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Abstract
Background: It is a major challenge of computational biology to provide a comprehensive
functional classification of all known proteins. Most existing methods seek recurrent patterns in
known proteins based on manually-validated alignments of known protein families. Such methods
can achieve high sensitivity, but are limited by the necessary manual labor. This makes our current
view of the protein world incomplete and biased. This paper concerns ProtoNet, a automatic
unsupervised global clustering system that generates a hierarchical tree of over 1,000,000 proteins,
based solely on sequence similarity.

Results: In this paper we show that ProtoNet correctly captures functional and structural aspects
of the protein world. Furthermore, a novel feature is an automatic procedure that reduces the tree
to 12% its original size. This procedure utilizes only parameters intrinsic to the clustering process.
Despite the substantial reduction in size, the system's predictive power concerning biological
functions is hardly affected. We then carry out an automatic comparison with existing functional
protein annotations. Consequently, 78% of the clusters in the compressed tree (5,300 clusters) get
assigned a biological function with a high confidence. The clustering and compression processes are
unsupervised, and robust.

Conclusions: We present an automatically generated unbiased method that provides a
hierarchical classification of all currently known proteins.

Background
The explosive growth in the number of sequenced pro-
teins has created a glut of proteins that are sequenced but
whose structure and function are as yet unknown. A com-
mon way to tackle this problem is to use database searches
to find proteins similar to a newly discovered protein,
thus inferring protein function. This method is general-
ized by protein clustering or classification where data-
bases of proteins are organized into groups or families in

a manner that attempts to capture protein similarity. Such
classification into families is a critical component in struc-
tural and functional genomics [1-4]. The number of pro-
tein families comprising the entire protein-space has been
conjectured to range between 6,000-30,000, excluding
rare and peculiar single proteins [5-8]. Various expert-
based databases provide a good description of certain
selected families but are limited in scope to thoroughly
studied proteins (i.e. [9,10]). Other methods for
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classification strongly rely on 3D-structural information
as in the case of SCOP [11], CATH [12], FSSP [13] and
others.

Classifying the entire protein space into families serves
not only as a method for large-scale protein annotations
but also to support functional and structural genomic ini-
tiatives [14]. Some prominent examples for protein classi-
fication efforts are ProtoMap [15], Picasso [16], SYSTERS
[17], iProClass [18] and ProtoNet [19]. These systems are
based on a variety of algorithmic paradigms, each yielding
a distinct hierarchical classification of proteins into
families.

Amongst the clustering methods listed above only Pro-
toNet attempts to generate a global hierarchical arrange-
ment of the entire protein space via agglomerative
hierarchical clustering. The sequence similarity between
every pair of protein sequences is taken as the BLAST [20]
E-value between a given pair of proteins. Next, the pro-
teins are clustered using a given merging strategy. The
strategy used is Unweighted Pair Group with Arithmetic
Mean (UPGMA), whereby in each iteration, the two most
similar clusters (in terms of their average pairwise distance
for every protein pair spanning the two clusters) are
merged. ProtoNet (version 4.0) [21] provides a classifica-
tion hierarchy of over 1,000,000 proteins including the
SwissProt and TrEMBL protein databases [22]. Most pro-
teins included in the SwissProt database are manually val-
idated and furthermore, the degree of biological
knowledge associated with them is much higher in com-
parison to the proteins archived in TrEMBL. Thus, this
work concerns only the 114,033 proteins in the SwissProt
database (version 40.28). An extended version that
includes over one million protein sequences is available
in the form of an interactive website at http://www.pro
tonet.cs.huji.ac.il. For the SwissProt-based tree, there are
227,436 clusters (including the proteins as singletons).
The classification provided by ProtoNet provides the full
range of cluster granularity: from single proteins to huge
protein clusters that carry no biological relevance (the
root clusters). We test the biological validity of ProtoNet,
by its examination from different perspectives, using
external-defined protein keyword annotations. Four dif-
ferent annotation sources are used (InterPro [23], GO
[24], SCOP [11] and ENZYME [25]) in order to be able to
validate different biological aspects. First, we demonstrate
that it is possible to match the majority of such external-
defined protein families to specific clusters within the Pro-
toNet clustering. Second, we show that the hierarchy of
the ProtoNet tree represents a valid functional hierarchy
and correlates well with the GO hierarchical structure.

