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Abstract
Background: Large-scale sequence comparison is a powerful tool for biological inference in
modern molecular biology. Comparing new sequences to those in annotated databases is a useful
source of functional and structural information about these sequences. Using software such as the
basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches
between newly sequenced segments of genetic material and those in databases is an important task
for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive,
especially in light of the rapid growth of biological sequence databases due to the emergence of high
throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on
PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable
methods, high performance computation becomes necessary.

Results: We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package
of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our
wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence
database search applications. It takes into consideration load balancing between each node on the
cluster to maximize resource usage. QS-search is designed to wrap many different search tools,
such as BLAST and HMMPFAM using the same interface. This implementation does not alter the
original program, so newly obtained programs and program updates should be accommodated
easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that
QS-search accelerated the performance of these programs almost linearly in proportion to the
number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation
approach (DS-BLAST) that provides a complementary solution for BLAST searches when the
database is too large to fit into the memory of a single node.

Conclusions: Used together, QS-search and DS-BLAST provide a flexible solution to adapt
sequential similarity searching applications in high performance computing environments. Their
ease of use and their ability to wrap a variety of database search programs provide an analytical
architecture to assist both the seasoned bioinformaticist and the wet-bench biologist.
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Background
Evolution can be measured and studied on a number of
different scales, one of which is through the determina-
tion and comparison of genetic sequence information.
Current-day gene sequences in living organisms have
arisen through modifications of an array of ancestral
sequences. Duplication with modification is the central
paradigm of protein evolution, wherein new proteins
and/or new biological functions are fashioned from ear-
lier ones. [1]. To detect these functionally (and structur-
ally) related proteins based upon similarity between their
primary nucleic acid or amino acid sequences, a variety of
sequence comparison algorithms have been developed.
When a new gene is cloned and sequenced, it is now
standard practice to use these algorithms to search for
similarities between the translated nucleic acid sequence
and a protein sequence database such as the NCBI non-
redundant protein database (nr) [2]. Sequence similarity
that implies similar structure and therefore similar protein
or enzymatic function is not definitive proof of such func-
tion; however, the results of database sequence similarity
searches provide a starting point for researchers attempt-
ing to ascertain the function of an unknown gene by sup-
porting the intelligent design of subsequent laboratory
experiments.

The basic local alignment search tool (BLAST) [3,4] is by
far the most widely used pairwise-based sequence similar-
ity comparison tool. It completes searches more swiftly
than other tools, including FASTA, SSEARCH [5], and
SCANPS [6]. BLAST uses an efficient, rapid algorithm to
look for short segments or words of sequence similarity
between two sequences that meet some predefined scor-
ing threshold. After initially locating at least two of these
words within a short distance of one another on a com-
mon diagonal, the algorithm uses them as "seeds" from
which to extend the alignment to encompass longer
regions of similarity, resulting in high scoring pairs
(HSPs). The heuristic algorithm used by BLAST decreases
search time dramatically in comparison to that of other
search programs. However, the emergence of high-
throughput DNA sequencing techniques has increased the
size of sequence databases tremendously; thus conven-
tional large-scale BLAST searching against the most com-
monly used databases has become infeasible on a PC or
even a dedicated UNIX server. For this reason, new search
strategies are needed.

While BLAST provides a balance between search sensitiv-
ity and speed, in many cases a researcher would like to
detect more distant sequence similarities by employing
search strategies that maximize the sensitivity of the
search. A profile-based comparison which, for example,
compares a sequence to a hidden Markov model (HMM)
representing an empirically derived estimate of all possi-

ble evolutionary changes for a protein of a particular func-
tion, generally permits identification of a much higher
proportion of distantly related sequences [7]. There are
two major profile-based comparison tools. PSI-BLAST [3]
compares sequences with a profile model constructed
dynamically during the initial search phase of a tradi-
tional BLAST search, while HMMPFAM in the HMMer
package from Sean Eddy at Washington University com-
pares sequences with a well-curated database of HMM
profiles as well as models constructed by users. Well-
curated profile databases such as Pfam [8] are being devel-
oped through the combined efforts of bioinformaticists
and molecular biologists. Profile-based comparison has
become a reliable way to gather information for predict-
ing structure and function of unknown genes, and tools
from the HMMer package are becoming a key centerpiece
in many bioinformatics pipelines. The tradeoff of using
HMM-based searches for increased sensitivity is the intrin-
sically slow nature of the Viterbi [9] or forward algorithm
used in the application.

