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Abstract

Background: This paper addresses the problem of discovering transcription factor binding sites
in heterogeneous sequence data, which includes regulatory sequences of one or more genes, as well

as their orthologs in other species.

Results: We propose an algorithm that integrates two important aspects of a motif's significance
— overrepresentation and cross-species conservation — into one probabilistic score. The algorithm
allows the input orthologous sequences to be related by any user-specified phylogenetic tree. It is
based on the Expectation-Maximization technique, and scales well with the number of species and
the length of input sequences. We evaluate the algorithm on synthetic data, and also present results

for data sets from yeast, fly, and human.

Conclusions: The results demonstrate that the new approach improves motif discovery by

exploiting multiple species information.

Background

The discovery of novel transcription factor binding sites in
regulatory sequences of genes has been an important sci-
entific challenge for some years now. Computational
approaches to this problem have come in two flavors.
One class of methods looks for overrepresented motifs in
sequences that are believed to contain several binding
sites for the same factor (such as promoters of co-regu-
lated genes) [1-6]. The second class of methods identifies
motifs that are significantly conserved in orthologous
sequences, e.g., promoters of the same gene in different
species [7,8]. These two approaches have been applied to
their respective kinds of data sets, with moderate success.
However, with new genomes being sequenced regularly,

motif-finding applications today often present heterogene-
ous sequence data that includes promoters/enhancers of
multiple co-regulated genes in one species, as well as their
orthologs in other species. This paper presents a probabi-
listic algorithm, called "PhyME" (Phylogenetic Motif Elic-
itation), for ab-initio detection of binding site motifs in
such heterogeneous sequences.

PhyME integrates two different axes of information in
evaluating a candidate motif's significance. One axis is
that of overrepresentation, which depends on the number
of occurrences of the motif in each species. The other axis
is the level of conservation of each motif instance across the
species. A real motif that is not sufficiently significant

Page 1 of 17

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/5/170
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15511292
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2004, 5:170

along any one axis may turn out to be significant when
both axes are considered simultaneously, leading to
increased sensitivity and specificity of the integrated
approach. Given the regulatory regions of potentially co-
regulated genes along with their orthologs from other spe-
cies, PhyME uses an Expectation-Maximization (E-M)
algorithm to search for the motif that best explains the
data. When evaluating a motif, its orthologous occur-
rences are assumed related to each other by a probabilistic
model of evolution that takes into account the varying
phylogenetic distances among the species. (The species
may be related by any user-specified phylogenetic tree.)
Each E-M iteration scales linearly with the total length of
the input sequences and also with the number of species.
The algorithm can also handle cases where the heteroge-
neous data is incomplete, i.e., where the orthologous regu-
latory regions are missing from some species. This
capability makes it particularly suitable for applications
that include data from incomplete genomes, or where
orthology information is incomplete.

An important feature of PhyME is that it allows motifs to
occur in (evolutionarily) conserved as well as uncon-
served regions in orthologous promoters, treating the two
kinds of occurrences differently when scoring a motif. It
does not require each binding site occurrence in one pro-
moter to have an orthologous occurrence in any or all
other species. As a result, PhyME affords some flexibility
in terms of the evolutionary distances spanned by the
input sequences. For instance, using a distantly related
ortholog will help pinpoint motifs located in conserved
regions but will not hamper the discovery of motifs absent
from that ortholog.

Comparison with previous work

Traditionally, motif finding algorithms have treated input
sequences as being independently generated, and
searched for statistically overrepresented motifs in them.
These algorithms [1-6] do not have the notion of
sequence orthology built into them, and are therefore typ-
ically run on sequences from the same species. PhyME has
an obvious advantage over them, since it takes motif con-
servation into account. (Henceforth, conservation of motifs
will be assumed to mean conservation across species.)

Another class of motif-finding methods take as input sets
of orthologous sequences, either aligned [8] or unaligned
[7] and search for well-conserved motifs. These methods
however, unlike PhyME, do not exploit the other impor-
tant aspect of a motif's significance - that of
overrepresentation.

Some algorithms [9,10] take as input a heterogeneous
pool of co-regulated and orthologous promoters, and find
overrepresented motifs after treating all sequences
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(including orthologous ones) as independent. However,
this "homogenizing" strategy has its disadvantage, since it
treats orthologous (and hence, directly related) motif
occurrences as statistically independent observations.
PhyME, on the other hand, respects the distinction
between orthologous and co-regulated motif occurrences.

There are algorithms that attempt to handle the two axes
of information by a two-step approach. For instance, Clif-
ten et al. [11] and Kellis et al. [12] find a set of highly con-
served motifs (in yeast promoters) in the first step, and
then extract overrepresented ones from this set, in a sec-
ond step. The algorithm CompareProspector [13] takes a
Gibbs-sampling approach to find overrepresented motifs
but biases the search in regions conserved across species.
Conversely, one may identify overrepresented motifs in
the first step, and then isolate evolutionarily conserved
ones among these [14]. In either case, a motif that is rela-
tively weak by either criterion alone, but strong when con-
sidering both, may be missed out. PhyME's integrated
approach to the heterogeneous data problem addresses
this issue. Admittedly, the methods of Cliften et al. and
Kellis et al. have a broader range of applications, since
these are genome-wide searches for motifs.

A recent algorithm called orthoMEME (Prakash et al. [15])
tackles the heterogeneous data problem by using Expecta-
tion-Maximization to search the space of motifs and the
space of motif alignments (orthology) simultaneously.
Each motif occurrence is assumed to have an orthologous
copy in the other species, that could be located anywhere
in the corresponding promoter. This is in contrast to
PhyME's approach, where orthologous motif occurrences
are restricted to pre-aligned regions of the promoters. This
restriction comes with the advantage that PhyME scales
better with the number of species than does orthoMEME.
This is a significant advantage in practice, since the
orthoMEME implementation is able to handle only two
species data, whereas we have experimented with PhyME
on orthologs from up to six species. Moreover, PhyME
also allows non-conserved occurrences (those residing
outside aligned regions), or occurrences that are con-
served in some species and missing in others. Requiring
that all motif occurrences come in orthologous sets may
be justified for very closely related species, but for more
diverged pairs of species (e.g., D. melanogaster and D. pseu-
doobscura) the promoters are known to have a mix of con-
served and unconserved binding sites [16]. PhyME
therefore gains an advantage by looking at both kinds of
occurrences. However, orthoMEME's phylogenetic model
is more powerful than that of PhyME and can handle a
greater range of motif variation than PhyME can.

Our approach is most similar to the algorithm Phylo-

Gibbs (Siddharthan et al. [17]), the main differences
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being that PhyloGibbs (i) uses a Gibbs-sampling
approach and (ii) assumes a star topology for the phylog-
eny, whereas PhyME uses an E-M approach and can han-
dle arbitrary tree topologies. Thus PhyME has a broader
domain of applicability in terms of the phylogenetic rela-
tionships among input sequences. It may therefore be
preferable over PhyloGibbs when the phylogeny is far
removed from a star, e.g., in a scenario where a pair of
close species is included along with another pair of
closely-related species, but the two pairs are greatly
diverged from each other. On the other hand, an advan-
tage of using PhyloGibbs is that multiple motifs (for dif-
ferent transcription factors) may be searched in parallel.

