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Abstract
Background: Generalized hidden Markov models (GHMMs) appear to be approaching acceptance
as a de facto standard for state-of-the-art ab initio gene finding, as evidenced by the recent
proliferation of GHMM implementations. While prevailing methods for modeling and parsing genes
using GHMMs have been described in the literature, little attention has been paid as of yet to their
proper training. The few hints available in the literature together with anecdotal observations
suggest that most practitioners perform maximum likelihood parameter estimation only at the local
submodel level, and then attend to the optimization of global parameter structure using some form
of ad hoc manual tuning of individual parameters.

Results: We decided to investigate the utility of applying a more systematic optimization approach
to the tuning of global parameter structure by implementing a global discriminative training
procedure for our GHMM-based gene finder. Our results show that significant improvement in
prediction accuracy can be achieved by this method.

Conclusions: We conclude that training of GHMM-based gene finders is best performed using
some form of discriminative training rather than simple maximum likelihood estimation at the
submodel level, and that generalized gradient ascent methods are suitable for this task. We also
conclude that partitioning of training data for the twin purposes of maximum likelihood initialization
and gradient ascent optimization appears to be unnecessary, but that strict segregation of test data
must be enforced during final gene finder evaluation to avoid artificially inflated accuracy
measurements.

Background
The number of generalized hidden Markov model
(GHMM) gene finders reported in the literature has
increased fairly dramatically of late [1-8], and the commu-
nity is now contemplating various ways to extend this
attractive framework in order to incorporate homology
information, with a handful of such systems having
already been built (e.g., [9-12]). GHMMs offer a number
of clear advantages which would seem to explain this

growth in popularity. Chief among these is the fact that
the GHMM framework, being (in theory) purely probabi-
listic, allows for principled approaches to constructing,
utilizing, and extending models for accurate prediction of
gene structures.

While the decoding problem for GHMM gene finders is
arguably well understood, being a relatively straightfor-
ward extension of the same problem for traditional
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HMMs and amenable to a Viterbi-like solution (albeit a
more complex one), methods for optimally training a
GHMM gene finder have received scant attention in the
gene-finding literature to date. What information is avail-
able (e.g., [2,4]) seems to indicate that the common prac-
tice is to optimize the submodels of the GHMM
independently, without regard for the optimality of the
composite model.

The training of HMMs and GHMMs has traditionally been
carried out using some form of maximum likelihood estima-
tion (MLE). Baum-Welch training [13], which is an
instance of the well-known expectation maximization (EM)
procedure, is itself a form of MLE [14]. In the case of
GHMM gene finders, one typically applies some form of
MLE to each of the submodels (states) in the GHMM so as
to render training features of each type (e.g., exon, intron,
donor site) maximally likely under the induced
(sub)model; i.e., maximizing:

for state q and for Si a feature of length di from the state-q-
specific training set T. The submodels are then merged
into a composite model (i.e., the full GHMM) by observ-
ing transition probabilities between features in the train-
ing data corresponding to each of the GHMM states.

For example, an exon state in a GHMM can be trained by
collecting n-gram statistics (i.e., counts of n-letter sub-
strings) from known exon sequences and normalizing
these into transition probabilities for an (n-1)th-order
Markov chain [15]. Similarly, intron, intergenic, and
untranslated region (UTR) states can be modeled by col-
lecting appropriate statistics from corresponding sample
features and using these to train individual content-scor-
ing models, such as Markov chains, neural networks, deci-
sion trees, etc. Signal sensors for donor and acceptor splice
sites and start and stop codons can be trained by aligning
known signals of the appropriate type and counting
nucleotide frequencies at each position within a fixed
window around the signal; converting these counts to rel-
ative frequencies produces probability estimates for use in
a weight matrix or similar type of model. Transition and
duration probabilities can likewise be estimated by
observing appropriate frequencies in training data. All of
these estimation activities can be performed independ-
ently, resulting in a GHMM consisting of distinct subsets
of maximum likelihood parameters.

