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Abstract
Background: The early detection of ovarian cancer has the potential to dramatically reduce
mortality. Recently, the use of mass spectrometry to develop profiles of patient serum proteins,
combined with advanced data mining algorithms has been reported as a promising method to
achieve this goal. In this report, we analyze the Ovarian Dataset 8-7-02 downloaded from the
Clinical Proteomics Program Databank website, using nonparametric statistics and stepwise
discriminant analysis to develop rules to diagnose patients, as well as to understand general
patterns in the data that may guide future research.

Results: The mass spectrometry serum profiles derived from cancer and controls exhibited
numerous statistical differences. For example, use of the Wilcoxon test in comparing the intensity
at each of the 15,154 mass to charge (M/Z) values between the cancer and controls, resulted in the
detection of 3,591 M/Z values whose intensities differed by a p-value of 10-6 or less. The region
containing the M/Z values of greatest statistical difference between cancer and controls occurred
at M/Z values less than 500. For example the M/Z values of 2.7921478 and 245.53704 could be used
to significantly separate the cancer from control groups. Three other sets of M/Z values were
developed using a training set that could distinguish between cancer and control subjects in a test
set with 100% sensitivity and specificity.

Conclusion: The ability to discriminate between cancer and control subjects based on the M/Z
values of 2.7921478 and 245.53704 reveals the existence of a significant non-biologic experimental
bias between these two groups. This bias may invalidate attempts to use this dataset to find
patterns of reproducible diagnostic value. To minimize false discovery, results using mass
spectrometry and data mining algorithms should be carefully reviewed and benchmarked with
routine statistical methods.

Background
The early diagnosis of ovarian cancer has the potential to
dramatically reduce the mortality associated with this dis-
ease. Recently, the use of surface-enhanced laser desorp-

tion/ionization (SELDI) time-of-flight mass spectrometry
profiling of patient serum proteins, combined with
advanced data mining algorithms, to detect protein pat-
terns associated with malignancy, has been reported as a
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promising field of research to achieve the goal of early
cancer detection [1–5]. Several reports have detailed the
ability of this proteomic method to diagnose the differ-
ence between ovarian cancer [6–8], prostate cancer [9–
13], and bladder cancer [13,14]. Much of the effort in
these analyses has focused on the use of a variety of data
mining tools such as the evaluation of prostate cancer
using peaks in the mass to charge (M/Z) region between 2
K and 40 K combined with boosted decision tree analysis
[10] to try to detect patterns that allow the diagnosis of
cancer versus non-cancer. The use of similar technology to
evaluate bladder cancer has also been reported [13,14].
Thus, this field represents an active area of current
research. For example, a recent report by the Clinical Pro-
teomics Program Databank has demonstrated that the use
of genetic algorithms coupled with clustering analysis has
resulted in rule sets that can predict ovarian cancers
(including samples from patients with stage 1 disease)
with 100% sensitivity and 96% specificity [6]. These
results have been extended by the same group to include
a larger series of ovarian cancer patients as well as prostate
cancer patients [7,9]. The Clinical Proteomics Program
Databank has provided three sets of ovarian cancer data to
the scientific community without restriction. These data
sets include Lancet Ovarian Data 2-16-02 used in the
study noted above [6]. This study consisted of a total of
100 control, 100 cancer, and 16 benign disease samples
run on a Ciphergen H4 ProteinChip array (since discon-
tinued). The samples were manually processed. The data
was posted after baseline subtraction. The second data set,
Ovarian Dataset 4-3-02 consist of the same samples as the
first but the samples were run on a Ciphergen WCX2 Pro-
teinChip array. The samples were manually prepared and
the data was posted with baseline subtraction. A model
diagnostic rule based on this dataset is published on the
website, but no data is given regarding the rules sensitivity
or specificity. In this report, we analyze the third Ovarian
Dataset 8-7-02 and corresponding sample information
downloaded from the Clinical Proteomics Program Data-
bank website [7]. This set of data consists of serum pro-
files of 162 subjects with ovarian cancer and 91 non-
cancer control subjects. The cancer group may be further
divided into 28 stage 1 patients, 20 stage 2 patients, 99
stage 3 patients, 12 stage 4 patients, and 3 no stage speci-
fied patients. For each subject a set of data consisting of
intensities at 15,154 distinct M/Z values ranging from
0.0000786 to 19995.513 was available for analysis. This
dataset was constructed using the Ciphergen WCX2 Pro-
teinChip array. All the steps of preparing the chips for
sample analysis were preformed robotically, and the raw
data without baseline subtraction was posted for down-
load. A model rule claiming 100% sensitivity and specifi-
city is also given. Additional details of experimental data
collection may be found at the Clinical Proteomics Data
Bank [5]. In addition to the various methods of preparing