The algorithm EMnEM (Moses et al. [18]) uses E-M and a
phylogenetic model to find motifs, much like PhyME
does, except that the former assumes that the input
sequences are completely aligned. This assumption may
be unsuitable for species at relatively large evolutionary
distances, e.g., human and mouse, or D. melanogaster and
D. pseudoobscura. Therefore, PhyME can handle a broader
range of species divergence in its input. Another impor-
tant difference between EMnEM and PhyME is the proba-
bilistic model that each uses to model evolution. While
EMnEM is implemented to use the Jukes-Cantor model
[19], PhyME uses a more realistic model that incorporates
binding site specificities. Thus, in calculating the joint
likelihood of aligned motif occurrences, the EMnEM
implementation does not use the fact that the effective
mutation probability of an ancestral base to some base 3
depends on the fitness of a binding site with S at that posi-
tion. The evolutionary model used in PhyME reflects this
dependence, and the incorporation of the model into an
Expectation-Maximization framework is one of the main
technical contributions of our work. The Results section
includes a preliminary comparison of PhyME's perform-
ance with that of EMnEM, orthoMEME and PhyloGibbs,
on real data.

The algorithm PhyloCon (Wang and Stormo [20])
extends the greedy algorithm of CONSENSUS (Hertz et al.
[2]) to incorporate multiple species data. However, it
treats all orthologous sequences uniformly, ignoring the
fact that different species may be at different relative dis-
tances from each other. As such, it may be more suitable
to use PhyME in cases where the phylogeny is far removed
from a star topology of uniform branch length. Also, the
PhyloCon algorithm proceeds by first identifying several
local multiple alignments in orthologous sequences and
then searching for common patterns (motifs) among
these multiple alignments. As a result, it may miss motif
occurrences that are not well-conserved (or are completely
missing) in orthologous sequences. An advantage of Phy-
loCon is that it does not require the motif length to be
input, and instead reports motifs of varying lengths.
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Results

In this section, we first present the new algorithm, and
then describe its evaluation on synthetic data, as well as
biological data sets from various organisms.

Algorithm

Suppose that the input includes n different promoters
(e.g., from co-regulated genes), and for each promoter
there are sequences for K species. (K may be different for
different promoters.) PhyME requires that there be one
designated "reference species" o, in the input, for which
there is sequence data corresponding to each of the n pro-
moters. We shall describe PhyME's algorithm for the spe-
cial case n = 1, though allowing multiple motif instances
in this one sequence. The extension to n > 1 is trivial, and
omitted here for simplicity. Thus, the input consists of a
set of sequences S = {S;, S, ,..., Sk}, where §; is the orthol-
ogous sequence from species i, and one of the S;'s comes
from species o,. The input also includes the motif length
I, and the phylogenetic tree ¥ over the K species, with neu-
tral point mutation rates (probabilities) along each
branch. The output is a position weight matrix (PWM)
representing the discovered motif, and its score.

PhyME first partially aligns the input sequences and iden-

tifies contiguous regions ("blocks") in each §; # S5 that

are highly conserved in S; . It then inputs all the

sequences, along with the locations of the conserved
blocks, to the core motif-finding algorithm.

Alignment of sequences
In this pre-processing step, PhyME computes the regions

of high local similarity between S5 and each of the other

S;. The assumption is that such regions are of common
evolutionary origin, and any sequence outside them is
independently evolved. PhyME runs the LAGAN align-
ment program of Brudno et al. [21] on each sequence pair
(Ss, S;li # o;), and extracts all ungapped aligned blocks
of a certain minimum size (of the order of the motif's
length) and percent identity, to serve as the blocks of com-
mon origin. This is illustrated in Figure 1a, which shows
orthologous promoters from three species, o; (the refer-
ence species), o, and o;. An example of a block is region
BC in oy, aligned with region UV in g;. Note how blocks
can overlap in the reference species (BC overlaps with KL).

The input is now reorganized into two kinds of sequences:

1. The sequence from the reference species, with aligned
blocks of the other species "hanging off" it. (In Figure 1b,
this is shown as the sequence AJ, with blocks MN, OP, QR
of o, and blocks UV, WX of ¢; aligned with corresponding
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Orthologous promoters and blocks of sequence conservation. Shaded areas represent ungapped aligned blocks. o is the refer-
ence species. (a) Alignment of input sequences and extraction of blocks. (b) Reorganization of input sequences.

blocks in o;.) Thus, any position in this sequence either
has a single base from the reference species, or has an
alignment of bases from multiple species, one of which is
the reference species. This entire construct is called the
"reference sequence".

2. Any subsequence not from the reference species, and
bracketed by blocks on both sides. (e.g., regions NO, PQ,
VW in Figure 1b.) The terminal sequences in the non-ref-
erence species, which are to the left of the left-most block
and to the right of the right-most block, may be optionally
included, as per the user's specification.

PhyME fits the parameters of a probabilistic model on the
reference and bracketed sequences simultaneously, and
the desired motif comes out as a by-product of this train-
ing procedure, which is described next.

Hidden Markov Model

The probabilistic process that is assumed to generate
sequences is described by a very simple Hidden Markov
Model (HMM). For the moment, let us assume that the
sequence S being generated is entirely from one species,
with no aligned positions. The HMM parameters include
a "motif weight matrix" W,, of length I, and a "background
weight matrix" W, of length 1. (The (k, j)* entry of a
weight matrix is the probability of emitting the base j at
position k of the sequence being sampled from the
matrix.) At each step, the generative process of the HMM
chooses either W,, or W), according to their transition prob-

abilities p,,= p and p, = 1 - p respectively, where p is a model
parameter. A sequence is then sampled from the chosen
weight matrix, and appended at the end of the sequence S
created so far. The process then proceeds to the next step.
It stops when the length of S reaches its known length L.
The series of motifs chosen in the successive steps of the
process is called a "parse" of the sequence. The model
parameters 6, which include W,,, W, and p, associate a
well-defined probability Pr(S, T|6) with each parse T of
the sequence S. The probability that S was generated by an
HMM with parameters €is then given by Pr(S|6) = Z,Pr(S,
T|6). Let Pr(S|6,) be the probability of generating S by
using only W,. For a given 6, we define

Pr(S16)

F(S,0)=log Pr(S|6,)

This log-likelihood ratio is the function optimized by
PhyME - the parameters W,, and p are trained so as to
maximize F(S, 6). (The background weight matrix W, is
not trained during this maximization, rather it is pre-com-
puted from S, or optionally from specified background
sequence, by measuring nucleotide frequencies.) The
value of the objective function for a set of independent
sequences is the sum of its values for the sequences taken
separately. This additive property allows easy extension of
the parameter training procedure to the general case of
multiple sequences (n > 1). The objective function

maximized then is ZS,eSF(S',G), the set S now
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including, for each of the n input promoters, the "refer-
ence sequence" as well as all "bracketed sequences"
(defined earlier) as separate elements.