Such an approach does not, however, attend to the global
optimality of the GHMM as a whole. Ideally, one would
like to maximize the expected accuracy of the gene finder
on unseen data. A reasonable approximation to this ideal

would be to maximize the average probability of the gene
parses in the training set:

where the collection of model parameters making up the
GHMM is denoted θ and the elements (S, φ) of the train-
ing set T comprise pairs of sequences S and their known

parses φ. This argmax gives us the parameterization 
under which the full gene parses (rather than the sequences)
in the training set will be maximally likely (on average).
Decomposing each parse φ into a series of (qi, di) pairs, for
state qi and state duration (i.e., feature length) di, we get:

where Pe, Pt, and Pd represent the emission, transition, and
duration probabilities of the GHMM, respectively.
Whereas the common MLE training procedure for
GHMMs as described above optimizes the individual
terms in the numerator of Equation 3 independently, the
argmax above calls instead for these terms to be jointly
tuned so as to optimize the entire ratio in parentheses.
Intuitively, one can think of this alternate formulation as
attempting to account for the process in the Viterbi algo-
rithm (during later decoding) whereby the individual sub-
models "compete" for nucleotides (in the sense that each
nucleotide can be emitted by only one submodel in any
given parse, and the Viterbi algorithm chooses the final,
predicted parse based on the values of the model parame-
ters). Our hope is that by addressing the issue of sub-
model competition explicitly during parameter
estimation, we will thereby empower the gene finder to
better discriminate at a global sequence level between the
features modeled by individual submodels in the GHMM,
thereby producing more accurate gene predictions.

A similar optimization problem occurs in the field of
speech recognition, in which systems of interacting acous-
tic models and language models are employed to opti-
mally parse an audio stream into a series of discrete
words. Interestingly, the trend in that field, starting with
Bahl et al. in 1986 [16], has increasingly been away from
the sole use of MLE and toward an alternative approach
very similar to that prescribed by Equation 2 known as glo-
bal discriminative training [17-19] or conditional maximum
likelihood [20]. The problem also appears in a slightly dif-
ferent form in the related field of statistical natural lan-
guage parsing, in which it has been suggested that global
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methods for optimizing competing stochastic grammar
models may improve the accuracy of systems at the level
of whole-sentence parses [21]. Maximum discrimination
HMMs have already been applied successfully to prob-
lems in the realm of biological sequence analysis [22],
though their use in gene finding has apparently not yet
seen widespread adoption. To our knowledge, the only
gene finder reported to use discriminative training is
HMMgene [23], a gene finder based on a non-generalized
HMM.

In light of these considerations, it is worth contemplating
the possible gains in gene finder accuracy that might be
obtained through the use of some form of discriminative
training applied to a GHMM – that is, training aimed
more directly at optimizing the ability of the gene finder
to discriminate between exons and non-exons, thereby
improving the expected accuracy of the gene finder's pre-
dictions. Anecdotal evidence already suggests that investi-
gation of such methods may indeed be fruitful, as the
process of manual tuning of GHMM parameters (i.e.,
"tweaking") after MLE training is commonly acknowl-

edged by those with experience training GHMM-based
gene finders (including our own systems). The practice of
performing such tuning on the training set, especially
when done iteratively, can be viewed as a manual form of
gradient ascent optimization using the percentages of cor-
rectly predicted nucleotides, exons, and whole genes as
surrogates for the Σ(S,φ)∈T P(φ|S,θ) term in Equation 2.

We therefore decided to investigate the use of a simple
form of global discriminative training for gene-finding.
We did this by building a rudimentary gradient ascent
optimizer and applying it to a subset of the model param-
eters for our GHMM-based gene finder, TigrScan, as
described in the Methods.

Results
Maximum likelihood versus discriminative training
Results for Arabidopsis thaliana are shown in Table 1 and
those for Aspergillus fumigatus are shown in Table 2. The
two methods being compared are maximum likelihood
estimation (MLE) versus maximum likelihood followed
by gradient ascent parameter estimation (GRAPE).

