the first stanza, "I am a poet. I am very fond of ba-
nanas.", has USM coordinates USM[1,...,2n]

(16) = [0.02
0.01 0.63 0.00 0.53 0.07 0.30 0.52 0.27 0.57]. The first n
= 5 coordinates, the position in the forward map, can now
be used, by reversing equation 1 [12,13], not only to ex-
tract the identity the unit i = 16 but also the identity of the
preceding units:

- using forward coordinates alone [0.0156 0.0138 0.6314
0.0001 0.5338]

The same procedure can be applied to the remaining n =
5 coordinates, the position in the backward map, to ex-
tract the identity of the succeeding units, now ordered
backwards.

- using backward coordinates alone [0.0703 0.3004
0.5169 0.2742 0.5652]

The length of the sequence that can be recovered from a
position in the CGR or USM space is only as long as the
resolution, in bits, of the coordinates themselves. In addi-
tion, the relevance of these iterative techniques is not as-
sociated with the property of recovering sequences as
much as with the ability to recover the succession
schemes, e.g. the Markov probability tables. It has been
recognized for almost a decade that the density of posi-
tions in unidirectional, bi-dimensional, iterated CGR
maps (e.g. of genomic sequences, uu = 4 -> n = 2) defines
a Markov table [12,13]. The complete accommodation of

Table 1: Binary codes for the 19 possible units occurring in the 
two stanzas. The first unit is a space character " ".

Unit Bin. Code

00000
. 00001
? 00010
A 00011
A 00101
B 00110
D 00111
E 01000
F 01001
I 00100

M 01010
N 01011
O 01100
P 01101
R 01110
S 01111
T 10000
V 10001
Y 10010
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Markov chains in unidirectional USM (i.e. either forward
or backward, which is an equivalent to a multidimension-
al solution for CGR) can be quickly established by noting
that the identity of a quadrant is set by its middle coordi-
nates[13]. In order to extract the Markov format, for an ar-
bitrary integer order ord, each of the two n-unit
hypercubes, the set of n forward or backward coordinates,
would be divided in q = 2n.(ord+1) equal quadrants and the
quadrant frequencies rearranged [12]. The use of quadrant
to designate what is in fact a sub-unit hypercube is a con-
sonance with the preceding work on bidimensional CGR
maps [12], where it was shown that since any number of
subdivisions can be considered in a continuous domain,
the density distribution becomes an order-free Markov Ta-
ble that accommodates both integer and fractal memory
lengths. The extraction of Markov chain transition tables
from USM representations, both forward and backward, is
included in the accompanying web-based application (see
Abstract).

Above, the USM procedure was shown to allow for the
representation of sequences as multidimensional objects
without loss of identity or context. These objects can now
be analyzed to characterize the sequences for quantities
such as similarity between segments or entropy [18,19]
within the sequence. In figure 1 the 10-dimensional ob-
ject defined by the USM positions of the two stanzas was
projected in 3-dimensions by principal component analy-
sis. The dimensionality reduction by principal factor ex-
traction has visualization purposes only. As established

above, the minimum necessary dimensionality of the
USM state space is set by the binary logarithm of the
number of unique units. Nevertheless, the sequence vari-
ance associated with each component is provided in the
figure legend. In figure 1a, the segments " very fond of" in
the two stanzas are linked by solid lines to highlight the
fact that sequence similarity is reflected by spatial proxim-
ity of USM coordinates. The representation is repeated in
Figure 1b with solid lining of the segment " bananas". The
matching of the two segments of the second stanza (light)
to the similar segments of the first stanza (dark) is, again,
visually apparent.