An important aspect of computing F(S, 6) is the subse-
quence probability Pr(s|W). This is the probability of gener-
ating a subsequence s of length I, (length of W), when
sampling from weight matrix W; so Pr(s| W) = HLIWkSk ,
where s = s;5, ... s, and W), is the probability of sampling
base j at the k" position of W. This formula applies when
subsequence s has a single base at each position. However,
we need to adapt this formula to the case where one or
more positions in subsequence s may be an alignment of
orthologous bases from multiple species. In this general
case, we can write s as ¥, i, ... ¥, where each y, is either a
single base, or an alignment of orthologous bases at a sin-

gle position of the reference sequence. The subsequence
probability Pr(s|W) can then be computed as

Hiz:l Pr,(yy, | W, k), where Pr,(y|W, k) denotes the prob-

ability of observing i at position k when sampling from
W. Let the vector y = (s;, S, ... Sx), where s is the nucle-
otide from species o in the single-base alignment . If the

S, were independent, we could write

Pr,(y |W,k)= ngksa . However, the s/'s occur in an

alignment (), meaning that this assumption of inde-
pendence is obviously untenable. Thus we need an expres-
sion for Pr,(y|W, k) that explicitly takes the phylogenetic
relationships among the species (given by the phyloge-
netic tree V) into account. We present such an expression
in the next section, and we shall thereafter return to the
topic of maximizing the function F(S, 6).

Evolutionary model

This section describes the probabilistic evolutionary
model that PhyME uses to incorporate phylogenetic rela-
tionships in the computation of the term Pr,(w|W, k)
mentioned above. It was first proposed in Sinha et al. [22]
to model binding site evolution, and applied successfully
on the two fly genomes. The model makes the crucial
assumption that all positions in a binding site evolve
independently, at equal rates, and the probability of fixa-
tion of a mutation « — £ at position k is proportional to
the weight matrix entry of f at that position. If we further
assume, for simplicity of exposition, that the phylogenetic
tree ¥ has a star topology, then the model assumptions
give us (from Sinha et al. [22]; also see Methods.)

Pr,(y | W, k)= 2 Wea H (.uo"/\/ks(y +(1-pg )5“50) @
aeX SGEY

where s is the nucleotide from species o in alignment y,

0= 1ifx =y and 0 otherwise, and 4, is the neutral muta-

tion probability between the ancestor and the species o
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For the position k, one "creates" a base « in the ancestor
with frequency W, and each such base is either passed
unchanged to the species o (probability 1 - x,) or mutated
in species o with probability x_,and a new base selected
with a frequency defined again by W.

In the general case, when ¥ does not have a star topology,
Formula (1) can be written in a recursive manner. (See
Methods.)

Expectation Maximization

The function F(S, 6) that is maximized by PhyME meas-
ures how much more likely it is that S was generated using
the motif weight matrix, than without it. Naturally, a
PWM that maximizes this score is the motif that best
explains the data. PhyME tries to find such a motif by
training the parameters (W,,, p) of the HMM, using the
Baum-Welch algorithm [23], which iteratively converges
to a locally optimum 6 using Expectation Maximization
(E-M).

Let A;, fori e {m, b} be the expected number of times the
HMM plants motif W, in generating the sequence(s), the
expectation being over all parses. Similarly, let Ekv/ be the
expected number of times that the nucleotide alignment

is sampled at the k™ position of the motif W, ;\i and

Eky/ are expected values of hidden variables of the HMM.

These averages are computed during the "E-step" in each
iteration, using dynamic programming (the Forward-
Backward algorithm, [23]).

In the "M-step", two kinds of updates are made, using the

values of ;Xi , E;ﬂ,, computed in the E-step. The parameter

p is updated according to p = A,, /(A,, + Ay) . The motif
weight matrix W,, is updated by solving, for each column

k of the matrix, the following set of five simultaneous
equations, in variables u4(f € £) and 4.

SEy log Pro(y [ Win ) | 3 ,us _ o vp (2)
v auﬁ

Y -1=0 (3)
B

The derivation of the update formulas is somewhat
involved, and is described in the Methods section. The
equations are solved using Newton's method, and the
solution value of uyis used to update the (k, p)" entry of
W,, according to W, ;= e“f. Newton's method involves
computation of the first and second partial derivatives of
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Figure 2

Effect of varying the number of species (K) on motif-finding performance. The x-axis is the relative entropy (R) of the planted
motif. Each point is an average over |0 experiments with synthetic data. (z4,= 0.3, 1, = 0.1.)

Background mutation rate
0.5 04 0.3 0.2

Performance score

04 03 02 0.1 03 02 01 02 0.1 0.1
Motif mutation rate

Figure 3
Effect of varying background and motif mutation rates (¢, and ,, respectively) on motif-finding performance. Each point is an
average over 10 experiments with synthetic data. (K= 3, R = 12.)
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log Pr,(y|W,, ), as described in Methods. In practice, we
found that Newton's method always converges from a sin-
gle initial condition, and the convergence almost always
happens within 3-5 iterations.

The time complexity of (each E-M iteration in) PhyME is
O(LK1), where L is the length of the sequences, K is the
number of species, and ! is the length of the motif desired.
(See Methods for details.)

Results on synthetic data

We first present the results of running PhyME on synthetic
data. The experimental framework is largely borrowed
from Wang and Stormo [20]. In each experiment, 5
"ancestral" sequences, each of length 600 bp, are created
at random, and 20 "binding sites", each of length 8, are
"planted”" at randomly chosen locations in these
sequences. The sites are chosen such that the weight
matrix formed by them has a relative entropy of R. Each
ancestral sequence is then "evolved" by point mutations
to create K additional "orthologous" copies, assuming a
star topology (with K leaves) and a common "background
mutation rate" g4, along each branch. (No insertions or
deletions were included in this simulated evolution, for
simplicity.) The motif instances are subjected to a com-
mon "motif mutation rate" g, , which is the probability of
mutation of any position in a motif. The ancestral set of
sequences is then removed and the remaining K ortholo-
gous sets are input to the motif discovery algorithm, with
one arbitrarily designated the reference species. The algo-
rithm is made to report 3 different motifs, thereby making
some allowance for false positives, especially when R is
low. For each reported motif, its 20 best occurrences in the
reference species are compared with the planted occur-
rences, to give a score ranging between 0 and 1. (1 repre-
sents the best possible performance; see the Methods
section for details.) The score for the best of the 3 reported
motifs is the "performance score" of the algorithm. The
three algorithms being compared are PhyME, MEME [1],
and GIBBS (Wadsworth Gibbs sampler) [24]. PhyME was
run with an evolutionary tree with a star topology, the
mutation rate along each branch being s, MEME and
GIBBS were run on the entire data set pooled together,
ignoring the orthology of sequences.