and running the samples on the mass spectrometer, the
optimal steps in processing the raw data from the mass
spectrometer for further analysis have not been standard-
ized and remain a fertile area for investigation [15]. We
choose the deliberately simple strategy of using Wilcoxon
test on the raw data to better understand the underlying
properties of the data set. We consider this simple
approach a "benchmark method" to which other methods
can be compared. Further, we use Wilcoxon test and step-
wise discriminant analysis on a training subset consisting
of 80 cancer patients and 45 controls, randomly chosen
from the original data set, to develop rules to classify a test
set consisting of the remaining cancer and control sub-
jects. Disease classifiers of great sensitivity and specificity
could be readily constructed by visual inspection and
manual binning of M/Z values based on the p-values of
the Wilcoxon test combined with classical stepwise discri-
minant analysis. The ability of these rules to classify dis-
ease and normal samples were comparable to the model
rule published on this dataset at the Clinical Proteomics
Program Databank website which was developed using a
proprietary genetic algorithm. Further, in examining all
M/Z values, the M/Z values that discriminated best
between ovarian cancer and control were all found to be
less than 500, an area of the spectrum often discarded as
noise [10]. These findings are useful for several reasons.
First, the statistical methods used in this study are readily
available, widely understood, and can be cheaply imple-
mented. Secondly, a vast amount of mathematical
research and practical experience underlies their interpre-
tation. Finally, they can be used to discover unexpected
patterns present in the data set. These patterns may be
missed by machine learning methods that are narrowly
focused on diagnostic classification, and do not present
the researcher with a broad overview of the data. As a
result of these traditional studies, a better understanding
of the weaknesses and possible strengths of serum pro-
teomic profiling becomes apparent.

Results and Discussion
Based on the initial training set, the intensity at each of the
consecutive 15,154 M/Z values was first compared using a
two-sided Wilcoxon test (see methods) Figure 1 shows the
pattern of the resulting two-sided Wilcoxon test p-values
generated on a training set consisting of 80 cancer patients
and 45 controls randomly chosen from the larger data set,
with the M/Z values on the x-axis and the negative loga-
rithm (base 10) of the Wilcoxon test p-values on the y-
axis. There are a total of 685 distinct M/Z values differing
between the cancer and control populations with a p-
value of less than 10-6. Also of note in this distribution is
that all M/Z values with a Wilcoxon p-value less than 10-