The USM algorithm determines that similar sequences, or
segments of sequences, will have converging iterated tra-
jectories: the distance will be cut in half for every consec-
utive similar unit. This property was notice before for CGR
of genomic sequences [12], and will be further explored
here for USM generalization. In that preceding work it was
shown that the number of similar consecutive units can
be approximated by a symmetrical logarithmic transfor-
mation of the maximum distance between two positions
in either of the dimensions (n-distance), d.

d = -log2 (Max|∆USMundirectional|)  (Eq. 3)

Since the USM coordinates include two CGR iterations per
dimension, one forward and another backward, two dis-
tances can be extracted. The first 1,..., n coordinates define
a forward similarity estimate, df, and the second n+1,..., 2n

Figure 1
Representation of the USM of the two stanzas, respectively dark and light spheres connected by dashed lines, in a reduced 3-
dimension space obtained using the first three principal components, PC1,2,3. In a) the units corresponding to the segment "very
fond of" both stanzas are connected by solid lines. The procedure is repeated in b) for the segment "bananas". These figures
illustrate the property that similar segments converge in the USM representation, which is reflected by the docking of homolo-
gous units. The factorization for dimensionality reduction serves visualization purposes only. The variance represented by each
of the three principal components is 40%, 13% and 11%, respectively.

a) “ very fond of” b) “ bananas.”
Page 4 of 11
(page number not for citation purposes)



BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/6
coordinates can be used to estimate backward similarity,
db. The former measures similarity with regard to the units
preceding the one being compared and the latter does the
same for those the succeeding that same units. Therefore,
the forward and backward distances between the posi-
tions i and j of two sequences, a and b, with a length of ka
and kb, respectively, would be calculated as described by
equation 4, defining two rectangular matrices, df and db,
of size ka × kb (Fig. 2a,2b).

However, the values of d necessarily overestimate the
number of similar contiguous units preceding (df, illustra-
tion for stanza comparison in Fig. 2a) or succeeding (db,
illustration for stanza comparison in Fig. 2b) the posi-
tions being compared. The value of d would be the exact
number of contiguous similar units, h, if the starting posi-
tions for the similar segments where at a n-distance of 1,
e.g. if they were in different corners of the unit hyper-di-
mensional USM cube. Since the initial distance is always
somewhat smaller, the homology, h, measured as the
number of consecutive similar units, will be smaller than
d (Eq. 5).

Figure 2
Cross-tabulation of similarity between positions of the two stanzas. The figures can be reproduced using accompanying web
based USM tool (see Abstract for URL address, test data also included), a) forward distance, df (Eq. 4); b) backward distance, db
(Eq. 4); c) bi-directional similarity, D, compensated for φP3 = 0.55,n = 4.25 (Eq. 11). Notice that the values of diagonals between
similar segments estimate the number of units in the segments, although each D value is computed solely from a single pairwise
comparison of UCM coordinates; d) Compounded similarity, dc, with a maximum for the mid-position of the similar segments
(Eq. 12).
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The contribution of φ to the similarity distance, d, can be
estimated from the distribution of positions in the USM
map of a random sequence. A uniformly random se-
quence [3,19,20] will occupy the USM space uniformly,
and, for that matter, so will the random seed of forward
and backward iterative mapping, respectively equations 1
and 2. Therefore, a uniform distribution is an appropriat-
ed starting point to estimate the effect of (p, the over-de-
termination of h by d (Eq.5). Accordingly, for a given x∈
[0,1], the probability, Po, that any two coordinates, x1 and
x2, are located within a radius r ∈ (0,1) is given by Equa-
tion 6.

Since Po(r) is the probability of two points chosen ran-
domly from a uniform distribution Unif([0,1]) being at a
distance less than r from each other, for any set of n coor-
dinates in the USM, the likelihood of finding another po-
sition within a block distance of r would be described by
raising equation 6 to the n exponent. Finally, recalling
from equation 3 that sequence similarity can be obtained
by a logarithmic transformation of r, the probability that
the unidirectional coordinates of two random sequences
are at a similar length d > φ is described by equation 7. The
simplicity of the expansion for higher dimensions high-
lights the order-statistics properties [21] of the n-metric in-
troduced above (Eq. 3). It is noteworthy that the model
for the likelihood of over-determination is the null-mod-
el, e.g. the comparison of actual sequences is evaluated
against the hypothesis that the similarity observed hap-
pened by chance alone.

Finally, it is also relevant to recall that the null model for
d (Eq.7 for unidirectional comparisons, bi-directional
null models are derived below) allows the generalization
for non-integer dimensions. For example, the 19 unique
unites found in the two stanzas (Table 1), define forward
and backward USM maps in 5 dimensions each. However
the 5th dimension is not fully utilized, as that would re-
quire 25 = 32 unique units. Therefore, if there is no re-
quirement for an integer result, the effective value of n for
the two stanzas can be refined as being n = log2(19) = 4.25.