As mentioned, ProtoNet contains 227,436 clusters, which
is obviously much more than the upper estimate of

30,000 protein families [8,26]. Therefore, we seek to clev-
erly discard those clusters that have less biological rele-
vance. Compression of the protein space offers many
advantages. It can yield a smaller set of biologically mean-
ingful clusters, which will allow for a more manageable
handling of the entire protein space. Furthermore, if this
compression's correspondence to external, independent
annotation sources can be validated, then this compres-
sion can be used to replace the original hierarchical struc-
ture, without sacrificing much information originally
present in the whole system.

In this paper we describe methods for the unsupervised
compression of the ProtoNet tree, by using intrinsic tree-
based parameters of the clusters that correlate well with
biological validity. By preserving the unsupervised nature
of the ProtoNet data, we prevent biasing towards previ-
ously discovered findings and better allow for future gen-
eralizations, in addition to maintaining the automation
of the process.

Finally, automatic functional annotation to proteins is of
great importance. In ProtoNet, an automatic method for
assignment of biological annotation to the protein clus-
ters is used, yielding high-confidence functional assign-
ments for a large majority of the proteins' clusters.

Results and discussion
Correspondence of clusters to external biological sources
In order to measure the correspondence between a given
cluster and a specific annotation, and allow for supervised
validation of the ProtoNet clusters, we define the notion
of a correspondence score (CS). The CS for a certain clus-
ter and a given keyword measures the correlation between
the cluster and the keyword, using the well-known inter-
sect-union ratio.

Let C be a cluster in the ProtoNet tree, and K be a keyword
(from a specific source) that annotates (some of) the pro-
teins in the system; Let c be the set of annotated proteins
in cluster C; Let k be the set of proteins in the system anno-
tated by keyword K; We define:

The cluster receiving the maximal score for keyword K is
considered the cluster that best represents K within the
ProtoNet tree (K's best cluster). The score for a given cluster
on keyword K ranges from 0 (no correspondence) to 1
(the cluster contains exactly all of the proteins with key-
word K, i.e. maximally corresponds to the keyword).

In order to assess the clustering's biological validity, the
mean best CS on all annotations was examined for each of

Correspondence Score (cluster C for keyword K) CS(C, K)= = | c ∩∩
∪

k

c k

|

| |
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the following sources: InterPro, SCOP (Family,
SuperFamily, and Fold levels), GO (Molecular Function)
and ENZYME (subclass, sub-subclass and entry). The
results (Table 1) show a high level of correspondence
between the ProtoNet clusters to the various keyword sets
of each of the external sources.

It can be argued that a good fit between a set of keywords
and the ProtoNet set of protein clusters could happen by
chance. In order to assess the statistical significance of
these results, the mappings of the keywords to the pro-
teins were randomized, creating a new group of random
keyword sets that have the same size distribution but do
not represent any biological features. For each random
keyword set, the mean best CS was calculated. This rand-
omized test showed a normal distribution, allowing the
calculation of an approximate p-value for the mean best
CS obtained by ProtoNet for the external sources. The
results showed an extremely high level of statistical signif-
icance for all sources (all had P-values smaller than 10-

100). Note that even for the SCOP fold level, which is asso-
ciated with proteins that may be extremely remote in
sequence, ProtoNet's relative success is extremely high
(for details on ProtoNet's performance vis-à-vis structural
entities, see [27]).

To avoid trivial correspondences between a keyword and
a cluster, such as the assignment of a keyword that anno-
tates only one protein to its singleton cluster, we tested
our success only with keywords that annotated at least two
proteins (for SCOP and ENZYME keywords). For InterPro
and GO, we selected a threshold of 20 proteins per key-
word, as the majority (85% in InterPro; 98% in GO) of
the annotations is included above this threshold, thus
allowing the test to focus on the more significant
keywords.

Correspondence of ProtoNet hierarchy to external 
biological sources
In order to validate the hierarchical structure of ProtoNet,
we compare it with the hierarchical structure of GO as
described in Figure 1. To do this, we select, for each GO
term, the best matching cluster in ProtoNet according to
the CS. The subset of all terms that have highly matching
clusters (best CS>0.5) was selected. In graph-theoretic ter-
minology, this set of terms can be represented as vertices
in a graph. We consider two possible sets of directed edges
between the vertices: those defined by GO as the parent-
child relationship of the clusters' respective terms, and
those of the ProtoNet hierarchy. Thus we wish to compare
these two sets of graph edges. We use a very conservative
test, counting the number of edges that are common to
both graphs.