Figure 2 shows the effect of varying K on performance
scores of the algorithms. Note that the performance of
PhyME, while similar to MEME and GIBBS for K = 1,
improves relative to them as K increases. The absolute per-
formance score of GIBBS (and of MEME, to some extent)
deteriorates with increasing K. With more orthologous
sequences, conserved stretches of background sequence
may distract the algorithm from the motif occurrences.
PhyME, with the additional knowledge of orthology, is
able to pick out the motif better.

http://www.biomedcentral.com/1471-2105/5/170

Figure 3 shows the effect of varying the mutation rates.
The background mutation rate x4, was varied from 0.2 to
0.5 and the motif mutation rate x,, was varied between 0.1
and - 0.1). As per expectation, the performance of each
algorithm improved with decreasing x,, (for a fixed z,).
Interestingly, as 14, decreases, the performance of PhyME
for p,, = 0.1 first improves and then falls down. The initial
improvement is because the alignment step is able to find
more conserved blocks with diminishing background
mutation rate. However, when the latter approaches the
motif mutation rate, the distinction (in cross-species con-
servation) between motif and background becomes
weaker, hence performance goes down. In another set of
experiments, we examined the effect of the alignment step
on the performance. Sequences were created with K = 2, y,
= 0.3, y, = 0.1 and R = 12. After the alignment step of
PhyME (in which the entire sequence was aligned as one
conserved block), we artificially "unpaired" some number
n of the planted orthologous motif occurrences, i.e., the
alignment was modified so that these n pairs fell outside
conserved blocks. This was followed by the usual motif-
finding step, and the entire procedure was repeated for
various values of n. We find a gradual degradation in per-
formance as PhyME moves from maximum utilization of
motif orthology (n = 0, no unpaired motifs) to minimum
(n = 20, no motif pairs considered orthologous). (Figure
4.)

We also evaluated the effect of mis-estimates of the neu-
tral mutation rates on performance. PhyME was run on
random sequences created with experiment parameters K
=3, 14,=0.3, 4,,=0.1and R € {11, 12, 13}, and in differ-

Performance score

o o~ < © e =) N < © ) o
- - N

Number of unpaired motifs

Figure 4

Effect of the alignment step on motif-finding performance.
The x-axis shows how many of the orthologous pairs of
planted motifs are artificially unpaired in the alignment step.
Each solid line represents a separate experiment. The
squares plot the average score over eight experiments.
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ent runs, the value of x4, input to PhyME ranged from 0.1
(underestimate) to 0.5 (overestimate). We observed that
underestimates of g, resulted in significantly greater per-
formance degradation than overestimates of equal magni-
tude. (Data not shown.) For instance, using g, = 0.4
instead of the true value of 0.3 made no difference to the
performance, whereas using y4, = 0.2 resulted in 15 - 50%
decline.

Results on biological data

In the following sections, we present results of running
PhyME on real data sets from yeast, fly and human. The
results are compared to MEME (run by pooling ortholo-
gous sequences together), orthoMEME [15], PhyloGibbs
[17], and EMnEM [18]. The latter three programs address
the heterogeneous data problem directly, just as PhyME
does. Another program that solves the same problem is
PhyloCon [20]. PhyloCon was not evaluated in our study
because we did not have a clear method to post-process its
output to extract a specified number of top-scoring motifs
that are non-redundant. (Our evaluations described
below use the top three motifs reported by each program.)

Yeast data sets

We first present some examples in yeast, where sequence
data from four species, S. cerevisiae, S. mikatae, S. kudria-
vzevii and S. bayanus was used. We performed motif-find-
ing (with PhyME, MEME, orthoMEME, PhyloGibbs and
EMnEM) on some regulons from the SCPD [25] database,
which catalogues sets of co-regulated genes. For each reg-
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ulon, the top 7 motif occurrences in S. cerevisiae reported
by the algorithm (7 being the number of known sites in S.
cerevisiae) were examined for "matches" to the known
weight matrix for that regulon's motif. (See Methods for
details.) The number of matches was the performance
score of the algorithm. We counted matches to the weight
matrix, rather than to known sites, so that a reported
motif occurrence that is very similar to the known motif
(but not annotated as a site by SCPD) will not be counted
as a false positive. Each algorithm reported 3 motifs (with
n occurrences for each motif), and the results are for the
best scoring motif, thereby making some allowance for
false positives, such as simple repeats. Even though
PhyME is implemented to handle arbitrary phylogenies,
for efficiency it was run with a phylogenetic tree with a star
topology, having S. cerevisiae at the center and the muta-
tion rate along the branches of S. mikatae, S. kudriavzevii,
and S. bayanus being (0.25, 0.3, 0.35) respectively. These
values are based on average substitution rate per base in
the corresponding pairs of species. (A more accurate tree
can be derived from the work of Kellis et al. [12].) For mul-
tiple species data, MEME was run by pooling all sequences
together. OrthoMEME was run only for the case K = 2 (i.e.,
on sequence from the two species S. cerevisiae and S.
mikatae), since its current implementation can only han-
dle two species data. The other four programs were run for
K =1, 2, 3, 4, in separate executions.

See Methods for details on how orthoMEME, PhyloGibbs
and EMnEM were run.

25 —+— PHYME ——PHYME  —=— MEME KNOWN
—=—MEME —%— PhyloGibbs —#— orthoMEME —@— EMnEM
KNOWN
20 —%— PhyloGibbs
@ —=— orthoMEME » 507
S —8—ENMnEM o
= 15 A—e -S 40 -
£ //( mig1 pho4 ®
k] 1 = 30
I N A | Ew
A 2NNV
2 %l
1
i . N/, 5T e
A SRR Sl
=z
0  — e 0 ‘ ‘ ‘
1.2 3 4 1.2 3 4 1.2 3 4 1.2 3 4 ! 2 8 4
(a) Number of Species (K) (b) Number of Species (K)
Figure 5

Effect of multiple species information on motif-discovery in the regulons RAPI, MIGI, CARI, PHO4 and MCMI in yeast. The
y-axis plots the number of matches to the known motif, among the top 77 reported occurrences, where 77 is the number of
known sites, plotted as "KNOWN?" . Only matches in S. cerevisiae are considered.
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Figure 5 plots the performance scores for regulons RAP1,
MIG1, CAR1, PHO4 and MCM1, which show interesting
results. Note how the performance of PhyME improves
with K for RAP1 and MIG1. For CAR1, both PhyME and
MEME improve from K = 1 to K = 2, and then deteriorate
for higher K, but PhyME at K = 3 is still better than at K =
1. For PHO4, PhyME's performance first goes up (for K =
2) and then dips below the K = 1 level, whereas MEME
shows best performance at K = 4. For MCM1, PhyME
scores well (over 90% matches) for K € {1,3,4}, whereas
MEME's performance degrades for K > 1. Thus, these
examples illustrate that PhyME's approach can lead to
improved motif discovery in multiple species data, and
also that there may be situations when more orthologous
sequences distract either algorithm from the true motif.
For regulons CSRE, GCN4, MAT¢2, URS1H, REB1, and
PDR3, the performance score was high (typically over
80% matches) and largely invariant of the number of
species.

