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Abstract
Background: To examine interactions among the angiotensin converting enzyme (ACE) insertion/
deletion, plasminogen activator inhibitor-1 (PAI-1) 4G/5G, and tissue plasminogen activator (t-PA)
insertion/deletion gene polymorphisms on risk of myocardial infarction using data from 343
matched case-control pairs from the Physicians Health Study. We examined the data using both
conditional logistic regression and the multifactor dimensionality reduction (MDR) method. One
advantage of the MDR method is that it provides an internal prediction error for validation. We
summarize our use of this internal prediction error for model validation.

Results: The overall results for the two methods were consistent, with both suggesting an
interaction between the ACE I/D and PAI-1 4G/5G polymorphisms. However, using ten-fold cross
validation, the 46% prediction error for the final MDR model was not significantly lower than that
expected by chance.

Conclusions: The significant interaction initially observed does not validate and may represent a
type I error. As data-driven analytic methods continue to be developed and used to examine
complex genetic interactions, it will become increasingly important to stress model validation in
order to ensure that significant effects represent true relationships rather than chance findings.
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Background
There is a growing awareness that the failure to replicate
single-locus association studies for common complex dis-
eases may be due to an underlying genetic architecture in
which interactions between genes are the norm rather
than the exception [1,2]. In fact, a recent review of 166
putative single-locus associations found that only six had
been consistently replicated [3].

The angiotensin converting enzyme insertion/deletion
(ACE I/D) polymorphism has been associated with an
increased risk of myocardial infarction (MI) in some but
not all studies [4-8]. One possible explanation for the
inconsistent results is that interaction with another gene
or genes could modify the effect of the ACE DD genotype
on the risk of MI. Accumulating evidence suggests that the
renin-angiotensin system plays a role in regulating fibri-
nolytic balance, maintained primarily by the interplay of
PAI-1 and t-PA levels [9,10]. Either an increase in PAI-1
levels, which promote thrombosis, or a decrease in t-PA
levels, which promote fibrinolysis, shifts the balance
towards thrombosis. Hence, we report the results from a
recent study to examine possible interactions between the
ACE I/D, the plasminogen activator inhibitor-1 (PAI-1)
4G/5G, and the tissue plasminogen activator insertion/
deletion (t-PA I/D) polymorphisms on risk of MI. An
interaction between the ACE DD genotype and PAI-1 4G
allele on risk of MI has been hypothesized as both are
associated with increased PAI-1 levels [11-13] and recent
evidence suggests an interaction between the two poly-
morphisms on plasma PAI-1 levels [14]. An interaction
between the ACE DD and t-PA II genotypes on risk of MI
has also been hypothesized since the ACE DD genotype is
associated with an increased breakdown of bradykinin, a
potent stimulus for t-PA release [15,16] and the t-PA II
genotype has been postulated to interfere with t-PA
release [17].

We used data from 343 matched case-control pairs in the
Physicians' Health Study (PHS) to examine possible inter-
actions among the bi-allelic ACE I/D, PAI-1 4G/5G, and t-
PA I/D polymorphisms on the risk of MI. The standard
analysis technique for such study designs is conditional
logistic regression (CLR). However, it has been suggested
that parameter estimates obtained from a logistic regres-
sion model may be unreliable unless 10–20 events (cases)
per variable are available [18]. In the current study, a total
of 19 parameters must be estimated in the maximum con-
ditional logistic regression model under consideration,
which considers all possible main effects and two-way
interactions among three polymorphisms with three gen-
otypes each (1 for the intercept, 2 each for the main effects
of ACE, PAI-1, and t-PA, and 4 each for the ACE × PAI-1,
ACE × t-PA, and PAI-1 × t-PA interactions). With 343
observed cases, this study has approximately 18 events per

parameter in the full model and is thus on the outer limit
of having an acceptable ratio of events to parameters in
the model. Furthermore, even if the sample size is suffi-
cient to provide adequate parameter estimates, the study
may suffer from low power to detect clinically relevant
interactions. For all of these reasons, when planning the
current study, there were concerns regarding whether the
planned conditional logistic regression analysis would
provide adequate power to detect interactions of interest.