Table 1: Results on Arabidopsis thaliana

method train test nucAcc exonF geneSn

GRAPE CV CV 95 ± 1% 82 ± 2% 49 ± 3%
GRAPE CV H 93 ± 1% 80 ± 2% 44 ± 3%
GRAPE T T 95% 86% 57%
GRAPE T H 94% 81% 48%
MLE CV CV 90 ± 1% 72 ± 2% 33 ± 4%
MLE T T 91% 75% 36%
MLE T H 90% 71% 33%

GRAPE = GRadient Ascent Parameter Estimation, MLE = Maximum Likelihood Estimation only. CV=cross validation, T = training set, H = 1000-
gene hold-out ("test") set. CV in the train column means training on 800 genes from T. CV in test column means testing on 200 genes from T. In 
rows with a CV in either column, numbers are averages from 5 runs. nucAcc = nucleotide accuracy, exonF = exon F score, geneSn = gene 
sensitivity. F = 2SnSp/(Sn+Sp) for Sn = sensitivity and Sp = specificity. CV averages are reported ± SD.

Table 2: Results on Aspergillus fumigatus

method train test nucAcc exonF geneSn

GRAPE CV CV 88 ± 1% 54 ± 4% 35 ± 4%
GRAPE CV H 88 ± 1% 51 ± 2% 29 ± 1%
GRAPE T T 92% 65% 48%
GRAPE T H 87% 51% 31%
MLE CV CV 81 ± 3% 27 ± 8% 16 ± 5%
MLE T T 88% 42% 28%
MLE T H 83% 30% 18%

See Table 1 for legend.
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The train column indicates whether training (i.e., parame-
ter estimation) was performed on the entire training set
(T) or on separate 800-gene cross-validation partitions
(CV). The test column indicates whether accuracy was
measured on the full training set (T), on one-fifth of the
training set (CV), or on the unseen data (H). We will con-
sider the evaluation on H to be the most reliable measure
of gene finder accuracy. For any row containing a CV, we
report the average of five runs, where each run used a dif-
ferent 800-gene subset of the training data for parameter
estimation.

Both tables give compelling evidence for the value of gra-
dient ascent training, as shown in Figure 1. In Arabidopsis,
gradient ascent applied to the full training set improved

over the MLE method from 71% to 81% at the level of
exons and 33% to 48% at the level of whole genes. In
Aspergillus the improvement was even more dramatic:
30% to 51% at the exon level and 18% to 31% for whole
genes. A gain of 4% nucleotide accuracy was measured for
both organisms.

Data partitioning and cross validation
A tangible improvement was still seen when a cross-vali-
dation design was used to split the training set so as to sep-
arate the data used for maximum likelihood estimation
(800 genes) and subsequent gradient ascent (200 genes).
However, results from both organisms suggest that this
separation did not improve the accuracy of the gene
finder, as shown in Figure 2. Indeed, on Arabidopsis, gradi-

Maximum likelihood versus gradient ascentFigure 1
Maximum likelihood versus gradient ascent Gradient ascent parameter estimation (GRAPE) improves accuracy over 
MLE at the nucleotide, exon, and whole gene levels. arab = Arabidopsis thaliana, asp = Aspergillus fumigatus.
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ent ascent training produced greater gains in accuracy
when performed on the entire training set rather than
using the cross-validation structure, while on Aspergillus
the improvement due to using a cross-validation structure
was either small (nucleotide level: 1%), zero (exon level),
or negative (gene level: -2%). Thus, the recommended
training protocol would be to apply MLE to the entire
training set followed by gradient ascent on the full train-
ing set as well.

Although use of a cross-validation structure to split the
training set for the twin purposes of maximum likelihood
estimation of ~90,000 parameters and gradient ascent

refinement of 29 parameters is therefore not justified
(according to the above results), cross-validation does
seem to have some value in terms of predicting how well
the gene finder will perform on unseen data, as suggested
by Figure 3.