Figure 5 also reports the scores of PhyloGibbs. This pro-
gram has similar scores as PhyME on CAR1, PHO4 and
MCM1. (It did not execute to completion for K = 3, 4 in
MCM1.) PhyME has better scores on MIG1 and RAP1,
though PhyloGibbs' scores on RAP1 with a different
choice of parameters ("-G 0.7", see Methods) were similar
to PhyME. (Data not shown.) We also report the scores of
EMnEM in Figure 5. (The program did not execute to com-
pletion in CAR1.) This program performs well for K = 2
(comparable to the best scores in the data sets RAPI,
PHO4 and MCM1). For K = 3, 4 also, EMnEM scores are
comparable to PhyloGibbs. PhyME typically performs
better than EMnEM (with K = 3, 4) for RAP1, MIGI,
MCM1, and comparably for PHO4.

We find the scores of orthoMEME, as reported in Figure 5,
to be lower than those of PhyME (for K = 2). However, we
observed that in all five regulons reported, orthoMEME
reported fewer than 7 occurrences in S. cerevisiae per
motif. This is because orthoMEME was run in the "zoops"
mode (zero or one motif occurrence per sequence), since
the "tcm" mode (any number of occurrences per pro-
moter) does not perform well. Thus, with the total
number of predictions being fewer than 7, orthoMEME's
scores are expected to be lower than other programs even
for the same level of specificity.

We suggest caution in comparing PhyME's scores directly
with those of the other programs, since we lacked exper-
tise in choosing optimal parameter settings for them. This
is particularly true for EMnEM, which has several
parameters for modeling the evolution of motifs, and we
lacked experience in setting these parameters optimally.
We clearly have more expertise at using PhyME than the
other programs, and this makes the comparisons biased.

http://www.biomedcentral.com/1471-2105/5/170

Our goal in these experiments was to provide some exam-
ples of how multiple species data can be exploited to
improve performance, rather than assessing the different
motif finding programs available. A proper comparative
assessment of these programs has to address several chal-
lenges not addressed here. Such a task was undertaken for
several motif finding programs, in the work of Tompa et
al. (unpublished). A similar assessment of the motif-find-
ing programs in the context of the heterogeneous data
problem is an important topic for future work.

Fly data sets

Next, we present results from fruitfly, where data from two
species, D. melanogaster and D. pseudoobscura, is available.
Nine different enhancers were chosen - enhancers evel,
eve2, eve5, ftz3', gtposterior, hairy2, hairy34, and runl have
binding sites for the Kr transcription factor, and btdhead
has Bcd sites.

Well-defined weight matrices are available for both Kr and
Bced [26]. For each enhancer, the top 7 motif occurrences
(in D. melanogaster) reported by the algorithm (7 being
the number of "strong" occurrences of the known weight
matrix in D. melanogaster - see Methods) were examined,
and the number of matches was the performance score of
the algorithm. Six different motif-finding strategies were
tested separately - (i) MEME_1 (MEME on single species)
(ii) MEME_2 (MEME on both species pooled together),
(iii) PhyloGibbs, (iv) orthoMEME, (v) EMnEM and (vi)
PHYME (PhyME on both species, with 4= 0.5). Each strat-
egy was required to report occurrences only in D. mela-
nogaster. (See Methods for details of how orthoMEME,
PhyloGibbs and EMnEM were run.)

Figure 6 compares the scores of the different strategies for
all nine enhancers. Note that either PHYME or MEME_2
performs better than MEME_1 for seven of the nine
enhancers, and worse only for one (ftz3'), thereby making
the case for using two species data. Moreover, on btdhead,
gtposterior and hairy2, PhyME performs significantly better
than MEME_2, demonstrating the advantage of using
orthology information. Similarly, we find PhyME to per-
form better than PhyloGibbs on gtposterior, hairy2 and
hairy34. EMnEM performs well in these data sets, scoring
comparably to PhyME or PhyloGibbs, except on btdhead,
eve2, and gtposterior, where both PhyME and PhyloGibbs
perform better, and hairy2, where PhyME alone performs
better. OrthoMEME was run in the "tcm" mode, since the
"zoops" mode is not appropriate here, with several puta-
tive sites to be found in each promoter. However,
orthoMEME tends not to perform well in the "tcm" mode
in general, and in our tests also, its scores were poor on
most of the enhancers. We thus find that PhyME is
preferable to orthoMEME for cases where we expect sev-
eral motif occurrences per sequence.
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Results on the human SP1 regulon. (a) The known motif. (b) Motif reported by PhyME, using mouse and rat orthologs. (c) The
phylogenetic tree used by PhyME.
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Results on the human c-Jun regulon. (a) The known motif. (b) Motif reported by PhyME, using mouse and rat orthologs.

As in the yeast data sets, the comparison of scores between
PhyME and the other programs should be interpreted
with caution, since we lacked expertise in choosing opti-
mal parameter settings for the other programs.

Human data sets

Finally, we present results of running PhyME on two data
sets from human, where orthology with mouse and rat
was utilized. These data sets were chosen because all of 15
different motif-finding programs tested in an assessment
project (Tompa et al., unpublished) failed to report the
correct motif in them. The first set corresponds to the tran-
scription factor SP1, a zinc-finger protein. The heterogene-
ous sequence data included 35 human promoters (of
length 2 Kbp each), of which four have orthologous pro-
moters from mouse and rat, 20 from mouse only, 4 from
rat only, and 7 have no orthologs. Each of the human pro-
moters is known to have at least one functional Spl
binding site, with a total of 76 known sites overall. Figure
7a shows a "sequence logo" representation [27] of an
alignment of these known sites. PhyME was run to find
motifs of length 7, using the phylogenetic tree shown in
Figure 7c. The second motif reported by PhyME (Figure
7b) is almost identical to the known SP1 weight matrix.
The top 27 instances (in human promoters) of this motif
included 16 that overlapped with known binding sites.
We also ran MEME on the heterogeneous data set (pool-
ing orthologous sequences together), and the second
motif reported was a good match to SP1. However, of its
41 instances reported in human promoters, only 9 were
overlapping with known sites. Moreover, when MEME
was run on human promoters alone, none of the top three
motifs matched the SP1 motif. Thus, PhyME showed a
clear performance improvement over MEME, both in the
single species run, and when the orthologous sequences
were pooled together.