A total of 1577 GO terms were selected as described, with
1798 edges between them according to the GO hierarchy.
771 out of 1291 (60%) edges that were produced by the
ProtoNet hierarchy appear in the GO hierarchy. This
number is highly significant considering the fact that there
exist over 1,200,000 possible edges between the 1577 ver-
tices in the graph (considering it as a DAG). It should be
noted that there are some terms in GO that are connected
to many other vertices. These vertices may bias the results
of this test. In order to confirm that ProtoNet performs
well without these vertices as well, the vertices were
removed manually and the test was repeated, with simi-
larly significant results (33% of the edges were correct).

Compression by using an intrinsic parameter
In order to allow unsupervised automatic compression of
the ProtoNet tree, we searched for an intrinsic parameter
of the clustering process that would specify clusters of bio-
logical validity. By applying such a parameter one could
dispose of clusters that do not pass a certain threshold
value, remaining with clusters of high biological validity.
Once we remain with a subset of biologically valid

Table 1: Correspondence of external biological keywords and ProtoNet clusters.

External Source ProtoNet Mean Best CSa Random Mean Best CS (std dev) # KW

InterPro 0.835 0.026 (0.9*10-4) 2034
GO molecular function 0.588 0.024 (0.8*10-4) 1220

SCOP family 0.720 0.299 (0.8*10-4) 742
SCOP superfamily 0.654 0.260 (0.9*10-4) 558

SCOP fold 0.598 0.230 (1*10-4) 408
ENZYME entry 0.848 0.179 (0.7*10-4) 1432

ENZYME sub-subclass 0.517 0.053 (2*10-4) 161
ENZYME subclass 0.412 0.025 (4*10-4) 56

aCS – correspondence score, see text for definition.
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clusters, the new hierarchy amongst them can be recon-
structed according to the original tree hierarchy.

The agglomerative hierarchical clustering scheme defines
a set of terms that are intrinsically associated with the
process. In such a scheme, each cluster is created from
smaller clusters, which are captured as its descendants in
the clustering tree. The ProtoLevel (PL) ranges from 0-100
and is used as a standard quantitative measure of the rel-
ative height of a cluster in the merging tree. The PL of a
cluster is defined as the arithmetic average of the BLAST E-
score of the pairs of its proteins. The PL of the leaves of the
tree is defined as 0, whereas the PL of a root equals 100.
The larger the PL, the later the merging that created the
cluster took place. Therefore, the PL scale is considered as
an internal monotonic timer of merging, during the clus-
tering process. As mentioned above, a cluster is said to be
created when the merging of its two children clusters
forms it. The PL at this point is said to be the birthtime of
this cluster. The deathtime of a cluster is defined as the PL
at its termination, i.e. the point at which it merges into its
parent cluster (or 100 if it has no parent). The lifetime
(LT) of a cluster is defined as:

LT = deathtime - birthtime

Scheme of the ProtoNet hierarchy testFigure 1
Scheme of the ProtoNet hierarchy test. (A) The ProtoNet 
binary tree. Vertices in the graph are protein clusters. 
Crossed-out vertices are eliminated because they do not 
match any GO term. (B) Tree hierarchy of remaining Pro-
toNet clusters. Remaining nodes correspond to GO terms. 
(C) The corresponding GO DAG hierarchy between the ver-
tices. (D) Intersection of graphs in B and C shows the 
amount of hierarchical correspondence between GO and 
ProtoNet. In this example, there are 6 edges common to GO 
and ProtoNet. 2 of the ProtoNet edges do not appear in GO 
and 4 GO edges do not appear in ProtoNet.

Lifetime (LT) distributions of the set of InterPro best clusters (black bars) in comparison to the LT distribution of all clus-ters in ProtoNet (gray bars)Figure 2
Lifetime (LT) distributions of the set of InterPro best clusters 
(black bars) in comparison to the LT distribution of all clus-
ters in ProtoNet (gray bars).
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Therefore, the LT of a cluster reflects its remoteness from
the clusters in its "vicinity" in protein sequence space.