An estimation of bi-directional similarity will now be in-
troduced that adds the forward and backward distance

measures df and db. The motivation for this new estimate
is the the determination of the similar length of the entire
similar segment between two sequences solely by compar-
ing any two homologous units. Accordingly, since df is an
estimate of preceding similarity and db provides the suc-
ceeding similarity equivalent the sum of the two similar
distances, D, (Eq. 8) will estimate of the bi-directional
similarity, e.g. the length of the similar segment, H.

As illustrated later in the implementation, for pairwise
comparisons of homologous units of similar segments, all
values of D and, consequently, of φ, are exactly the same.
This result could possibly have been anticipated from the
preceding work [12] by noting that the value of d between
two adjacent homologous units differs exactly by one
unit. However, this result was in fact a surprise and one
with far reaching fundamental and practical implications.

Similarly to unidirectional similarity estimation, d, the bi-
directional estimate, D, being the sum of two overesti-
mates, is also overestimated by a quantity to be defined, φ
(Eq. 8). The derivation of an expression for the bi-direc-
tional overestimation will require the decomposition of
P1 (Eq. 7) for two cases, comparison between unidirec-
tional coordinates of similar quadrants, P1a, and of oppo-
site quadrants, P1b, as described in equation 9. Recalling
from equation 2, positions in the same quadrant corre-
spond to sequence units with the same identity, and posi-
tions in opposite quadrants correspond to comparison
between coordinates of units with a different identity.

The need for the distinction between same and opposite
quadrant comparison, which is to say between similar and
between dissimilar sequence units, is caused by the fact
that same quadrant comparisons are more likely to lead to
higher values of d. As illustrated above for the 16th unit of
the first stanza, the forward and backward coordinates
must fall in the same quadrant. Consequently, the similar
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pattern of same and opposite quadrant comparisons for
each dimension will be reflected as a bias in the bi-direc-
tional overestimation. The determination of probability,
P2, of over-determination between sums of independent
unidirectional similarity estimates is derived in equation
10.

The probability of bi-directional over-determination, can
now be established by using the same and opposite unidi-
rectional comparison expressions presented in Equation
9. The resulting expression for similarity over-determina-
tion by the distance between bidirectional USM coordi-
nates, P3, is presented in equation 11.

In figure 3, the probability distribution for both unidirec-
tional (P1, in gray) and bidirectional (P3, in black) com-
parisons is represented for different dimensions, n. It is
clearly apparent that the over-determination becomes
much less significant as dimensionality increases. From a
practical point of view, the over-determination is of little
consequence because the computational load of compar-
ing sequences corresponds mostly to the identification of
candidate pairing combinations. The fact that the n-metric
unidirectional distances, df and db, defined in Equation 4,
and bidirectional D, defined in Eq. 8, are over-determined
implies that the identification of similar segments be-
tween two sequences will include false positives but will
not generate false negatives. The false positive identifica-
tions can be readily recognized by comparing the se-
quences extracted from the coordinates, as demonstrated
above for the 16th unit of the first stanza. Nevertheless,
since over-determination will necessarily occur, its proba-
bility distribution was identified (Eq. 11, Fig. 3). This can
also be achieved for individual values by solving Eq. 11
for the value of φ observed. For example, for the condi-
tions of the two stanzas, the value of (φp1 = 0.5, n = 4.25
is 0.71 sequence units, which is the expected median uni-
directional over-determination, P1, of df and db (Eqs. 5, 7).
The corresponding probability of bi-directional overdeter-
mination, P3, should be somewhat above twice that value.
Using equation 11, the value obtained is 1.67 similar
units. Finally, it is worthy to stress that the expressions for

Figure 3
Probability distribution of similarity estimates for the uniformly random sequence null model – e.g. experimental values deviat-
ing from this model would indicate real homology, as in Fig. 4. The dark lines represent the numerical solution for the bi-direc-
tional over-determination, P3 (Equation 11), for different dimensionalities, n, identified by numbers in the plot. The gray lines
represent the numerical solution for the same values of n, for the uni-directional over-determination, P1 (Equation 9). The solu-
tion for the dimensionality of the two stanzas, n = log2(19) = 4.25, is highlighted by a thick line, for both P3 (thick dark line) and
P1 (thick gray line).
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calculation of likelihood of arbitrary levels of over-deter-
mination (Eq. 5–11) can be inverted to anticipate the lev-
el of over-determination for arbitrary probability levels.
This use of the null random model is also included in the
accompanying online tool (see Abstract for URL).