The second data set used in our tests corresponds to the
leucine zipper transcription factor c¢-Jun. The heterogene-
ous data set included 500 bp promoters for 11 human
genes targeted by c-Jun, as well as orthologs from mouse
and rat for 3 genes, from mouse only for 5 genes, and
from rat only for the remaining three genes. PhyME was
run exactly as in the previous data set. The known binding
sites of c-Jun (in human) were aligned to produce a weight
matrix that is shown in Figure 8a. The third ranked motif
reported by PhyME is shown in Figure 8b, and we can see
that its last five positions are similar to the first five posi-
tions of the known weight matrix. Of the top 13 instances
of the discovered motif, 4 overlap with known binding
sites of c-Jun, whereas a maximum of 9 could have been
obtained. (Of the 11 known sites, 9 are in the 500 bp
upstream regions used in our analysis.) We also ran
MEME on the heterogeneous data set (using the pooling
strategy), and none of the three best motifs reported by
MEME matched the c-Jun motif. Thus, both the human
data sets tested demonstrate how PhyME can improve
motif discovery in typical motif finding scenarios by
exploiting heterogeneous sequence data properly.

Discussion

Issues in algorithm design

Alignment step

In the alignment step, PhyME extracts blocks of high
sequence similarity between the reference species and
each of the other species. Motif occurrences in such locally
conserved regions are deemed orthologous, an assump-
tion well-justified by traditional interpretations of
sequence alignment. Conversely, all orthologous motif
occurrences are assumed to be aligned in such blocks. This
assumption is not always true since there may be ortholo-
gous motif occurrences not aligned by the alignment pro-
gram, but it heavily constrains the space of orthologous
motif occurrences, implying greater efficiency of the

Page 11 of 17

(page number not for citation purposes)



BMC Bioinformatics 2004, 5:170

search algorithm. Moreover, the assumption does not
mean that "true" orthologous occurrences in unaligned
regions are ignored - they are merely treated as independ-
ent occurrences. Our experiments on synthetic data (see
Results) demonstrate that the performance is not very sen-
sitive to the correct alignment of all orthologous motif
pairs. The blocks computed in the alignment step have to
be with respect to the reference species, but the alignment
itself need not be done in a pairwise manner. A multiple
alignment of all sequences may be computed (e.g., with
M-LAGAN [21], using the input phylogenetic tree ¥) and

blocks between S;  and each of the other §; may then be

extracted. (The alignment step is implemented as a sepa-
rate tool in PhyME, making it easy to switch to such alter-
native schemes.) Furthermore, the implementation may
be modified in the future to drop the requirement of a
reference species, since this requirement is not crucial to
the motif finding step of PhyME. For instance, the align-
ment step may utilize the "Threaded Block Alignment"
(TBA) program of Blanchette et al. [28], which completely
circumvents the notion of a reference species in multiple
alignments.

Once the blocks of high sequence conservation have been
identified, a possible strategy is to restrict attention to
motif occurrences in these blocks, assuming that all func-
tional binding sites must be evolutionarily conserved.
However, this assumption is not true even for as closely
related species as D. melanogaster and D. pseudoobscura,
separated by about 25-30 Myrs. An empirical study [16]
on these two species revealed that a good fraction (35-
40%) of occurrences of relevant motifs occur outside of
locally conserved contexts, and should therefore be taken
into account when discovering motifs.

Motif Finding

In the probabilistic process that is assumed to generate
sequences, the transition probability does not depend on
the previous choice(s) made during the process, meaning
that the HMM is of zeroth order, nor on the position in
the sequence, meaning that any information about spatial
distribution of motifs is ignored. The model, unlike that
of MEME, does not fragment the sequence into all I-length
words to be treated independently. Rather, it parses the
sequence into a series of non-overlapping occurrences of
the motif and background.

The evolutionary model described by Formula 1 applies
only to phylogenies having a star topology. The general
case of arbitrary tree topology is described in Methods. In
Formula 1, if uis small (as for very closely related spe-
cies), then finding different bases in orthologous posi-
tions has low probability Pr,(w|W, k), even if their
frequency in W is the same. This mirrors the intuition that
mutations in locally conserved regions of closely related
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species are evidence against a binding site residing there.
For largely diverged species (i.e., if 41, V o), Pr,(¢|W, k)
reduces to the product of the individual bases' probabili-
ties. It is worth emphasizing here that the weight matrix W
being searched by the algorithm is assumed to be
unchanged over the entire phylogenetic tree (including
the ancestor).

The neutral mutation rates (probabilities) along each
branch of ¥ are input by the user and not trained during
E-M. Training them on input data may cause overfitting,
producing values that are largely inconsistent with the
known evolutionary distances. The work of Moses et al.
[18] studies this issue, and finds that it is more important
to use correct phylogenetic relationships, e.g., an appro-
priate evolutionary tree, than to use accurate mutation
rates.

Note that the evolutionary model used by PhyME comes
into play only in Equations 2 as the term Pr,(¢|W,, k).
Other models of evolution, e.g., F81 [29], can be incorpo-
rated into PhyME by simply using the appropriate formu-
lation of this term, as long as the derivatives of log
Pr,(y]W,, k) can be computed efficiently.

Conclusions

We have developed a new algorithm, PhyME, that detects
motifs in heterogeneous sequence data by integrating two
important aspects of a motif's significance - overrepresen-
tation and cross-species comparison - into one
probabilistic score. We have evaluated different aspects of
the algorithm on synthetic data, and demonstrated on
some biological data sets that the new approach improves
motif detection.

Methods

The evolutionary model

The evolutionary model makes the following assump-
tions: (i) Nucleotides in an aligned position are evolved
from a common ancestor. (ii) The weight matrix applies
to the common ancestor and to all descendants, a reason-
able assumption given the propensity of DNA binding
domains of proteins to evolve slower than cis-regulatory
modules. (iii) All positions evolve independently, at
equal rates, and the probability of fixation of a mutation
a — [ at position k is proportional to the weight matrix
entry of S at that position. Suppose we are given a
phylogenetic tree ¥, with the species { oy, 0, .... 0x} at the
leaves. Let the vector y= (sy, s,, ... S¢), wheres_is the nucle-
otide from species ¢ in the (single position) alignment .
The term Pr,(w|W, k) denotes the probability of observing
w at position k when sampling from weight matrix W. For
each node j of the tree, except the root, let 4 be the prob-
ability of a base in the parent species of j having mutated
(under neutral evolution) in species j. Also, let y; be the
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vector formed by elements of y that correspond to leaf
nodes descended from node j. Let C(j) denote the set of
children of node j and let r be the root of the tree. Then,
we can write (using the model assumptions):

Pr,(w |W.R) = Y Wi T] flwj.0) (4)

oeX jeC(r)

where f(y;, a) denotes the probability of observing y;
given that the base at the parent of j is «. For a leaf node
o, this can be written as

fs.0)= ILLO'WkS + (1_."10)55 o
assumptions. (J;=1ifi =}, and 0 otherwise.) For an inter-
nal node j (except root r), the expression is :

from the model

flyj0)= Z(#]Wka + (=)0 [ flwre) (5)

xeC(j)

For the special case where ¥ has a star topology, Equation
4 reduces to Equation 1.