Taking advantage of larger databases and more sensitive
searching methods necessitates the use of high perform-
ance computing (HPC) platforms. Traditionally, HPC has
been synonymous with high-priced vector or parallel
supercomputers, but rapid advances in microprocessor
and network bandwidth technologies are changing the
definition [10]. Clusters of connected workstations utiliz-
ing commodity microprocessor systems provide enor-
mous benefits in terms of cost and performance. Thus,
cluster computing can meet the increased computational
needs of resource- and data-intensive bioinformatics
applications. HPC environments using workstations con-
nected via high-speed networks are becoming more and
more popular in the bioinformatics community [11-14].
Here we describe the SS-Wrapper package, which provides
tools to adapt currently available similarity search appli-
cations onto HPC environments implemented through
Linux clusters.

Implementation
The objective of this study was to implement a generic
wrapper application that could deploy similarity search-
ing applications on a Linux cluster. Design criteria for the
wrapper included the ability to deploy applications with-
out the need to alter the original application and the abil-
ity to increase the speed of the underlying application in a
linear manner dependent on the number of cluster nodes
available. To meet these objectives, tools in the SS-Wrap-
per package were written in C/C++ using the message
passing interface (MPI) [15]. Tools in the SS-Wrapper
should work with few if any changes on any Linux cluster
running MPI utilizing any hardware platform. In addition
to the SS-Wrapper executables (which are compiled using
the MPI C++ compiler), executables for the underlying
Page 2 of 9
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:171 http://www.biomedcentral.com/1471-2105/5/171
similarity search applications (blastall, formatdb, and
hmmpfam) appropriate for the hardware platform under-
lying the cluster will be needed. These can be obtained
from NCBI and Washington University in St. Louis. SS-
Wrapper is available without charge under the Artistic
License described in the Open Source Initiative [16]. The
source code can be downloaded via ftp [17].

Using multiple processors is practical only when the com-
putational task is too large to complete on a single proces-
sor in a reasonable amount of time. In the case of database
searching, the database to be searched may be too large or
the set of query sequences used in the search may be too
large to accomplish the search on a workstation with a sin-
gle or even double or quad processor architecture. Since
the search must compare every query sequence to every
database sequence, parallelizing the process can be
accomplished by three different methods. The first
method is to split the query sequence file into smaller sub-
sets and apply each subset to one particular node of the
cluster in a search against the entire database. The second
method calls for the database to be split into a series of
smaller files, one of which is distributed to each node of
the cluster; then the entire file of query sequences is
searched against each of the database segments. Finally, it
is possible to use a combination of query sequence split-
ting and database splitting to accomplish the search.

Using the query splitting approach does not require any
modification to the output generated by search programs
such as BLAST. When utilizing the database splitting
approach, however, a correction must be made to the
reported E-value for any particular hit. Most similarity
comparison tools provide a statistical measure (e.g., the E-
value reported for BLAST and HMMPFAM) that gives an
indication of the statistical significance of a match
between the query sequence and a particular database hit.
This statistical measure is generally influenced by the size
of the search space (which includes the total length of the
database) and therefore the E-value needs to be recalcu-
lated when only a portion of the database is being
searched. An added complication is that some search tools
require that the database be intact. For example, PSI-
BLAST [3] is a variant of BLAST that constructs a sequence
profile model based on hits from an initial round of
BLAST searching. This profile is then used and refined in
subsequent rounds of searching to increase the sensitivity
of the overall search. Because PSI-BLAST depends on the
integrity of the database to guarantee that the resulting
profiles are representative of the entire search space, it is
best to perform parallelization using the query splitting
approach.