Discussion
H is the number of contiguous units that are similar be-
tween the two sequences aligned at the positions being
compared (Eq. 8). This value is estimated by D, which is
the sum of the overestimated number of preceding, df, and
succeeding, db, homologous units (Eq. 4, 5 and 8). The de-
termination of these similarity estimates, df and db, was il-
lustrated for the two stanzas in figures 2.a,2b. The same
values compensated for over-determination at P3 = 0.5 are
represented in Fig. 2c. The striking property of bi-direc-
tional similarity (H, Eq.8) is that the D values obtained for
any two homologous pair from similar segments are ex-
actly the same. That value is an estimator of the length of
the entire similar segment, H (Eq. 11). This is further illus-
trated in figure 5 for comparison of genomic sequences,
where it is also observed that the values of the distances
between similar segments are constant and estimate the
similar length. This was a somewhat unexpected property
of enormous practical value since the length of the similar
segment can be determined by a single pair-wise compar-

ison between any of analogous positions. Consequently,
when comparing two sequences of length ka and kb to
identify all similar segments of length w or above, kakb /w
pair-wise comparisons will suffice. In addition, each pair-
wise comparison is now achievable with a single algebraic
operation (Eq.8) rather than requiring the conventional
dynamic programming approach [11]. The computation-
al effort of positioning database sequences in the USM
state space occurs at the level of database indexing. Con-
sequently, search algoritms based on the USM state space
representation will necessarily lead to speedier implemen-
tations. In order to facilitate the comparison with dynam-
ic programming, the software library of functions, in
MATLAB format, Mathworks Inc., for the determination
of USM coordinates is also provided  [http://bioinformat-
ics.musc.edu/~jonas/usm/] .

Additional measures of similarity can be derived for spe-
cific practical purposes using bi-directional and unidirec-
tional d values. For example, the use of docking
algorithms to align sequences would benefit from a meas-
ure with a maximum value in the center of the similar seg-
ments. This could be provided by defining a compounded
similarity measure, Hc, as suggested in equation 12. The
behavior of Hc, which would be obtained by the overesti-

Figure 4
Cumulative distribution of bi-directional similarity, D, between the two stanzas and comparison of genomic and proteomic
sequences of E. coli threonine gene A, thrA (2463 base pairs for the genomic sequence and 820 aminoacids for the proteomic
sequence), with B, thrB (933 base pairs for the genomic sequence and 310 aminoacids for the proteomic sequence). The null
model expectation, that of uniform random distribution of units, is represented by dashed lines, obtained using Eq. 11. for n =
2 (half dimensionality of USM state space for DNA) and n = 4.3 (half dimensionality of USM state space for proteins, n = 4.32,
and for the two stanzas, n = 4.25). The solid lines represent the actual cumulative distribution of D values.
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mated value of dc, is illustrated for the two test stanzas in
Figure 2.d.

The detection of similar segments in arbitrary sequences
using D becomes very effective as the length of the similar
segment increases. This was clear in the distribution of
over-determination in Fig. 3 but it is even more so when
the distances between sequences with homologous seg-
ments are represented. In figure 4 the distances between
the two stanzas are represented alongside the distances to
be expected if no homology existed, apart from the coin-

cidental (random null model, using Eq. 11). It can be ob-
served for the comparison of the two stanzas (Fig. 4, gray
lines) that H values above 4 units occur with higher fre-
quency than allowed by the random distribution model,
reflecting the presence of real homologous segments (sim-
ilar words).