Training parameters in a HMM

Given a sequence S and a set of position weight matrices
{W,}, the objective function to be maximized is F(S, 8) =
log(Pr(S|6)/Pr(S|6,)), where Pr(S|6) is the probability of
generating the sequence S using the parameters 6, and 6,
represents the parameter values that only allow the back-
ground motif W to be used by the HMM. The sequence S
can be written as y, ¥, ... ¥, where each y; is either a sin-
gle base or an alignment of orthologous bases at a single
position. #includes the weight matrices W; and their tran-
sition probabilities p,. Since Pr(S|8,) depends only on W,
which is assumed constant, we shall outline how to max-
imize log Pr(S|6), following the description in [23]. A
parse of the sequence S in terms of the W; (i.e., the series
of motifs chosen in the successive steps of the generative
probabilistic process) is denoted by T.

We thus have

logPr(S|6)=1log > (S, T |6)
T

The maximization is iterative, with the t iteration com-
puting a model & +! that improves the objective function
from the current model &. In classical E-M fashion, let us
define a function Q(6| &) as

Q6 16") =Y Pr(T|S,6')logPr(S, T |6)
T

It is easily shown that log Pr(S|6) - log Pr(S| &) > Q(4| &) -
Q(¢#]8). Thus, if we maximize Q(6| &) over all 6, we shall
always improve upon log Pr(S|#), or remain there if the
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local maximum has been reached. Let A,(T, S) be the
number of times W, occurs in the parse T of S. Also, let

1k1//(T S) denote the number of times that the alignment
wis emitted (sampled) at the k" position of the matrix W,
in parse T of S. Let [; denote the length of W;. Then we have

;
Pr(sS,T|6) = Hp" T TTTTTT Pty | w; iy (9 ©)

i k=1vy

which gives us

Qele') le’f(TISG )X(ZA (T 5)10gﬂl+22251kv(T S)log Pr, (y | W, k))

i k=ly
= zlogp,zA T,S)Pr(T | S,0 )+22210gl’r (w|wW k)ZF,W(T S)Pr(T|S,6")
i k=1y
(7)
Note that the only the first term in this expression
depends on p;, and only the second term depends on W,.
Hence, we maximize each of these terms independently,

with respect to the appropriate free parameters. We first
maximize the term

D logp; Y Ai(T,S)Pr(T | S,6")
T

i

Note that A; =ZTAi(T,S)Pr(T|S,9t) is the average

number of occurrences of W;in S over all parses T.

Thus the term to maximize is zi;ﬁi logp;, and this is

maximized when

A
l Z]’AJ'

Next, we maximize the second term:

Vi (8)

Zzzlogl’f vl ka)EEmW(T S)Pr(T|8,6")

i k=1y

Again, note that Eipy = ZTEik‘I/ (T,S)Pr(T | S,0") is the
average number of times that the alignment w is sampled
at the kt" position of the matrix W; while generating S, the
average being over all parses T. Thus, the term to

maximize is Q = zizizlszikw log Pr, (w | Wi, k). We
first note that in our case, there is a single weight matrix
W,, to be trained. Hence, we need to maximize Q with
respect to W,,. We can do this maximization with respect
to each column k independently. Let W, ;denote the (k,
p)hentry of W,. Thus, foreach k=1 ... ], we need to max-
imize Q with respect to W;4(f € X), with the constraint 4
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W,z= 1. Using Lagrangian multiplier 4, the objective func-
tion becomes Q + 4 (23, W,,5- 1).

Transforming to log variables u;= log W;;to ensure that
the W,; remain positive during optimization, we then
have the following necessary conditions for optimality (in

addition to the constraint Y 5 e =1):

> Emey alogpr%(wwm'k)wle”ﬁ =0Vp (9)
y “b

We therefore have a system of five equations (including
the constraint) in the variables u,;(V 3 € X~ and 4. Denoting
the vector of these five variables by u, we solve this system
of equations using Newton's iterative method. Let us write
the above system of equations as F(u) = 0, where F(u) =
[[f4l, f2], with f;being the left side of Equation 9, and

fa :z ﬁeuﬁ —1. Newton's method uses the update

relation:
Au = -(J(u))'F(u)

where Au is the change in u in the current iteration and J
is the Jacobian matrix of F. The important terms in the
computation of F and J are the first and second partial
derivatives of log Pr,(y|W,, ;) with respect to the uvaria-
bles. For this purpose, we need to compute Pr,(y|W,, ;)
and its first and second partial derivatives. Computation
of Pr(y|W,, ;) uses the formulas 4 and 5. The partial
derivatives can be computed recursively (over the tree V)
by using the chain rule of differentiation. These recursive
computations are implemented in a bottom-up manner,
so as to avoid redundant computations. Newton's method
uses F and J to iteratively compute new values of u, until
convergence. The Jacobian matrix J in our case is not pos-
itive definite, hence Newton's method is not guaranteed
to converge. However, in practice, we found the method
to always converge from a single initial seed. Upon con-
vergence, the log variables u ;are transformed back to W),
= etf. The procedure is repeated foreachk=1...], and W,,
is then updated with the new values. This update, along
with that given by Equation 8, is used iteratively to
improve F(S|8) until the local maximum is reached, as
indicated by a very small change in its value.

Time complexity

The E-step computes Am, Ap and Empy , fork=1...1, V
w. The Forward-Backward algorithm is run once, in
O(LKI) time, where L is the total length of the input
sequences, K is the number of species, and [ is the length
of the motif W,,. (This time complexity assumes that
nodes in the phylogenetic tree have a fixed maximum
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degree.) Thereafter, Am, Ap are computed in O(L) time,

and all the Emkl,, are computed in one scan of the input,
expending O(LI) time.

The M-step runs Newton's method to solve a system of
equations, once for each column of W,,. Each run of New-
ton's method goes through a small number (3-5) of iter-
ations. Each iteration computes the first and second
partial derivatives of log Pr,(w|W,, ;) Each of these deriv-
atives can be computed in O(K) time, where K is the
number of species (since || < K) Hence, F and J can be
computed in O(LK) time, where L is the total length of the
sequence. Hence, Newton's method takes O(LK) time,
and is run | times, for an overall time complexity of
O(LKI) for the M-step.

Thus, the running time of (each E-M iteration in) PhyME
scales linearly with the length of the sequences, the length
of the motif desired, and the number of species.

Implementation details

PhyME is implemented in C++ for Linux, and the source
code will be made freely available at http://edsc.rockefel
ler.edu/cgi-bin/phyme/download.pl. The current imple-
mentation runs in a few minutes (on a workstation) for
typical applications with total sequence length ~10000
bp, 2-4 species, and motif length of ~10.

PhyME uses the LAGAN alignment tool of Brudno et al.
[21] for the alignment step. After alignment, the
ungapped blocks extracted are required to be at least 10
bp long, and have at least 70% identity. PhyME is imple-
mented to handle an arbitrary phylogenetic tree ¥ relating
the input species.