12 are found at M/Z values of less than 500. The signifi-
cance of this finding will be discussed further below.
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Training Set Wilcoxon p-values by M/Z valueFigure 1
Training Set Wilcoxon p-values by M/Z value. Wilcoxon p-values between normal and cancer members of the training 
set were calculated for every M/Z value. The Y axis represents negative the Log (base 10) of the p-value. Panel A: The X axis 
represents M/Z values between 0 and 20,000. Panel B: The X axis represents M/Z values between 0 and 1000. The following 
control spectra were used for the initial training set: daf-0181 daf-0182 daf-0183 daf-0188 daf-0189 daf-0192 daf-0193 daf-0195 
daf-0196 daf-0197 daf-0198 daf-0200 daf-0201 daf-0202 daf-0205 daf-0207 daf-0210 daf-0211 daf-0212 daf-0217 daf-0218 daf-
0220 daf-0223 daf-0226 daf-0230 daf-0234 daf-0235 daf-0241 daf-0242 daf-0244 daf-0247 daf-0248 daf-0250 daf-0251 daf-0252 
daf-0258 daf-0259 daf-0261 daf-0262 daf-0263 daf-0267 daf-0269 daf-0270 daf-0279 daf-0280 The following cancer spectra 
were used for the initial training set. daf-0601 daf-0602 daf-0606 daf-0608 daf-0609 daf-0612 daf-0617 daf-0618 daf-0619 daf-
0620 daf-0621 daf-0625 daf-0627 daf-0632 daf-0633 daf-0634 daf-0635 daf-0636 daf-0643 daf-0644 daf-0651 daf-0654 daf-0655 
daf-0656 daf-0657 daf-0661 daf-0662 daf-0663 daf-0664 daf-0666 daf-0667 daf-0669 daf-0673 daf-0675 daf-0682 daf-0683 daf-
0687 daf-0688 daf-0691 daf-0692 daf-0697 daf-0698 daf-0701 daf-0702 daf-0703 daf-0705 daf-0706 daf-0707 daf-0708 daf-0709 
daf-0716 daf-0718 daf-0719 daf-0726 daf-0727 daf-0729 daf-0731 daf-0733 daf-0735 daf-0737 daf-0740 daf-0744 daf-0751 daf-
0752 daf-0753 daf-0754 daf-0755 daf-0756 daf-0757 daf-0758 daf-0760 daf-0761 daf-0762 daf-0764 daf-0768 daf-0770 daf-0773 
daf-0776 daf-0778 daf-0780
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In order to determine if these data could be used to sepa-
rate normal from cancer, we used three strategies to
develop rules for diagnostic classification. First, all data
points regardless of M/Z value were sorted from most to
least significant (according to the two-sided Wilcoxon test
p-values) and the 100 M/Z values with the lowest p-values
were chosen. These 100 M/Z values were then separated
into distinct bins by sorting on consecutive M/Z and
requiring a separation of at least 1 M/Z value to start the
next bin (12 bins were detected in this process). The M/Z
value with the smallest p-value in each bin was selected.
The results are shown in Table 1. Next, stepwise discrimi-
nate analysis was performed, and 7 M/Z values were
selected for Rule 1 (of note, all but one M/Z value was
below 500). When this rule was applied to the entire data
set, test and training inclusive, all 162 cancer and 91 con-
trols were appropriately classified without error for 100%
sensitivity and specificity. Given that the interpretation of
low M/Z values maybe problematic, we next focused
attention on a set of rules which met the following
requirements. First, the M/Z value had to exceed 2000,
and the Wilcoxon test P-value had to be less than 10-6. A
total of 462 M/Z values from the training set met these cri-
teria. As shown in Table 2, a total of 30 bins were detected
by sorting on consecutive M/Z values as above, and the
most significant p-value from each bin was selected for
stepwise discriminant analysis. Thirteen M/Z values were
retained in Rule 2. In the training set, one subject in the
cancer group was misclassified as normal and one in the
control group was misclassified as cancer. In the test set,
two subjects from the control group were misclassified as
cancer. Therefore for the test set, the sensitivity was 82/82
or 100% and the specificity was 43/45 or 95.7%. For the

test and training set combined, one subject was misclassi-
fied in the cancer group as normal and three subjects were
misclassified in the control group as cancer. Thus for this
rule the overall sensitivity was 161/162 or 99.4 % and its
overall specificity was 88/91 or 96.7 %. Finally, Rule 3 was
constructed using the 30 M/Z values in Rule 2 combined
with four M/Z values 409.75936, 418.11364, 435.0751,
and 464.3617 (all also used in Rule 1). This was done
because prior studies have indicated the possible presence
of low molecular weight biomarkers in ovarian cancer
(see below). When this set of M/Z values was subjected to
stepwise discriminant analysis, seven variables at M/Z val-
ues of 418.1136, 435.0751, 464.3617, 4003.645,
4906.962, 6599.8232, and 6801.495 were retained. When
Rule 3 was applied to the entire data set, test and training
inclusive, all 162 cancer and 91 controls were appropri-
ately categorized without error for 100% sensitivity and
specificity. The actual classification schema for all three
rules is shown in Table 3. The results presented with these
three rules were all achieved in the first attempt. No effort
was made to further optimize these rules. We next inter-
changed the test and training sets and used the same three
rule development strategies. This resulted in:

1) Rule 1 with M/Z values of 2.8234234, 222.41828,
410.13727, 417.73207, 435.07512, 4027.2999, and
8035.0581, achieved 100% sensitivity and specificity on
both the test and training sets.

2) Rule 2 with M/Z values of 3676.3951, 3937.7816,
4003.6449, 4440.095, 5269.0367, 10511.699, 14182.82,
and 17019.433. This rule achieved 100% sensitivity and
specificity on the training set. However sensitivity and

Table 1: Development of Diagnostic Rule 1.