We examined the LT distribution of the set of InterPro best
clusters in comparison with the LT distribution of all clus-
ters in ProtoNet (Figure 2). The results suggest that the
best clusters have a substantially higher LT than other Pro-
toNet clusters. This poses the LT as a possible candidate
that could allow a biologically-valid tree compression by
disposing of all clusters with LT below a certain threshold
value.

In order to search for a reasonable LT threshold value
(that would eliminate a large number of clusters while
maintaining biological validity), several threshold values
were examined (Figure 3). The results show that by using
a LT threshold for cluster elimination, in addition to
removing the singleton clusters, 87.8% of the clusters may
be eliminated with only a minimal reduction in perform-
ance (i.e., a reduction of 2.7% in mean best CS), leaving
only 27,823 clusters. Furthermore, we compare the LT

threshold scheme with a random elimination of similar
amounts of clusters. The LT threshold convincingly out-
performs the random elimination.

The mean best CS was examined for all four external
sources (Table 2). The results show that the mean CS of
ProtoNet were only slightly reduced, while the random
mean CS are significantly reduced due to the much
smaller amount of clusters.

Automatic functional annotation of clusters
The following scheme was used to annotate the protein
clusters: For each cluster C and keyword K we define the
following score:

Where TP is the amount of true positives (proteins in C
that have the keyword K), FN is the amount of false nega-
tives (proteins not in C that have the keyword K) and FP
is the amount of false positives (proteins in C that do not
have the keyword K).

Effect of compression on mean best CS (Correspondence Score) at various threshold valuesFigure 3
Effect of compression on mean best CS (Correspondence 
Score) at various threshold values. (A) Mean best CS shown 
here is calculated for the InterPro keywords. Mean best CS 
decreases from right to left, as more clusters are eliminated 
due to compression. Filled circles represent the mean best 
CS for compression according to LT thresholds. Open cir-
cles represent the mean best CS of a random compression 
to the same extent as explained in the text. Standard devia-
tion of the random mean best CS is too small to be seen on 
the graph.

AS (Annotation Score) plot for all clusters of 20 or more proteins, after compressionFigure 4
AS (Annotation Score) plot for all clusters of 20 or more 
proteins, after compression. Each dot represents a cluster 
and is plotted according to the sensitivity and specificity of its 
highest-scoring AS (as defined in the text). The curve repre-
sents the high-confidence annotation threshold which was 
used. Dots in the upper right represent clusters that passed 
the threshold and were therefore annotated with high-confi-
dence.

Annotation Score AS(C,K) specificity sensitivity2= = × =
+

 TP

TP FP

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×
+

2 TP

TP FN
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For each cluster, we search against all keywords of GO and
InterPro for the keyword with the highest AS. If the AS of
the cluster is greater than 0.25, the cluster is assigned that
keyword as its annotation. The logic behind the score and
the threshold is as follows: the score is determined by two
parameters, the specificity and the sensitivity; let us con-
sider the two worst-case limit cases. In the first case,
specificity>0.5 and sensitivity = 1: a majority of the pro-
teins of the cluster share the keyword, and there exist no
other known proteins that have the keyword. In the sec-
ond case, specificity = 1 and sensitivity>0.25: all proteins
of the cluster share the keyword and they constitute more
than 1/4 of the total proteins known to have this keyword.
In both cases, the keyword can be assigned to the protein
cluster with a high degree of confidence. All other clusters
fall in between these cases.

Using this method, all 6,879 clusters that contain 20 or
more proteins and that remain after the compression were
tested. 5,355 (77.8%) clusters passed the high confidence
threshold and were therefore given an annotation. Figure
4 shows the plot of the highest AS score for each of the
clusters and the threshold function. Naturally, by relaxing
the threshold it would be possible to obtain a higher level
of annotation.