USM of biological sequences
The representation of biological information as discrete
sequences is dominated by the fact that genomes are se-
quences of discrete units and so are the products of its
transcription and translation. However, not all biological
sequences are composed of units that are functionally
equally distinct from each other, as is the case of proteom-
ic data and Multi-locus sequence typing [MLST, 4]. To
avoid the issue of unit inequality and highlight the gener-

Figure 5
Comparison of uni-directional and bi-directional USM implementations for DNA sequences. The similarity matrices for,
respectively, df and D values between two portions of E. coli K-12 MG1655 threonine gene A (thrA, genome positions 337–
2799) and threonine gene B (thrB, genome positions 2801–3733) are presented. The numbers in the axis identify the position in
the gene. Actual values of df and D are shown for the framed region on the table to the right. a) The df values were obtained by
a unidirectional implementation of the USM procedure (Eq. 4). By comparing this figure with a similar analysis reported previ-
ously [12] for the same sequences (Fig. 10 of that report) it can be seen that they are nearly indistinguishable, even if the exact
values vary. The equivalence between unidirectional USM for n = 2 and CGR highlights the property that CGR is a special case
of USM. The fact that the latter can be implemented for any value of n or any number of unique units justifies the Universal
naming; b) In this plot the same sequences were compared using bidirectional USM, and, accordingly, generate a matrix of D
values (Eq.8, 11). It is clearly apparent, and as already noted for Figure 2c, that D-similarity between any two homologous units
is an estimate of the length of the entire homologous segment.