Consecutive M/Z M/Z Value Bin Range
Consecutive M/Z

Wilcoxon p-value
Training Set

Rule 1 Wilcoxon p-value
 Entire Data Set

6782 4003.645 6781–6783 1.8685E-12 S 8.98721E-27
2311 464.3617 2308–2314 3.6867E-17 S 6.76511E-34
2237 435.0751 2234–2242 6.822E-18 S 3.895E-37
2193 418.1136 2190–2196 5.6991E-18 S 3.91174E-34
2171 409.7594 2170–2172 3.6168E-12 3.28383E-25
1736 261.8864 1734–1739 1.9206E-18 S 1.22566E-35
1681 245.53704 1673–1691 2.2891E-19 S 7.24111E-38
1600 222.4183 1598–1608 1.8911E-16 2.01896E-33
1594 220.7513 1593–1596 2.3886E-14 5.52587E-30
576 28.70048 562–582 6.82E-12 2.60148E-24
544 25.58989 541–547 1.9179E-14 8.67451E-30
181 2.7921478 181–183 1.2929E-13 S 1.21243E-27

Consecutive M/Z is the numerical order of the M/Z value between 1 and 15,154. The M/Z values were sorted by p-values and the lowest 100 were 
arbitrarily selected. The M/Z values were then binned as described in the text, and the most significant consecutive M/Z score from each of the 12 
bins was selected. M/Z values that were selected by the stepwise discriminant analysis are designated a "S" in the Rule 1 column. The Wilcoxon p-
values calculated from the training set (used to derive the rule) and calculated from the entire data set are shown in their respective columns.
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specificity fell on the test set to 96.25% and 91.11%
respectively.

3) Rule 3 with M/Z values of 417.73207, 435.07512,
2666.361, 2674.0769, 3937.7816, 3991.8435,
4821.0481, 4839.2088, 5269.0367, 7627.1183,
14182.82, and 17019.433. This rule achieved 100% sen-
sitivity and specificity on the training set. On the test set it
achieved a sensitivity of 100% and a specificity of 97.8%.
We have used a strategy identical to that used in Rule 1 to
further analyze this data. First, a randomly ordered list of
cancer spectra and a randomly ordered list of control spec-
tra were prepared. Next, we assigned the first 20% of each
list to a test set and the remaining 80% to a training set.
The process was repeated five times assigning the next
consecutive 20% of each list for the test set on each occa-
sion. The results were very similar to those above with all
five rules achieving 100% sensitivity and specificity. This
data is posted as additional data file Supplement1.xls.

The presence of statistically significant signals at M/Z val-
ues less than 500 was unexpected as some investigators, in
their systems, conservatively disregard data beneath M/Z
values of 2000 as possible noise [12]. To further investi-
gate this, we first repeated the calculation of 2-sided Wil-
coxon test p-values at each of the 15,154 M/Z values using
the entire data set (see Figure 2). The trends noted in the
training set were present in the entire data set, although
with increased statistical significance. For example 3,591
of the 15,154 M/Z values had mean intensities that varied
between cancer and control with a p-value of 10-6 or less.
In a sample of a panel consisting of 15,154 independent
random sets of measurements split between cancer and
control, using Wilcoxon test 15,154 times with an individ-
ual significance level of 10-6, the number of false positives
is expected to be 0.015. It is very small. Alternatively, in
the above setting the chance that at least one of the 15,154
measurements would have a p-value less than 10-6 is
approximately 1.5%. Thus it is extremely unlikely that a

Table 2: Development of Diagnostic Rule 2.

Consecutive M/Z M/Z Wilcoxon p-value Rule 2

5534 2665.397 4.06E-09 S
6372 3534.072 1.26E-07
6753 3969.469 4E-07 S
6772 3991.844 6.87E-09 S
6782 4003.645 1.87E-12 S
6802 4027.3 6.21E-10 S
6814 4041.526 1.86E-07
6823 4052.213 8.33E-07
6827 4056.967 9.38E-07 S
6836 4067.673 3.9E-07
6852 4086.742 4.11E-07
6934 4185.17 6.56E-09
7383 4744.889 1.71E-07 S
7449 4830.124 2.89E-07
7468 4854.802 8.22E-07
7508 4906.962 5.45E-07
7606 5035.93 1.41E-07
8707 6599.823 4.96E-07
8839 6801.495 6.46E-09 S
9439 7756.437 2.66E-07
9457 7786.054 4.58E-07 S
9483 7828.934 6.23E-07
9607 8035.058 4.94E-10
9793 8349.266 2.04E-08 S
12910 14511.46 6.4E-07
13036 14796.14 3.95E-07 S
13113 14971.48 1.76E-07
13201 15173.13 7.88E-09
13537 15955.47 3.13E-07 S
13987 17034.05 4.53E-09 S