The E-M algorithm is guaranteed to converge only to a
local optimum. To address this problem, the motif-find-
ing step is executed a fixed number of times, each time
using a randomly chosen substring of the input sequence
as the "seed" to initialize W,,, and truncating the E-M pro-
cedure after a small number of iterations. The seed with
greatest score F(S, 8) among these runs is then used to run
the E-M to convergence and the trained motif is reported,
along with all its instances with posterior probability
above a certain threshold. To find more motifs, PhyME
masks out the central base of each of these instances.
Optionally, the user may specify nsites, the expected
number of occurrences of each of the desired motifs. In
such a case, PhyME turns off training of the parameter p,
and uses a fixed value computed from nsites. Similarly, an
option maxsites specifies the maximum number of occur-
rences expected.
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PhyME considers occurrences on both strands by intro-
ducing a new weight matrix W,, and an associated transi-
tion probability p,, in the HMM parameters. The weight
matrix is constrained to be the reverse complement of W,,,.
The model has a fixed bias of planting the motif in one
orientation versus the other, and this bias is trained from
the data. PhyME also has the option of capturing local cor-
relations in background nucleotide composition. To
implement a «*" order Markov background, PhyME uses a
special background weight matrix that is of length 1 but
uses the knowledge of the previous « bases generated to
determine the emission probabilities of the next base.

Performance score in experiments with synthetic data

We use the following score for measuring the performance
of a motif-finding algorithm on synthetic data. Let S = {S;,
S, ... S, } be the set of n input sequences. For any motif m,
let I,; be the set of positions in sequence S; that are occu-
pied by an occurrence of m. We know the occurrences of
the planted motif m* and are evaluating the motif m"
reported by an algorithm. The performance score @ is
defined as follows:

n

Dl Ly 01|
n

zi:l| Imki v Imri |

In other words, it is the number of positions, over all
sequences, where occurrences of the known and reported
motifs overlap, divided by the total number of positions
at which the known or the reported motif occurs. Note
that if the reported occurrences exactly concur with the
known occurrences, the score is 1, and when the reported
and known occurrences have no position in common, it is
0.

(S, mt,m’") =

Details of experiments with biological data sets

Yeast

The genes regulated by each transcription factor are listed
in SCPD. For each such "regulon”, the known sites and the
known weight matrix were extracted from SCPD. Also,
800 bp long upstream sequences of the genes in each reg-
ulon were extracted (for S. cerevisiae) from the RSA-Tools
web site [30]. Orthologous promoters in the other yeast
species were obtained from Cliften et al. [11]. Let 7 be the
number of known binding sites in S. cerevisiae. The input
to the motif finding algorithm consisted of the sequences
from S. cerevisiae and their orthologs from one or more of
the other species, depending on K. (In addition to S. cere-
visiae, we used S. mikatae for K = 2, S. mikatae and S. kudr-
iavzevii for K = 3, and S. mikatae, S. kudriavzevii and S.
bayanus for K = 4.) The length of the motif was also input
to each program. Each algorithm was made to report 3
motifs, and for each motif, the top 7 reported occurrences
in S. cerevisiae were examined. For each such occurrence,

http://www.biomedcentral.com/1471-2105/5/170

the logarithm of the probability of sampling it from the
known weight matrix was computed, and a z-score of this
logarithm was obtained. If the z-score was above 3, the
occurrence was called a "match". To allow for slight offsets
in the reported motif, each reported occurrence was pad-
ded with 3 bp of its context, on either side.

PhyME was run with the maxsites option set to 7, and
MEME was run with the same option set to 7K. We also
experimented with running MEME with the nsites param-
eter set to 7K. OrthoMEME was run with a zeroth order
Markov background, in the "zoops" mode, with expected
number of sites between 0.8*#7 ("minsites") and 1.2*7
("maxsites"). PhyloGibbs was run with mutation proba-
bility 0.7 ("-G 0.3") for all species, and was asked to report
three motifs (three "colors") each with 1.5 x 7 occurrences
("-I") initially. A 37 order Markov background ("-N 3")
trained on the full complement of yeast promoters was
used, as with PhyME and MEME. The "loose align" option
("-D 1") and the "stop after anneal" option ("-X") were
used. These options were suggested by an author of Phy-
loGibbs (Rahul Siddharthan, personal communication).
We experimented with a different value for the mutation
probability ("-G 0.7"), with no improvement, except in
the RAP1 regulon. EMnEM was run with default parame-
ters, the motif length being input through the "-w" param-
eter. Phylogenetic trees were derived from each input
promoter, using the fastDNAML software of Olsen et al.
[31]. The alignments were done using the MLAGAN pro-
gram of Brudno et al. [21]. In separate runs, we also tried
non-default values of the parameters "-p" (relative rate of
motif to background; default 0.5, also tried 0.25) and "-
m" (evolutionary model; default Jukes-Cantor, also tried
F81). The expected number of instances of each motif per
sequence ("-e") was set to 77/n and 7n/n + 1 in separate
runs, where 7 is the number of input promoters. For each
data set, and for each value of K, we took the best scoring
choice of parameters. This was done to give some advan-
tage to EMnEM, since we lacked expertise in choosing
optimal parameter values.

Fly

The locations of cis-regulatory modules involved in body-
patterning of the early embryo in D. melanogaster were
obtained from [26], and their sequences were extracted
from BDGP [32]. The evaluation procedure was identical
to that in yeast, with the following difference. Since there
is no complete list of verified sites in the enhancers, we
first scanned the sequences (in D. melanogaster) with the
known weight matrix, and counted matches, by the same
measure as above. This count was the value of 7 used in
the experiment. An extra complication in the fly data is
caused by the fact that each enhancer typically contains
sites for multiple transcription factors. We restricted our
tests to the factors Kr and Bcd, because their weight matri-
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ces are of better quality than others. Moreover, for each
enhancer, we chose to test with the transcription factor
with most putative sites (matches to its weight matrix).

OrthoMEME was run as in the yeast data sets (see above),
except that the "tcm" mode was used now. PhyloGibbs
was also run as in the yeast data sets, except that we used
a mutation probability of 0.5 ("-G 0.5"), and a 2" order
Markov background ("-N 2"), trained on non-coding
regions in fly. We also experimented with a higher value
of the mutation probability, and tried specifying the ini-
tial number of occurrences per motif ("-I") differently,
with no clear improvement. EMnEM was run with the
Jukes-Cantor evolutionary model ("-m 0") and with the
relative rate of motif to background ("-p") set to 0.5 and
0.25 in separate runs. The expected number of motifs was
setto 77and 1.5 x 77 in separate runs. The best performing
choice of parameters was used for each data set.

Human

The genes comprising each regulon were obtained from
TRANSFAC [33]. Mouse and rat orthology information for
human genes was obtained from Homologene [34].
Human, mouse and rat promoters were obtained from the
UCSC Genome Browser [35].
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