On both genomes and at all levels (nucleotide, exon,
gene), accuracy measurements obtained through cross-
validation were closer to the accuracy measured on
unseen data than were the measurements taken from the
full training set, as we expected. This was true both with
and without gradient ascent, though when gradient ascent
was applied, even the cross-validation results were slightly

Data partitioning for gradient ascentFigure 2
Data partitioning for gradient ascent Separating the training set into an 800-gene MLE set and a 200-gene gradient ascent 
set provides no improvement over simply performing MLE and GRAPE on the full training set.
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inflated. The latter observation is presumably attributable
to the "peeking" that was permitted (see Methods),
whereby the gradient ascent procedure received feedback
from the 200 evaluation genes held out from the training
set, T. This suggests that estimating even small numbers of
parameters (in this case 29) from the test set can artifi-
cially inflate accuracy measurements on that set.

Figure 4 illustrates the effects of testing the gene finder on
the training set. As can be seen from the figure, the accu-
racy measurements taken from the training set can be sub-
stantially inflated relative to the more objective
measurements taken from the hold-out set, thereby pro-
moting overly optimistic expectations for how the gene
finder will perform on unseen data.

Discussion
The results presented above provide a clear demonstration
that independent maximum likelihood estimation of sub-
model parameters is sufficiently neglectful of global
GHMM behavior as to compromise gene finder accuracy.
Even such a crude method as our 29-parameter gradient
ascent procedure proved to be effective at significantly
improving accuracy over that achievable by simple MLE
training. The potential for more sophisticated global dis-
criminative training methods to produce even greater
improvements is surely worthy of investigation.

It is interesting to observe that the natural language
processing and speech recognition communities, from
whom HMM-based methods were originally borrowed for

Cross-validation versus testing on unseen dataFigure 3
Cross-validation versus testing on unseen data Cross-validation scores provide a reasonably accurate prediction of per-
formance on unseen data. Results shown for A. thaliana only; results for A. fumigatus are given in Table 2.
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use in bioinformatics, have been moving toward global
discriminative training methods for some time. The two
most popular forms of discriminative training for speech
recognition are Maximum Mutual Information (MMI)
and Minimum Classification Error (MCE). Both methods
can be implemented using an iterative gradient ascent/
descent algorithm. Our approach is most similar in spirit
to that of MCE.

In the case of "pure" (i.e., non-generalized) HMMs, expec-
tation-maximization (EM) update formulas have been
derived for both MMI and MCE. These formulas allow
model parameters to be updated in an axis-oblique (rather
than axis-parallel) manner; i.e., multiple parameters can be

adjusted simultaneously, so that the optimizer is less con-
strained in following the direction of steepest gradient in
parameter space. This may reduce the number of steps
required for convergence. Indeed, more rapid conver-
gence (in terms of numbers of re-evaluation steps) has
been cited as a concrete advantage of these EM-style for-
mulations over more generalized gradient ascent methods
[23]. However, EM-style approaches to the discriminative
training problem for HMMs have typically involved a
number of simplifying assumptions and/or heuristics,
thereby voiding formal assurances of optimality (e.g.,
[17,24,25,18,26]). Furthermore, as with more generalized
gradient ascent procedures, EM often tends to find only a
local optimum rather than a global one [13].

Evaluation on the training setFigure 4
Evaluation on the training set Accuracy measurements taken from the training set were artificially inflated, as expected. 
Results are shown only for A. thaliana; results for A. fumigatus were even more extreme.
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In the case of GHMM-based gene finders, the advantages
of EM over a generalized gradient ascent procedure may
indeed be rather slim. The very flexibility which we find
attractive in GHMMs can be expected to complicate the
derivation of such EM-like update formulas for arbitrary
GHMM-based gene finders, likely requiring additional
assumptions and approximations that would further
compromise the optimality of the EM procedure. It was
for this reason that we decided to employ a more general-
ized gradient ascent method for the present study. A rudi-
mentary gradient ascent optimizer is simple to
implement, and the use of prediction accuracy as an
objective function affords great convenience in approxi-
mating Σ(S,φ)∈TP(φ|S,θ). Although P(φ|S,θ) can be more
directly computed using a modified Forward algorithm
[23], to do so would in theory be no more efficient than
running the full gene finder, since the asymptotic run
times of the Forward and Viterbi algorithms for GHMMs
are equivalent. Nevertheless, inasmuch as the Forward
algorithm provides a more direct approximation of
P(φ|S,θ), its use for this purpose is worthy of
investigation.