The M/Z values were sorted by M/Z values greater than 2,000 and p-values less than 10-6. Consecutive M/Z is the numerical order of the M/Z value 
between 1 and 15,154. The M/Z values were then binned as described in the text, and the most significant consecutive M/Z score from each of the 
30 bins was selected. M/Z values that were selected by the stepwise discriminant analysis are designated "S" in the rightmost column.
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false positive would occur by chance alone in a 15,154
member test set. The finding of significant signals at M/Z
values less than 500 is consistent with two of the seven M/
Z values used in the model rule published at the Clinical
Proteomics Program Databank website that was devel-
oped on the same data set (see Table 4), specifically M/Z
values 435.46452 (p-value = 9.08 × 10-37 2nd most signifi-
cant of 9 values in its bin) and 465.56916 (p-value = 2.50
× 10-28 6th most significant of the 7 M/Z values found in its
bin) [7]. These values correspond to M/Z values of
435.0751 and 464.3617 used in Rule 1. As shown in Fig-
ure 3, each of these two pairs of M/Z values are surpris-
ingly effective at separating the 162 cancer subjects from
the 91 control subjects with an advantage noted with the
first pair (compare panel A with B). Even more interesting
is the finding that significant M/Z values found in the first
Rule 1 included the M/Z values of 2.7921478 and
245.53704. As shown in Figure 3, panel C, these two val-
ues can also significantly separate the 162 cancer subjects
from the 91 control subjects. The interpretation of these
values is problematic, given the low M/Z values involved.
In order to evaluate these findings, we first investigated

whether data normalization as described at the Clinical
Proteomics Data Bank [5] could influence the Wilcoxon
test p-values found using the raw data (see methods). Sev-
eral points were chosen, and no effect was noted on the p-
values (see Table 5). We further analyzed several selected
low M/Z values, less than 500. In this process, the cancer
and control data were pooled. The pooled data were ran-
domly partitioned between a set containing 91 members
and a set containing 162 members. The Wilcoxon test was
then run on the randomized set. The process was repeated
10,000 times, and the lowest p-values were chosen. As
shown in Table 5, the lowest p-values generated by the
permutation process were on the order of 0.0001, as
expected given the number of permutations tested. Thus,
it is highly unlikely that either data normalization or a
chance distribution could have accounted for the highly
significant p-values noted in the M/Z region less than 500.
Finally, it is interesting to note that the remaining five val-
ues in the Clinical Proteomics Program Databank model
rule all have M/Z values greater than 2000 and relatively
high p-values. Specifically the remaining values are (note
that the p-values are calculated from the entire data set):

Table 3: Classification rules

Classification Rule 1 based on the intensities at the 7 M/Z values:
Let
a1 = (1303,5.66302,5.48787.19.60743,-8.88828,-30.47983,-0.34510)',
a2 = (1413,6.44028,6.36701,20.84677,-11.04580,-32.04436,0.03553)',
c1 = -2984,
c2 = -3521.
Let X be the vector that represents the intensities from a subject at the 7 M/Z values:
2.7921478, 245.53704, 261.8864, 418.1136, 435.0751, 464.3617, 4003.645. Classify X into the cancer group if
(a1 - a2)' X + (c1 - c2) ≥ 0;
Otherwise classify X into the control group.
Classification Rule 2 based on the intensities at the 13 M/Z values:
Let
a1 = (24.58884,-15.09887,0.95772,-3.16411,-10.93854,31.7966,8.11259,6.59602,-53.15727, -7.49888,149.18784,399.67258,112.83481)',
a2 = (26.26343,-19.06632,1.07975,-1.89482,-9.83188,29.47779,7.69470,8.54597,-49.99409, -7.32192,142.08982,389.53254,116.55493)',
c1 = -1386,
c2 = -1312.
Let X be the vector that represents the intensities from a subject at the following 13 M/Z values: 2665.397, 3969.469, 3991.844, 4003.645, 4027.3, 
4056.967, 4744.889, 6801.495, 7756.437, 8349.266, 14796.14, 15955.47, 17034.05.
Classify X into cancer if
(a1 - a2)' X + (c1 -c2) ≥ 0.
Otherwise classify X into control.
Classification rule #3 based on 7 M/Z values:
Let
a1 = (6.04377,3.42186,-1.99804,0.23374,2.46593,-1.87559,17.37384)',
a2 = (7.35920,1.86527,-1.32486,0.92386, 1.18336,4.76619,9.95349)',
c1 = -218.19592,
c2 = -254.33039.
Let X be the column vector that represents the intensities from a subject at the following 7 M/Z values:
418.1136, 435.0751, 464.3617,4003.645, 4906.962, 6599.823, 6801.495.
Classify X into cancer if
(a1 - a2)' X + (c1 - c2) ≥ 0.
Otherwise classify X into control.
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Wilcoxon P-Values by M/Z Value for Entire DatasetFigure 2
Wilcoxon P-Values by M/Z Value for Entire Dataset .Wilcoxon p-values between normal and cancer members of the 
entire dataset set were calculated for every M/Z value. The Y axis in negative the Log base 10 of the p-value. Panel A: the x-axis 
represents M/Z from 0 to 20,000. Panel B: the x-axis represents M/Z from 0 to 1,000.
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Diagnostic value of Low M/Z valuesFigure 3
Diagnostic value of Low M/Z values. Scatter plots of the 162 cancer subject versus 91 normal subjects. Panel A represents 
2 M/Z values from the Clinical Proteomics Program Database while Panel B and Panel C are both derived from Rule 1. See text 
for details.
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1) M/Z = 2760.6685, p = 0.24