To guard against these concerns, we decided to apply the
multifactor dimensionality reduction (MDR) method to
this data set as well [19]. The MDR method pools multilo-
cus genotypes into a single dimension with two groups,
classified as either high or low risk. The MDR software,
described by Hahn et al. [20], will work with datasets that
contain up to 500 variables and can examine interactions
among as many as 15 genetic and/or environmental fac-
tors. The MDR method was inspired by the combinatorial
partitioning (CP) method of Nelson et al. [21]. Both
methods apply data reduction techniques to address the
problems associated with testing for interactions in high
dimensional data with modest sample sizes. The two
methods differ in the type of outcome variables
addressed. The CP method applies when the outcome var-
iable is continuous in nature while the MDR method
applies when the outcome is categorical in nature (i.e. dis-
ease status).

Ritchie et al. [19] demonstrated that the MDR method was
able to detect a high-order interaction in the absence of
any statistically significant main effects in both simulated
data and among four polymorphisms from three different
estrogen-metabolism genes on the risk of sporadic breast
cancer. Moore and Williams [1] describe an application of
the MDR method for identifying gene-gene interactions in
essential hypertension. Although the MDR method is
equally applicable to detecting main effects as well as
interactions, a major strength of the MDR method is its
ability to detect significant interactions in the absence of
main effects. Previous examinations in the PHS popula-
tion had revealed that none of the polymorphisms of
interest had significant main effects on the risk of MI
[6,22,23]. This lack of main effects make this study an
attractive candidate for applying the MDR method.

However, it is well known that models obtained using
such data-driven methods are prone to increased type 1
errors [24]. Hence, proper validation of such models is
crucial. One of the attractive features of the MDR software
is that it provides a prediction error, an estimate of the
internal validity of the model, as part of the default out-
put. In this paper, we report our experience of having
reported an interaction that was subsequently not con-
firmed in order to emphasize the importance of using
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validation measures, such as the prediction error, when
building models using data driven approaches. We also
investigate whether similar procedures can be used to
derive internal prediction errors using conditional logistic
regression models.

Results
Conditional logistic regression (CLR) approach
Using CLR with backwards selection to choose a final
model, all terms related to t-PA dropped out of the model.
In addition, there were no significant differences between
the DI and II genotypes for ACE nor between the 4G4G
and 4G5G genotypes for PAI-1 on risk of MI. Hence the
final model consisted of four groups: the combinations of
the ACE polymorphism dichotomized into DD or not DD
(DI or II) and the PAI-1 polymorphism dichotomized
into at least one 4G allele present or not (4G4G or 4G5G
vs. 5G5G). Based on this final model, there was a signifi-
cant interaction between the ACE and PAI-1 polymor-
phisms (p = 0.02).

Multifactor dimensionality reduction (MDR) approach
We repeated the analysis using the MDR method with 10-
fold cross validation [19,20,25]. The MDR analysis was
conducted in two ways: 1) using three separate genotypes
for each polymorphism, and 2) using the dichotomous
groupings for the polymorphisms suggested by the litera-
ture (recessive models for the ACE D and t-PA I alleles and
a dominant model for the PAI-1 4G allele).

Table 1 displays the minimum prediction error and cross-
validation consistency for the best 2-factor and 3-factor
model for each situation. The two-locus model including
the ACE and PAI-1 polymorphisms, with the dichoto-
mous groupings suggested by the literature, simultane-
ously minimized prediction error and maximized the
cross-validation consistency. This model had a cross vali-
dation consistency of 100%, which was marginally signif-
icant with permutation testing (p = 0.09).

Figure 2 summarizes the two-locus genotype combina-
tions of ACE and PAI-1 associated with high and low risk
for MI. Note that the pattern of high-risk cells for the ACE
polymorphism differs across the columns representing
the PAI-1 polymorphism. Such differences are evidence of
a gene-gene interaction. When the dichotomy suggested
by the MDR approach was input into a logistic regression
model, those participants classified as "high-risk" had a
significantly higher risk of MI compared to those classified
as "low-risk" (OR = 1.44, 95% CI: 1.06–1.95).