There are a number of other variations and enhancements
which we are at present contemplating for our discrimina-
tive trainer. One of these involves the joint training of
pairs of submodels in the GHMM using a maximum dis-
crimination criterion rather than the usual one based on
maximum likelihood. Although such an approach would
not in itself directly attend to the global optimality of the
GHMM (indeed, we already apply such an approach to
our signal sensors during our so-called "MLE" training
regime, as remarked earlier), it would at least seem to offer
a promising direction for improving our existing opti-
mizer and may be feasible without increasing the compu-
tational cost beyond what is practical.

For the present, we feel confident in making the recom-
mendation that others tasked with the training of GHMM
gene finders consider applying an automated gradient
ascent procedure like that described here as a more sys-
tematic alternative to manual tuning of parameters fol-
lowing maximum likelihood training of individual
submodels. Beyond the obvious advantage of likely
improving gene finder accuracy, such an automated
method may offer some degree of reproducibility (not-
withstanding the typically stochastic nature of such meth-
ods) and uniformity for the purposes of comparing gene
finders and gene finding algorithms. In addition, we urge
those practicing manual tuning on their final "test" set to
consider that their reported accuracy results may well be
inflated as a result of "peeking" at the test set before the
final evaluation – a practice that has been criticized in the
field of machine learning (eg., [27]). That significant infla-
tion was seen in our studies as a result of tuning only 29

of the ~90,000 GHMM parameters on the 200-gene "test"
set suggests that the phenomenon may conceivably occur
to some degree even when an automated procedure is not
employed.

Finally, we would like to make note of an unfortunate
consequence of discriminative training of HMMs for bio-
logical sequence analysis, namely, that while the resulting
models may possess improved ability for discrimination
and therefore greater utility for specific tasks such as gene
prediction, their suitability as representative models of
biological knowledge (especially probabilistic knowl-
edge) may well be reduced relative to models induced
with simple MLE techniques. Indeed, some authors in the
field of speech recognition (e.g., [20]) have noted that
more accurate discrimination can sometimes be obtained
by relaxing sum-to-one constraints for probability distri-
butions, thereby permitting the gradient ascent procedure
to automatically discover appropriate weightings between
states or inputs. This is reminiscent of the exon "opti-
mism" parameter which we employ and which seems to
have no principled justification (and indeed, we might
speculate that this extraneous parameter proved useful
precisely because it enabled a primitive form of discrimi-
native training by providing an explicit "correction factor"
or weighting between submodels). Thus, despite the
apparent value of discriminative training in improving
gene finder accuracy, our ability to extract biological
knowledge by inspecting the parameters of a gene finder
trained in this way may be somewhat hindered. For the
present, this does not seem to be of great practical signifi-
cance, but it is a consideration worthy at least of mention.

Conclusions
We have shown that discriminative training for GHMM-
based gene finders is feasible using a rudimentary gradient
ascent approach, and have briefly explored the relation
between this method and the EM-like techniques which
have been proposed in the field of speech recognition.
Our experiments show that the gradient ascent method
can result in a gene finder with substantially greater pre-
diction accuracy. It is our hope that even greater gains in
accuracy will result from extension and refinement of dis-
criminative training techniques applied to GHMM-based
gene finders.