2) M/Z = 19643.409, p = 0.52

3) M/Z = 6631.7043, p = 9.0 × 10-4

4) M/Z = 14051.976, p = 1.8 × 10-8

5) M/Z = 3497.5508, p = 1.4 × 10-6

By contrast all the M/Z values used in Rule 1 have p-values
less than 10-26 (compare Table 1 with Table 4).

There are several non-exclusive explanations for the pres-
ence of significant P-values in M/Z region less than 500.
First, these may actually represent biomarkers that corre-
late with ovarian cancer. The disease process may influ-
ence the serum concentration of lipids, or other small
molecules that either bind to the chip directly or through
a complex formation with other macromolecules (e.g.,
binding to a receptor). For example, the lysophospholip-
ids represent a class of compounds that have an important
role in extracellular signaling. Lysophophatidic Acid
(LPA) is a member of this class of compounds, and its

plasma levels have been proposed as a potential
biomarker for ovarian cancer [16,17]. LPA is a family of
related molecules with molecular weights in the vicinity
of 400 to 600 Daltons, and a variety of LPA species has
been reported to be increased in malignant ascites from
patients with ovarian cancer as detected by electrospray
ionization mass spectrometry (ESI-MS) [18]. LPA related
species have also been reported to be increased in plasma
samples from patients with ovarian cancer using a combi-
nation of thin layer chromatography (to isolate an "LPA
band" from patient plasma) followed by ESI-MS. This
study reported significant LPA increases in cancer samples
with increased intensities noted at M/Z values of 409,
433–437, 457, 481–482, 571, 599, and 619. This report
also reviews the evidence that these M/Z values are con-
sistent with LPA family members [19]. Figure 4 shows the
average intensities and p-values for both the cancer and
control groups in the region between M/Z values of 410 to
470. Among other features, an increase in the mean
intensity for cancers at a peak centered at an M/Z of 459 is
noted. However, also of note in this region are:

1) M/Z = 464.3617 with a p-value less than 6.8 × 10-35,
that correlates with a shoulder in a secondary peak at

Table 4: Clinical Proteomics Program Databank Example Ovarian Rule.

Consecutive M/Z Bin M/Z-Value P2_Wil

5632 2760.6685 0.239533474
15020 19643.409 0.521014657
2314 465.56916 2.49791E-28
8728 6631.7043 9.00537E-4
12704 14051.976 1.79156E-08
2238 435.46452 9.07922E-37
6339 3497.5508 1.40316E-06

Consecutive M/Z values and Wilcoxon p-values based on the entire dataset for the rule present on the Clinical Proteomics Program Databank 
website.