In contrast to database splitting, query splitting offers
greater flexibility in that the query file segments can more

easily be adaptively distributed to the nodes of the cluster
according to the load on each particular node during the
search process. As any one node becomes available,
another segment of the query file can be distributed to
that node during the search process, which improves per-
formance. It is difficult to predict the workload on any
one node before the search begins, and the time required
to complete a program running on a cluster depends on
the processor that finishes last. Adaptive distribution of
the workload maximizes resource utilization. Optimizing
resource utilization is dependent on finding a balance
between having larger numbers of smaller tasks versus
increased startup and communication overhead due to
distribution of the required query and database files to
each node. For this reason, for our query splitting wrapper
(QS-search), we adopted a hybrid strategy wherein
approximately 90% of the total workload is evenly
divided and distributed to each node at the beginning of
the search using a modified bucket algorithm (described
below). Then the remaining 10% of the workload is
divided and distributed to each node as it becomes avail-
able after completing its previous task. This strategy is
accomplished using a master-slave model, where one
node is set aside to act as the master, which is responsible
for distributing the workload and supervising the slave
nodes, which perform the computations.

In general, the query splitting approach seems to be supe-
rior to the database splitting approach due to higher per-
formance and fewer post-search processing tasks.
Database splitting does provide a distinct advantage when
the database is too large to fit into the physical memory of
a single node [11,14]. NCBI BLAST uses memory mapped
file I/O for database access. BLAST runs fastest when it can
cache the database in memory. When the database size
exceeds that of the available memory, however, the data-
base splitting approach can reduce the possibility of swap-
ping the database from physical memory to disk swap
space, which could significantly slow the search process.
Therefore, we have also developed a wrapper to support
database splitting (DS-BLAST). DS-BLAST is specific for
BLAST because it is necessary to include code to recalcu-
late E-values following the search.

As indicated above, a modified bucket algorithm is used
to split up the query sequences for QS-search, and a simi-
lar algorithm is used to split up the database sequences for
DS-BLAST. The modified bucket algorithm works as fol-
lows: First, the sequences are sorted according to length.
In the first cycle, sequences are placed one at a time into
each bucket in descending order of length. In the next two
cycles, individual sequences continue to be placed into
each bucket after first reversing the order of the buckets.
Bucket order is reversed every two cycles and the process
continues until all sequences have been placed into a
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bucket. At the end of this process, each bucket contains
nearly the same number of sequences, and the total length
of all sequences in any one bucket is also approximately
the same as the total sequence length of any other bucket.
In the end, therefore, the file of query sequences or the file
of database sequences is evenly divided in both length
and number.

The BLAST E-value is a function of the size of the effective
search space, which is dependent on three factors: the
number of sequences in the database, the total combined

length of all sequences in the database, and the length of
the query sequence [13,18]. Figure 1 shows that when
splitting the database into N fragments of equal sequence
number and length, the effective search space of each
database fragment is approximately 1/N that of the intact
entire database. Therefore, the E-value calculated for any
particular hit of a query sequence to a database sequence
will approximate a linear function dependent on the value
of N. For that reason, at the beginning of the search, DS-
BLAST lowers the user-provided E-value cut-off to account
for the number of nodes used in the search. Following the

Effective search space vs. database size and query sequence lengthFigure 1
Effective search space vs. database size and query sequence length. Relationship between effective search space and 
database size with different query sequence lengths. The GenBank non-redundant protein database (nr) was split evenly 
according to the modified bucket algorithm in order to construct databases of a size 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, or 1 of the 
entire nr database. Query sequences of varying lengths were randomly assembled using a Perl script. A BLAST search was then 
carried out for each query sequence against each database. The effective search space and database size was extracted from 
the BLAST results and plotted for each query sequence. The length of each query sequence is indicated next to the line which 
plots the relationship between effective search space and database size for that query.
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search, DS-BLAST recalculates the effective search space
and each resulting E-value by multiplying by the value of
N.

Results and discussion
Usage
The QS-search executable (qssearch) provides the same
interface for all search tools. The command line is as
follows:

qssearch -c <command> -q <query> -d <database> -o
<output> -l <local scratch> -x <database files>

DS-BLAST uses two executables: dsblast and dsformatdb.
dsformatdb is responsible for splitting the database into
fragments according to the modified bucket algorithm
and then formats these fragments using the NCBI for-
matdb executable.