a) df
G TATTTTTGCCGAACTTTTGACGGGACTCGCCGCC T

A
T
C
A
G

T
G
C
T
G
G
G

A
G
C
G
T
T
T
T
T
G
C
C
A
G
G
A
A
C
T
G
G
G

TrhA 206-240

T
r
h
B
 
1
9
6
-
2
3
0 A T T T T T G C C G

0 .4 0 .3 0 .2 0 .1 0 .1 0 .1 1 . 2 2 .4 1 .2 4 . 0 G

1 .3 1 .4 1 .3 1 .2 1 .1 1 .1 2 . 8 1 .5 0 .7 1 . 1 T

1 .0 2 .3 2 .4 2 .3 2 .2 2 .1 1 . 9 0 .9 0 .6 0 . 5 T

0 .9 2 .0 3 .3 3 .4 3 .3 3 .2 1 . 4 0 .7 0 .4 0 . 3 T

0 .9 1 .9 3 .0 4 .3 4 .4 4 .3 1 . 2 0 .5 0 .3 0 . 2 T

0 .9 1 .9 2 .9 4 .0 5 .3 5 .4 1 . 1 0 .5 0 .2 0 . 1 T

0 .8 1 .2 1 .1 1 .0 1 .0 1 .0 6 . 4 1 .0 0 .4 1 . 2 G

0 .8 0 .6 0 .5 0 .4 0 .4 0 .4 1 . 0 7 .4 2 .0 2 . 5 C

0 .5 0 .3 0 .3 0 .2 0 .2 0 .2 0 . 4 2 .0 8 .4 1 . 4 C

1 .7 0 .8 0 .4 0 .3 0 .3 0 .2 0 . 2 1 .4 1 .2 1 . 0 A

1.7 1.3 0.8 0.6 0.5 0.5 1.7 1.0 0.7 2.5

1.1 2.7 2.3 1.8 1.6 1.5 2.8 1.5 0.7 2.2

0.9 2.1 3.7 3.3 2.8 2.6 1.6 1.2 0.6 1.4

0.8 1.9 3.1 4.7 4.3 3.8 1.3 1.1 0.5 1.1

0.7 1.8 2.9 4.1 5.7 5.3 1.1 1.0 0.4 1.0

0.6 1.7 2.8 3.9 5.1 6.7 1.0 1.0 0.4 0.9

0.7 1.7 1.6 1.2 1.1 1.0 7.7 1.0 0.4 1.4

1.2 2.4 1.5 1.2 1.1 1.0 1.0 8.7 2.0 1.7

0.9 1.2 0.7 0.6 0.5 0.5 0.4 2.0 9.7 1.2

1.9 0.8 0.5 0.3 0.3 0.2 0.2 1.4 1.2 1.0

b) D

G TATTTTTGCCGAACTTTTGACGGGACTCGCCGCC T
A
T
C
A
G
T
G
C
T
G
G
G
A
G
C
G
T
T
T
T
T
G
C
C
A
G
G
A
A
C
T
G
G
G

TrhA 206-240

T
r
h
B
 
1
9
6
-
2
3
0 A T T T T T G C C G

0 .4 0 .3 0 .2 0 .1 0 .1 0 .1 1 .2 2 .4 1 .2 4 .0 G

1 .3 1 .4 1 .3 1 .2 1 .1 1 .1 2 .8 1 .5 0 .7 1 .1 T

1 .0 2 .3 2 .4 2 .3 2 .2 2 .1 1 .9 0 .9 0 .6 0 .5 T

0 .9 2 .0 3 .3 3 .4 3 .3 3 .2 1 .4 0 .7 0 .4 0 .3 T

0 .9 1 .9 3 .0 4 .3 4 .4 4 .3 1 .2 0 .5 0 .3 0 .2 T

0 .9 1 .9 2 .9 4 .0 5 .3 5 .4 1 .1 0 .5 0 .2 0 .1 T

0 .8 1 .2 1 .1 1 .0 1 .0 1 .0 6 .4 1 .0 0 .4 1 .2 G

0 .8 0 .6 0 .5 0 .4 0 .4 0 .4 1 .0 7 .4 2 .0 2 .5 C

0 .5 0 .3 0 .3 0 .2 0 .2 0 .2 0 .4 2 .0 8 .4 1 .4 C

1 .7 0 .8 0 .4 0 .3 0 .3 0 .2 0 .2 1 .4 1 .2 1 .0 A

1.7 1.3 0.9 0.8 1.0 1.7 2.0 0.3 0.2 2.7

1.1 12.3 7.1 4.9 3.5 2.3 2.5 0.8 0.3 1.4

1.0 6.8 12.3 7.1 4.9 3.5 1.4 0.5 0.1 0.7

0.9 5.0 6.8 12.3 7.1 4.9 1.2 0.4 0.1 0.4

1.0 3.6 5.0 6.8 12.3 7.1 1.2 0.5 0.2 0.4

1.4 2.4 3.6 5.0 6.8 12.3 1.8 0.7 0.4 0.7

2.9 1.5 1.3 1.1 1.2 1.7 12.3 1.3 1.3 2.4

1.6 1.5 0.7 0.5 0.4 0.6 1.1 12.3 3.4 1.4

1.6 0.5 0.1 0.0 0.0 0.2 0.8 2.9 12.3 1.6

2.0 0.0 0.0 0.0 0.0 0.0 0.7 0.8 1.1 2.6

H h h

D d d

c f b

c f b

= ⋅

= ⋅ +
( )

j
Eq.12
Page 9 of 11
(page number not for citation purposes)



BMC Bioinformatics 2002, 3 http://www.biomedcentral.com/1471-2105/3/6
al applicability of the USM procedure, stanzas of a poem
were used to illustrate the implementation instead. Never-
theless the original motivation of analyzing biological se-
quences is now recalled.