Table 5: Normalization and Permutation Analysis of Low M/Z Values

M/Z Permutated P-Wilcoxon Normalized P-Wilcoxon Actual P-Wilcoxon

2.792148 8.30646E-4 1.2124E-27 1.21243E-27
25.58989 0.210484E-4 NT 8.67451E-30
245.537 0.571414E-4 NT 7.24111E-38
418.1136 1.99231E-4 NT 3.91174E-34
435.0751 3.34994E-4 3.895E-37 3.895E-37
464.3617 0.263008E-4 6.7651E-34 6.76511E-34
4003.645 0.292578E-4 NT 8.98721E-27
15526.93 2.079E-4 NT 0.741858713

Normalization and Permutation Analysis of Low M/Z Values Normalization and permutation analysis (smallest p-value of the 10,000 iterations per 
M/Z point tested) were carried out on selected M/Z points. See text for details. NT = Not tested.
Page 9 of 13
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P-values and Intensities for M/Z values between 410 and 470Figure 4
P-values and Intensities for M/Z values between 410 and 470. The p-values and mean intensities of cancer and control 
groups (entire set) for M/Z values between 410 and 470 are shown in panels A and B respectively. Selected data points are 
labelled with their M/Z values directly to the right of the points, see text for details.
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about 463, that is decreased in cancer patients (average
intensity 17.5 for cancer versus 23.6 for controls).

2) M/Z = 435.0751 with a p-value of less than 3.9 × 10-37,
that corresponds to a peak with increased intensity in can-
cer (average intensity 33 for cancer versus 25.5 for
controls).

3) M/Z = 417.73207 with a p-value less than 6.2 × 10-35,
that corresponds to a peak that is decreased in cancer
(average intensity 39.5 for cancer versus 47.4 for controls)

The identity of the molecules responsible for these differ-
ences cannot be determined from this data. However, it is
possible that in some cases they may relate to the LPA
family of molecules, or to alterations in proteins that bind
LPA family members.

Other explanations for the presence of statistically signifi-
cant bands of low M/Z include degradation products of
higher molecular weight macromolecules or a matrix
effect. For example, if a set of proteins exist that are
expressed at different levels between cancer and control
subjects but have a common domain, then a common
product ion of lower M/Z may be generated that would
represent a summation of all the changes in expression of
the group of proteins, and might thus have greater statis-
tical significance than the changes associated with any sin-
gle high M/Z value. Similarly, a set of low M/Z molecules
(e.g., energy-absorbing molecule or matrix) that interacts
differently in a protein environment that differs markedly
between cancer and control could hypothetically generate
a similar phenomenon. However, it is difficult to apply
any of the above explanations to the very low M/Z values
such as 2.7921478 and 245.53704, although in the last
case an extremely small organic molecule is possible.

Alternatively, there maybe some unexpected experimental
bias or systematic error that accounts for low M/Z discrim-
ination. This could occur at any experimental step, and
might include medication or lifestyle change that occurs
in patients who learn they have a cancer diagnosis,
variation in sample collection, processing and preserva-
tion, as well as bias introduced at the time of analysis. In
the case of LPA, increased plasma levels may be associated
with platelet activation. Another group trying to repeat the
observations of increased levels of LPA associated with
ovarian cancer concluded that there was no diagnostic
value in the assay, and attributed the discrepant findings
as possibly related to different sample centrifugation pro-
tocols used by the two groups to remove platelets from the
samples prior to analysis [20]. However, LPA continues to
be actively evaluated for its clinical utility [21].

Conclusions
Serum proteomic profiling is a new approach to cancer
diagnosis. However it confronts a challenging environ-
ment, as it combines measurement technologies that are
new in the clinical setting with novel approaches to
processing and interpreting high dimensional data. Fur-
ther, controlling large clinical studies can be challenging
even in more established settings. Nevertheless, it repre-
sents an advance in the ability to diagnose and under-
stand illness. The results presented in this study are useful
for several reasons. First, in regard to disease classification,
advanced data mining techniques should be bench-
marked against traditional methods when possible. Fur-
ther identical training sets should be defined for such a
comparison as results may very depending on the samples
chosen for inclusion in the training set. The development
of disease classifiers using routine analysis proved to be
straightforward, and resulted in excellent performance in
both the test and training sets (e.g. 100% sensitivity and
specificity for Rules 1 and 3 in the first training set). In
particular these preliminary data suggest that these two
rules may be specific enough to scale to larger population
trials without generating an unacceptably high false
positive rate. This study also confirms that a classifier
could be developed with M/Z values greater than 2000.
This indicates that information regarding the difference
between cancer and control is present throughout the
entire M/Z region studied, a result entirely consistent with
the observed Wilcoxon test p-values. Secondly, routine
analysis allows investigators to rapidly review the data for
their general trends, and correlate the findings with other
information. The findings of significant discrimination
between cancer and control groups at low M/Z values
indicates that attention should be focused in this region.
In particular, if experimental bias and noise effects can be
excluded, this region may prove to offer the optimum for
ovarian cancer diagnostic test development. On the other
hand, if bias cannot be excluded, the possibility must be
entertained that higher M/Z values may also have been
similarly affected. In order to address these issues, consid-
eration may be given to using mass spectrometry methods
with increased sensitivity in the low M/Z region. The
experimental conditions used to physically bind the
serum samples to the chip prior to analysis may also prove
critical, and should be consistent with those used in col-
lecting the current data set. Also, the possibility that the
changes in the low M/Z region may represent an additive
effect caused by differing protein environments between
cancer and normal may be approached by intentionally
spiking samples with panels of known proteins, and
determining if there is an effect on the spectra in the low
M/Z region. The use of internal standards to normalize
this type of experimental system in general may also be
considered. As with all clinical test development, confir-
mation of results in independent laboratories running
Page 11 of 13
(page number not for citation purposes)



BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/24
blinded samples will remain the gold standard in ruling
out the possible effects of bias, unless the sample set itself
contains the bias. Particular attention should be paid to
pre-analytic causes of bias that may influence the serum
proteome. In particular the coagulation and complement
systems should be considered as potential sources of
noise in this context, as both are activated during serum
sample collection and generate low molecular weight
products. These products are undesirable for two reasons.
First, if a putative tumor biomarker (e.g. LPA) is a member
of a pathway altered during serum sample collection,
changes between plasma levels of cancer and control sub-
jects may be obscured. Secondly, the generation of activa-
tion products may simply complicate the spectrum. Also,
sample collection practices should be rigorously defined,
and include submitting matched control and cancer sam-
ples from all centers participating in the study. Matching
for age and menopausal status should be considered. For
example, in the data set used in this study, the mean age
of the control group was 47 years and the cancer group 60
years. It is noteworthy that the average age of menopause
is approximately 51 years [22]. This may introduce a bias
in the results reported in this study as well as all others
derived from this dataset. Finally, the steps associated
with sample collection, processing, and binding to the
chip may represent a particularly fertile area for research.
Any combination of such steps may significantly alter the
molecular subset of the sample that can be successfully
analyzed.

However, the ability to discriminate between cancer and
control based on the M/Z values of 2.79 and 245.5 reveals
the presence of a significant experimental bias not related
to disease pathology, that likely involves machine noise
and matrix effects. This is particularly true of the M/Z
value at 2.79 which represents a bias of the mass spec-
trometer instrument itself. If this is the case the higher M/
Z regions may also be affected. These findings indicate
that any rule derived from this data set, including the ones
presented in this paper, may be detecting differences in
experimental bias and not disease pathology. Investiga-
tors in this field may minimize their chances of false dis-
covery by careful experimental design and by using
routine statistical methods to both overview the data (in
an intentional search for bias) as well as a benchmark for
comparison with other data mining algorithms.

Methods
A training set was formed by randomly sampling 45 spec-
tra out of the 91 controls and 80 spectra out of the 162
cancer cases (see Figure 1). Those spectra that were in the
original data set but not in the training set were consid-
ered in a 'test' set. Two-sided Wilcoxon test was used to
compare the intensity between the controls and cancers in
the training set at each of the 15,154 M/Z values. We then

selected a subset of the M/Z values with the lowest Wil-
coxon test p-values (see the Results section for details). We
sorted on consecutive M/Z values to get bins. A separation
of at least one M/Z value was required to start the next bin.
The lowest p-value in each bin was selected and the corre-
sponding M/Z value was used in stepwise discriminant
analysis to determine the subset of M/Z values that best
discriminated cancer from control in the training set. The
criteria were applied to the test data set, and sensitivity
and specificity were computed. All the analyses were per-
formed in SAS Version 8.2 (A statistical package from SAS
Institute Inc., Cary, NC, USA) on a personal computer.
Wilcoxon test was performed using NPAR1WAY proce-
dure in SAS, stepwise discriminant analysis was per-
formed using STEPDISC procedure in SAS, and
discriminant analysis was performed using DISCRIM pro-
cedure in SAS [23].

To normalize the data, the procedure outlined by the
Clinical Proteomics Program Databank was used [24].
The cancer and control values for each M/Z were given
respective labels, and the data were then pooled and nor-
malized using the formula NV = (V-Min)/(Max - Min). In
this expression, Min is the minimum intensity of the
pooled samples, Max represents the maximum intensity
found in the pooled samples, and NV represents the nor-
malized value. Using this procedure, the data intensities
will all fall between 0 and 1. The data points were sorted
into cancer and controls, and the p-values were calculated.
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