Methods
Description of the GHMM
The gene finder TigrScan [8] is a GHMM-based program
similar to Genie [1] and Genscan [2,28]. The forward-
strand model contains six signal states (donor and
acceptor sites; start and stop codons; promoter; poly-A sig-
nal) and eight content states (intron; intergenic; 5' and 3'
UTR; initial, internal, final, and single exons). The reverse-
strand model mirrors that of the forward strand. Four
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relative frequency histograms are used to estimate the
duration probabilities of the four exon types; the four
noncoding states are assumed to have geometric duration
distributions and are therefore each parameterized by a
single value representing the mean duration. Each content
state is scored using a separate fifth-order Interpolated
Markov Model (IMM) [29]. TigrScan offers a number of
signal sensors, including WMMs, WAMs, WWAMs, and
MDD trees [28] having any of the foregoing signal sensors
as leaf models; for this study we used only (non-MDD)
WAMs, though the order of the Markov chains within the
WAMs was allowed to vary. Putative signals scoring below
a given signal threshold are ignored by TigrScan. This
threshold is chosen separately for each signal sensor so as
to achieve a desired sensitivity Sn (Sn = TP/(TP+FN), TP =
true positive count, FN = false negative count) on a train-
ing set of true and "decoy" signals. "Boosting" of signal
sensors was performed by iteratively retraining each signal
sensor on sets of training features in which the lowest
scoring features were duplicated so as to focus the training
procedure on the most difficult examples. Boosting has
been found to improve signal detection in other applica-
tion areas [30]. Most transitions in the GHMM are oblig-
atory (such as "donor site → acceptor site"); of the non-
obligatory transitions, sum-to-one constraints and the for-
ward/reverse strand equivalence reduce the number
which can be independently varied to just four. Transi-
tions into exon states are modified by an exon "optimism"
multiplier (similar to that described in [6]) which has
been seen anecdotally to be useful in improving predic-
tion accuracy (unpublished data).

Parameters to be optimized
The total number of parameters which need to be esti-
mated when training TigrScan is roughly 90,000; the large
bulk of these are the n-gram statistics comprising the
IMMs used for the content sensors. As an initial attempt at
applying discriminative training to TigrScan, we selected
29 of these ~90,000 parameters to subject to gradient
ascent optimization. Although this is a miniscule propor-
tion of the available parameters, our previous experiences
with hand-tuning our GHMM on other data sets suggested
that these 29 parameters exert a disproportionately large
influence on the accuracy of the gene predictions. By lim-
iting the number of parameters to be optimized we hoped
to both accelerate the training procedure and also reduce
the risk of overtraining. The selected parameters were:

• mean intron, intergenic, and UTR lengths (3)

• transition probabilities (4)

• exon optimism (1)

• WAM size and relative positioning (8)

• WAM order (4)

• signal sensitivity (1)

• number of signal boosting iterations (8)

• skew and kurtosis of exon length distributions

Modifications to skew and kurtosis of exon length distri-
butions were found during early exploration to produce
no improvements; these parameters were therefore left
unchanged in all further experiments. All remaining
parameters were estimated using standard MLE
techniques.

For those runs in which gradient ascent was disabled (see
below), the following methods were used to estimate the
above 29 parameters: mean intron and UTR lengths as
well as transition probabilities were estimated using MLE
from training data; mean intergenic length was set to a
fixed value based on the known intergenic lengths in the
test set; exon optimism was set to zero; remaining param-
eters were selected so as to minimize the misclassification
rate on a set of true and "decoy" signals selected from the
training set.