The command line for dsformatdb is as follows:

dsformatdb -n <number> -c <command> -d <database> -
p <path>

The command line for dsblast is as follows:

dsblast -o <output> -c <command> -l <local scratch> -d
<database> -q <query>

The command-line variables are as follows:

• -c command: normal command line used for the under-
lying application including all desired options

• -q query: query filename in fasta format

• -d database: database filename

• -o output: output filename

• -l local scratch: temporary directory on each node

• -x database files: a space-delimited list of the database
file names generated by the search program's formatting
utility (formatdb for BLAST)

• -n number: desired number of database fragments

• -p path: directory to store database fragments.

Benchmarking
All benchmark experiments were performed on a Linux
cluster in the Department of Engineering at the University
of Alabama at Birmingham [19]. The cluster consists of
one compile node and 64 compute nodes (IBM × 335s),

as well as 2 storage servers (IBM × 345s). All machines
have 2 × 2.4 GHz Xeon processors, 2 GB of RAM, an 18 GB
SCSI hard drive, and are connected via Gigabit Ethernet to
a Cisco 4006 switch. The NCBI non-redundant protein
database (nr, 733 MB), downloaded from GenBank [2] in
August, 2003, was used for testing both DS-BLAST and
QS-search; it contained 1,508,485 sequences composed
of 492,678,715 amino acids. Release 10.0 of the Pfam [8]
database from Washington University (549 MB) was used
in benchmarking HMMPFAM under QS-search; it con-
tained 6190 profile models that, when combined, were
1,463,477 residues long. The same set of query sequences
was used for all experiments. The query sequences repre-
sented all open reading frames of more than 30 amino
acids from the genome of monkeypox virus strain WRAIR
7–61 (manuscript in preparation), and totaled 2068
sequences comprising 151,173 amino acids.

Figure 2 demonstrates that QS-search provided a >40-fold
acceleration for NCBI BLAST when using 64 processors,
compared to the speed of 1 processor. Ideally, QS-search
should provide an N-fold acceleration when using N proc-
essors, but this optimal result is rarely achievable. The
major factor limiting the performance gain of QS-search is
the time necessary to deliver the database to each node. As
more nodes are employed, the portion of time spent
searching decreases, but the communication overhead
increases. When using QS-search with HMMPFAM, the
search resulted in a 58-fold increase in processing speed
when using 64 processors compared to a single processor
(figure 3). QS-search therefore proved to be more efficient
when running HMMPFAM in comparison to BLAST. Since
the overall time required for the HMMPFAM search is
much longer than that for BLAST, the portion of the
search time devoted to communication overhead
decreases thus increasing overall efficiency.

Figure 4 illustrates the performance of DS-BLAST. Since
database preprocessing occurs before the search process,
the times provided in figure 4 do not include this preproc-
essing time. As the same query, database and underlying
application (NCBI-BLAST) were used in benchmarking
DS-BLAST and QS-search, the results presented in figures
2 and 4 are directly comparable and indicate that QS-
search appears to be more efficient than DS-BLAST. Two
factors cause a reduction in performance of DS-BLAST.
The first is the imbalance of the workload between nodes,
and the second is the time necessary for the final merge
phase of the output results from each node. When using
QS-search, the workload is distributed dynamically
during execution and therefore is well balanced between
nodes. In contrast, when using DS-BLAST, the database is
split into segments before the search, so the distribution
of the workload between nodes is not as well balanced as
for QS-search. The percent load imbalance for DS-BLAST
Page 5 of 9
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(the time difference between completion of the first and
last processors) has been as much as 5% of the total search
time; for QS-search, on the other hand, the percent load
imbalance is generally much less than 2%, and
approached 3% only when 64 processors were used (data
not shown). The merge phase of QS-search consists
entirely of concatenating the results provided by each
node into a single file. In contrast, the merge phase of DS-
BLAST must parse the output from each node and com-
bine the results for each single query sequence. As the
number of nodes employed increases, the time required
for the merge also increases. The advantage of the data-
base splitting approach under limited memory conditions
was not apparent in these benchmarks, since the memory
available for each node in the cluster used in these exper-
iments was large enough to accommodate the entire 733
MB database.

We also compared the performance of DS-BLAST to that
of mpiBLAST [11] version 1.1.0. We found that DS-BLAST
was almost twice as fast as mpiBLAST when both utilized
4 processors and more than twice as fast when both uti-
lized 32 processors (data not shown). Both mpiBLAST
and DS-BLAST required a substantial part of the total run
time to merge and format the final BLAST output.