Cation channels: a biological example
Figure 5 shows one of the trees that appear in ProtoNet
after compression. The root cluster contains 249 proteins
and is annotated as "Cation Channel". There appears to
be a correct division between potassium channels to non-
potassium channels. Furthermore there is an apparent
inner division of the potassium channels into two-pore
channels and voltage dependent channels, and of the
non-potassium cation channels into sodium channels
and TRP channels. Notably, an unannotated cluster of 2
proteins is categorized as potassium channel, but does not
appear to be voltage-dependent or two-pore. Closer
inspection shows that this cluster contains the 2 orthologs
of the LctB bacterial protein. Experimental results suggest

that LctB is a new type of non-voltage-mediated potas-
sium channel [28]. This corresponds well to the fact that
ProtoNet did not assign an annotation to this cluster and
separated it from the other potassium channels.

Conclusions
The challenge of protein classification by using sequence
similarity has been addressed extensively by several differ-
ent methods. In order to assign function to proteins,
advanced methods (such as Hidden Markov Models
implemented in Pfam) have been used to learn sequence-
based patterns on "seeds", manually validated alignments
of known protein families. The widely-used BLAST algo-
rithm is considered to be a reliable tool for sequence
alignment, but has been shown to lack sensitivity for weak
similarities that may be detected by signature detection
methods. We show here that by using an unsupervised
bottom-up clustering method based on BLAST E-values,
we have been able to construct a global hierarchy of the
SwissProt proteins that can be validated by external
biological sources, merely by undertaking a global view of
the protein space.

The four different external sources that were used for vali-
dation reflect different aspects of the protein space: Inter-
Pro annotation is predictive and is based on various
signature detection methods; GO annotation assignments
are both based on prediction and from known research,
while the GO hierarchy was constructed completely man-
ually; SCOP is a semi-manual classification of structures
that is not necessarily reflected in sequence; the ENZYME
database supplies Enzyme Commissions, which consti-
tute a hierarchy that is based on the enzymes' chemical
reactions. ProtoNet successfully constructs clusters that
correspond highly to all four of the sources. Even high
levels of SCOP (such as the Fold classification), which are
considered to have no detectable sequence similarity, are
partially matched (also see discussion in [27]). Notably,
the correspondence of ProtoNet to InterPro is generally
higher than the correspondence to the other sources. This

Table 2: Correspondence of external biological keywords and ProtoNet clusters after and before compression.

External Source ProtoNet Mean CS (before compression)a Random Mean CS (before compression)

InterPro all 0.808 (0.835) 0.025 (0.026)
GO molecular function 0.558 (0.588) 0.020 (0.024)

SCOP family 0.702 (0.720) 0.124 (0.299)
SCOP superfamily 0.635 (0.654) 0.116 (0.260)

SCOP fold 0.580 (0.598) 0.107 (0.230)
ENZYME entry 0.643 (0.848) 0.090 (0.179)

ENZYME sub-subclass 0.471 (0.517) 0.036 (0.053)
ENZYME subclass 0.371 (0.412) 0.018 (0.025)

aCS – correspondence score, see text for definition.
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is not surprising, considering the fact that InterPro is
based on prediction from sequence. However, it is
worthwhile to note that the InterPro families may be
reconstructed almost perfectly without using the various
sensitive detection methods that InterPro uses, and more
importantly without using the manually constructed
seeds.

After validating the biological relevance of the ProtoNet
clusters by using external sources, we examined the hierar-
chy of ProtoNet. The test showed that the hierarchy
presented by ProtoNet significantly corresponds to the

manually-constructed biological hierarchy of GO. It is
important to note that the method used by ProtoNet is
not expected to fully recapture the GO hierarchy due to
the fact that ProtoNet is structured as a collection of trees
while GO is structured as a DAG. In this sense, the
approach of ProtoNet may be limited in the portrayal of
evolutionary complexity (as in cases of multiple
domains). However by using a domain-based clustering
approach, allowing multiple entities of each protein in the
hierarchy, a substantial improvement in the CS quality
measure may be achieved (unpublished results).