In the preceding report the authors have illustrated the
properties of unidirectional n-metric estimation of similar-
ity for the threonine operon of E. coli[12]. The same two
two regions of thrA and thrB sequences of E. coli K-12
MG1655 are compared in Figure 5 to highlight the ad-
vancement achieved by USM. It should be recalled that
the particular dimensionality of DNA sequences, n = 2, al-
lows a very convenient unidirectional bi-dimensional rep-
resentation, which is in fact the Chaos Game
Representation procedure (CGR) [5]. Consequently, CGR
is a particular case of USM, obtained when n = 2 and only
the forward coordinates are determined. This can also be
verified by comparing Figure 5a with a similar representa-
tion reported before [12], obtained with the same data us-
ing CGR [Fig. 10 of that report]. The advantageous
properties of full (bi-directional) USM become apparent
when Fig. 5a is compared with Fig. 5b. It is clearly appar-
ent for bi-directional USM (Fig. 5b) that all pair-wise com-
parisons of units of identical segments now have the same
D values. This coverts any individual homologous pair-
wise comparison into an estimation of the length of the
entire similar segment. The conservation of statistical
properties by the distances obtained, D, can also be con-
firmed by comparing observed values with the corre-
sponding null models (Fig. 4). For the analysis of this
figure it is noteworthy to recall that the statistical proper-
ties of prokaryote DNA are often undistinguishable from
uniform randomness [12,18,19]. The genomic sequence
of the first gene of the threonine operon of E. coli, thrA, is
compared with that of the second, thrB. The distribution
of the resulting D values is represented in figure 4 (solid
black line), alongside with the null model for that dimen-
sionality (Eq. 11, with n = log2(4) = 2, gray dotted line).
The genomic sequences of thrA and thrB were translated
into proteomic sequences using SwissProt's on line trans-
lator, applied to the 5'3' first frame  [http://www.ex-
pasy.ch/tools/dna.html] . Similarly, the distribution of D
values for the comparison of the proteomic thrA and thrB
sequences is also represented in Figure 4, alongside with
the null model, Eq. 11, for its dimensionality (n = log2(uu
= 20 possible aminoacids) = 4.32), which is graphically near-
ly undistiguishable from that of the comparison between
the stanzas, with n = log2(uu = 19 possible letters) = 4.25
(dotted gray line for the rounded value, n = 4.3). Both the
genomic and the proteomic distribution of D values is ob-
served to be contained by the null model, unlike the com-
parison between the stanzas discussed above, where the
existence of structure is clearly reflected by its distribution.
The genomic and proteomic of thrA and thraB, used to il-

lustrate this discussion, are provided with the web-based
implementation of USM (see Methods for URL).

Conclusions
The mounting quantity and complexity of biological se-
quence data being produced [22] commands the investi-
gation of new approaches to sequence analysis. In
particular, the need for scale independent methodologies
becomes even more necessary as the limitations of con-
ventional Markov chains are increasingly noted [6]. These
limitations are bound to become overwhelming when sig-
nals such as succession schemes of the expression of over
30,000 human genes [23] become available. This particu-
lar signal would be conveniently packaged within a 30 di-
mension USM unit block (n = ceil(log2(3 103) = 15).

In addition, the advances in statistical mechanics for the
study of complex systems, particularly in non-linear dy-
namics, have not been fully utilizable for the analysis of
sequences due to the missing formal link between discrete
sequences and trajectories in continuous spaces. The
properties of USM reported above suggest that this may
indeed be such a bridge. For example, the embedding of
dimensions, a technique at the foundations of many time-
series analysis techniques offers a good example of the
completeness of USM representation of sequences. By em-
bedding the forward and backward coordinates separate-
ly, at the relevant memory length, the resulting embedded
USM is exactly what would be obtained by applying USM
technique to the embedded dimeric sequence itself.

Methods
Computation
The algorithms described in this manuscript were coded
using MATLAB™ 6.0 language (Release 12), licensed by
The MathWorks Inc  [http://www.mathworks.com] . An
internet interface was also developed to make them freely
accessible through user-friendly web-pages  [http://bioin-
formatics.musc.edu/~jonas/usm/] .

Source code
In order to facilitate the development of sequence analysis
applications based on the USM state space, the software li-
brary of functions written to calculate the USM coordi-
nates is provided with the web-based implementation
(see address above). The code is provided in MATLAB for-
mat, which is general enough as to be easily ported into
other environments. These functions process sequences
provided as text files in FASTA format. In addition to the
functions, the test datasets and a brief readme.txt docu-
mentation file are also included.

Test data
The USM mapping proposed is applicable to any discrete
sequence, even if the primary goal is the analysis of bio-
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logical sequences. For ease of illustration and to empha-
size USM's general validity, the test dataset used to
describe implementation of the algorithm consists of two
stanzas of a Poem by Wendy Cope, "The Uncertainty of
the Poet" [14]. In the Discussion section, USM was also
applied to the DNA sequence of the threonine operon of
Escherichia coli K-12 MG1655, obtained from the Univer-
sity of Winsconsin E. coli Genome Project  [http:/www.ge-
netics.wisc.edu] , and to its 5'3' first frame proteomic
translation obtained by using SwissProt on line translator
[http://www.expasy.ch/tools/dna.html] . The three test se-
quence datasets are also included in the web-based USM
application.
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