Conclusions
To increase the speed and efficiency of sequence similarity
search programs, we have developed the SS-Wrapper
package, a series of wrapper applications that supports the
deployment of sequence similarity searches on high-per-
formance computing clusters. QS-search implements a
query sequence splitting approach for the deployment of
NCBI BLAST and HMMPFAM. It also will support other
similarity search programs, including all variants of NCBI
BLAST (blastn, blastp, blastx, tblastn, and tblastx) as well

BLAST performance of QS-searchFigure 2
BLAST performance of QS-search. Performance of QS-search with NCBI BLAST when searching all reading frames (>30 
amino acids) from monkeypox virus against the GenBank non-redundant protein database. Vertical bars represent total time 
used while the line indicates increase in speed corresponding to the number of processors used.
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as all options provided by the blastall executable. Because
this implementation does not alter the original program,
program updates and new programs should be easily
accommodated. The output from QS-search is effectively
identical to that produced by the underlying program. QS-
search is designed to provide optimal load balancing and
maximize resource usage when using computer clusters.
The performance gain approaches linearity in proportion
to the number of processors employed.

When the database is too large to fit into the physical
memory of a single node in the cluster, a database split-
ting approach should outperform the query splitting
approach used by QS-search [11,14]. Therefore as a
complementary application, the SS-Wrapper package also
includes DS-BLAST, which implements a database split-
ting approach for BLAST searches and provides an effec-

tive solution to recalculate the E-value during the post-
search phase of processing.

SS-Wrapper provides a suite of tools that makes large
sequence similarity searches feasible by deploying the
search on a Linux cluster. These tools permit the bioinfor-
matics community to take advantage of the power of high-
performance cluster computing. Other tools such as Dis-
perse [20] and TurboBLAST [21] are designed to deploy
bioinformatics applications onto loosely connected
machines. A more general approach to deployment uses
grid computing as an increasingly popular alternative to
cluster computing [22]. Grid computing organizes wide-
spread, diverse collections of CPU resources (including
desktop workstations, servers, and clusters) into a virtual
supercomputer, where these collections of hardware,
software, and data resources are organized into a more
uniform, manageable, visual whole. In contrast, the CPUs

HMMPFAM performance of QS-searchFigure 3
HMMPFAM performance of QS-search. Performance of QS-search for HMMPFAM when searching all reading frames 
(>30 amino acids) from monkeypox virus genome against Release 10.0 of the Pfam database. Vertical bars represent total time 
used while the line indicates increase in speed corresponding to the number of processors used.
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in a Linux cluster are more tightly coupled and special-
ized. Grid computing has the advantage of utilizing large
numbers of CPUs as they become available to the grid.
The disadvantage of a grid is in managing the complexity
of the disparate architectures of the available CPUs, mini-
mizing overhead, and making maximum usage of net-
work bandwidth. For maximal performance, tools in the
SS-Wrapper package have been developed under the
assumption of a homogenous Linux cluster in which every
CPU is similar. We are currently exploring methods to
extend our current work to take advantage of grid comput-
ing technologies. To accomplish this, the complexities
involved will require significant modification and exten-
sion of the applications that are a part of the SS-Wrapper
package.

Availability and requirements
The SS-Wrapper package is freely available under the Artis-
tic License described in the Open Source Initiative. The
source code can be downloaded via ftp [17]. Contact elli-
otl@uab.edu for information on obtaining the software.
All tools have been tested on an IBM Intel® processor-
based Linux cluster with LAM/MPI [23] and should be
compatible with other implementations of MPI.

Authors' contributions
CW was responsible for the conception, design, imple-
mentation, and testing of the SS-Wrapper package. EJL
contributed to its conception and testing and provided
overall project coordination. Both authors have read and
approved the final manuscript.

Performance of DS-BLASTFigure 4
Performance of DS-BLAST. Performance of DS-BLAST when searching all reading frames (>30 amino acids) from monkey-
pox virus genome against the GenBank non-redundant protein database. Vertical bars represent total time used while the line 
indicates increase in speed corresponding to the number of processors used.
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