Graph of the ProtoNet tree of cation channelsFigure 5
Graph of the ProtoNet tree of cation channels. Squares represent clusters, arrows represent tree hierarchy between clusters. 
Names are the annotations that were assigned to the clusters as described in text. Parantheses show the number of proteins in 
the cluster. Note one cluster containing two proteins that was not assigned an annotation.
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An intrinsic parameter that reflects the stability of clusters
during the clustering process was used in order to
compress the cluster sets, leaving 16.4% of the clusters;
removing the singletons clusters as well leaves 12.2% of
the clusters. As mentioned above (see Methods), the
entire ProtoNet scaffold contains 227,436 clusters that are
represented by 630 roots; following this condensation,
there are only 27,823 clusters that are represented by
2,236 roots. We show that although a massive portion of
the clusters is discarded, very little performance is lost by
this condensation process. It is obvious that prior to the
condensation process, ProtoNet holds within it both clus-
ters that correctly represent biological groups and clusters
that are irrelevant artifacts of the clustering process (e.g.
the large root clusters that are constituted of tens of thou-
sands of proteins). Therefore, by allowing a major reduc-
tion without significant loss of biological coherence
ProtoNet seems to present a more correct view of the pro-
tein world.

An automatic unsupervised method for the classification
of proteins has some important advantages over super-
vised methods (such as signatures based on manually val-
idated seeds): First, an unsupervised method is unbiased
in automatic assignment of function to proteins, a major
goal in bioinformatics. Also, it allows high-throughput
analysis of whole genomes and enhances understanding
of global biological systems without the need for the man-
ual annotation of every protein. Using an automatic
annotation method, we are able to successfully annotate
77.8% of the major protein clusters (of size 20 or more)
that remain after the compression of the ProtoNet tree.
The annotation uses a relatively conservative threshold
and therefore yields high-confidence annotations. This
further suggests that the clusters remaining after the con-
densation process are relevant biological clusters and not
mere artifacts.

One aspect that we have rigorously examined is the
robustness of the ProtoNet tree: given a different set of
proteins to cluster or a different clustering method, would
the resulting tree be significantly different, or are its prop-
erties maintained? Interestingly, changing the underlying
protein databases (ranging in size from 30,000 to over
1,000,000 proteins), the substitution matrices used for
the preliminary BLAST, or the merging strategy [19] pro-
duced very similar trees (unpublished results), suggesting
that the performance of ProtoNet is not due to a specific
computational method but perhaps to the robust proper-
ties of the protein sequence space.

Methods
ProtoNet version 2.4 which was used for the analyses
described in this paper is based on classification of the
SwissProt database (version 40.28) that contains 114,033

proteins. The entire ProtoNet scaffold contains 227,436
clusters that are contained in 630 trees. Most trees (611)
are singletons and only one contains most (>99%) of the
proteins. For more details on the construction of the Pro-
toNet hierarchy see [19]. ProtoNet version 4.0 [21] which
is available online contains a wider classification of over
1,000,000 proteins (a union of the SwissProt and TrEMBL
databases).

Several external sources were used as a biological reference
for validation of the ProtoNet tree: InterPro [23] is an
extensive family and signature archive that integrates sev-
eral different databases: PRINTS, Pfam, PROSITE, Pro-
Dom, Smart, TIGRFAMs, and recently also PIR
SuperFamily and SUPERFAMILY. Each of these databases
relies on a different detection method. Many of these sig-
natures and family keywords are considered to be unde-
tectable by a routine BLAST search. InterPro (version 5.2)
contains 5,551 signatures. Gene Ontology (GO) [24] is a
collaborative project of creating a hierarchy of biological
terms. GO is represented as a directed acyclic graph
(DAG), which is divided into three parts: Molecular Func-
tion, Cellular Localization and Cellular Process. In this
study only the Molecular Function aspects of GO were
used. GO's Molecular Function subdivision (July 2002)
contains 5,947 biological terms. SCOP [11] is a
hierarchical representation of protein structures. SCOP
uses a tree-like hierarchy of 4 levels: Class, Fold, Super-
Family and Family. SCOP (version 1.57) contains 2,927
structures terms. The ENZYME database (as part of Swiss-
prot data) indicates the EC number of a protein [25]. EC
(Enzyme Commission) numbers are a classification
scheme for enzymes, based on the chemical reactions they
catalyze. The EC number includes 4 fields (for example,
1.2.3.4 represents the enzyme class, subclass, sub-subclass
and entry number, respectively). ENZYME (updated July
2002) contains 3,958 enzyme classifications.

We have used EBI mappings of InterPro and GO to Swiss-
Prot proteins.

List of abbreviations
Annotation Score (AS), Correspondence Score (CS),
Directed Acyclic Graph (DAG), Enzyme Commission
(EC), Gene Ontology (GO), Lifetime (LT).
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