Objective function and optimization procedure
As an objective function for use by the gradient ascent pro-
cedure, we decided to measure the accuracy of the current
parameterization by running the gene finder on a subset
of the training genes. Our hope was that this accuracy
measure would provide a reasonable approximation of
Σ(S,φ)∈T P(φ|S,θ) by indicating roughly how often the cur-
rent model θ would cause the correct parse φ to be pre-
dicted for training sequence S. We defined the nucleotide
accuracy Anuc as the percentage of nucleotides correctly
classified as coding vs. noncoding; Aexon was defined as an
average of exon sensitivity and specificity (where a pre-
dicted exon is considered correct only if both boundary
coordinates were predicted correctly); and Agene was
defined as the percentage of training genes which were
predicted exactly correctly. These were all rounded to inte-
gral percentages between 0 and 100%. The objective func-
tion was then defined as:

f(θ) = 100Anuc+Aexon+Agene. (4)

The Anuc and Aexon terms were included in an effort to
smooth the function, which would otherwise have been
insensitive to changes not reflected in the number of
genes predicted exactly correctly – i.e., a step function.
Though the Anuc term was given much greater weight for
this study, additional work needs to be undertaken to
determine the most suitable set of weights for our objec-
tive function.
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Parameters were optimized using an iterative gradient
ascent procedure operating in the selected 29-dimen-
sional parameter space, as illustrated schematically in Fig-
ure 5. Steps were taken in an axis-parallel manner (one
step per axis per iteration), with the step size for each axis
decreasing by half whenever a local maximum was
reached on that axis.

Data and experimental design
The quality of a given parameterization θ was measured
by evaluating the objective function f(θ) on a held-out
subset of the training set. The training set was limited to
1000 genes, and all experiments were repeated separately
on two highly divergent species, the model plant Arabidop-

sis thaliana and the pathogenic fungus Aspergillus fumiga-
tus. Five-fold cross-validation was employed, so that the
entire optimization procedure was carried out five times
on four-fifths of the data (800 genes) and each time eval-
uated on the remaining one-fifth (200 genes); accuracy
results reported here were obtained by averaging the five
sets of accuracy numbers obtained from the cross-valida-
tion.

The held-out one-fifth was also used by the gradient
ascent procedure to tune the selected 29 parameters. The
practice of using a held-out set for smoothing or to esti-
mate a small number of additional parameters is common
in the natural language processing field [31], where it is

Gradient ascent trainingFigure 5
Gradient ascent training Schematic diagram of gradient ascent training procedure. Of 29 parameters modified by gradient 
ascent, some (e.g., WAM size) were used to control the MLE estimation procedure, while others (e.g., mean intron length) 
were used directly as parameters to the GHMM. Testing of the gradient direction was performed on the 200-gene cross-vali-
dation set, which was part of the 1000-gene training set, T.
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recognized that such "peeking" at the test set (by which we
mean iterative re-estimation of model parameters from
the training set after receiving accuracy feedback on the
test set) by the training procedure can (unfortunately)
artificially inflate reported accuracy numbers. For this rea-
son, an additional 1000 genes were used for testing the
gene finder after each cross-validation run. The results of
this final testing were not made available to the optimizer,
but are instead reported here as a more objective assess-
ment of final model accuracy. We will refer to the training
set as T and the additional 1000 genes for testing as H.
BLAST [32] was used to ensure that no two genes in T∪H
were more than 80% similar over 80% of their lengths at

the nucleotide level. This training protocol is illustrated in
Figure 6.

Several variations of this experiment were also performed.
To evaluate the utility of splitting the training set and per-
forming MLE and gradient ascent parameter estimation
on separate subsets (as described above), we also per-
formed MLE followed by gradient ascent training on the
full training set T and again evaluated the induced models
on H. To assess whether gradient ascent provided any
improvement in accuracy we also trained a model on T
using only MLE and evaluated that model on H. Although
the virtues of cross-validation have been well explored in
the context of many other applications, we decided to use

Cross-validation experimentsFigure 6
Cross-validation experiments Five-fold cross-validation was used both in the gradient ascent and in the MLE-only experi-
ments. For gradient ascent training, MLE was performed on four-fifths of the training set (T) and then gradient ascent was per-
formed on the other one-fifth. A separate hold-out set (H) of 1000 genes was used to obtain an unbiased evaluation of all final 
models.
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the above experimental design as a convenient opportu-
nity to verify our expectation that it would also prove use-
ful for objective analysis of gene finder accuracy.
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