Comparing the results
Both approaches have substantially reduced the dimen-
sionality of the data, although the amount of dimension-
ality reduction differs slightly. The final model chosen
from the backwards CLR approach reduces the data to a
set of four groups while the MDR approach, by definition,
reduces the data to two groups. However, the conclusions
obtained from the two methods were consistent with both
suggesting a possible interaction between the ACE I/D and
PAI-1 4G/5G polymorphisms on the risk of MI. Table 2
shows the relationship between the ACE DD genotype
(versus not DD) and risk of MI, separately for the two PAI-
1 groupings based on both analyses. In both analyses,
among those with at least one PAI-1 4G allele, individuals
with the ACE DD genotype had a significantly higher risk
of MI as compared to those who carried the ACE DI or II
genotypes (CLR: OR = 1.50, 95% CI: 1.04–2.17; MDR: OR
= 1.44, 95% CI: 1.06–1.95). In contrast, among those
with the PAI-1 5G5G genotype, individuals with the ACE
DD genotype had a significantly lower risk of MI com-
pared to those who carried the ACE DI or II genotypes
only in the MDR analysis (CLR: OR = 0.58, 95% CI: 0.29–
1.17; OR = 0.69, 95% CI: 0.51–0.94). This is due to the
fact that there is an inverse relationship between the two
odds ratios in the MDR analysis (0.69 = 1/1.44) since we
are simply reversing the combinations of the ACE poly-
morphism defined as high and low risk for different com-
binations of the PAI-1 polymorphism (see Figure 2).

Table 1: Summary of Results for MDR Models Fitting (a) Three separate genotypes for all polymorphisms and (b) Using the 
dichotomous grouping for the polymorphisms suggested by the literature (ACE DD vs. not DD, PAI-1 presence of 4G allele vs. 5G5G, tPA 
II vs. not II).

# of Loci Loci Included in Best Model Cross-Validation Consistency Prediction Error

Fitting Three Separate Genotypes for All Polymorphisms:
2 ACE, PAI-1 86% 51%
3 ACE, PAI-1, t-PA 100% 51%

Using Dichotomous Groupings:
2 ACE, PAI-1 100% 46%
3 ACE, PAI-1, t-PA 100% 46%
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For this example, both approaches would lead to the same
model for the prediction of future responses. In a similar
data set, we would 'predict' a subject to be a case if they
have the combination of a) ACE DD and either PAI-1
4G4G or 4G5G or b) PAI-1 5G5G and either ACE DI or II.
Similarly, we would 'predict' someone in a similar data set
to be a control if they have the combination of a) ACE DD
and PAI-1 5G5G or b) either ACE DI or II and either PAI-
1 4G4G or 4G5G. The discrepancy in the number of
groups becomes important if we wish to make statements
about the excess risk associated with each group. For
example, is the amount of excess risk for having an MI the
same in the two "high-risk" groups or is the amount of
excess risk higher in one group than the other. One way to
address this question would be to further divide the high
and low risk groups following an MDR analysis. Obvi-
ously, this is an important area of future research.

As with all statistical analyses, replication and validity of
findings is necessary to separate true relationships from
chance findings. One advantage of the MDR method is
that it provides the average prediction error, an internal
validation measure that protects against finding chance
associations in the sample. Although the original analysis
suggested a marginally significant interaction between the
ACE and PAI-1 polymorphisms on the risk of MI, the min-
imum prediction error of 46.2% is not significantly lower
than the value of 50% that would be expected by chance
(p = 0.15). This suggests that the model may not be effec-
tive for classification of risk of MI. Concern regarding the
failure to obtain a satisfactory prediction error is only
exacerbated by the well-known problem of overestima-
tion common to such data-driven analysis methods
[18,24].

Summary of the steps involved in implementing the MDR methodFigure 1
Summary of the steps involved in implementing the MDR method.
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Summary of two-locus ACE I/D and PAI-1 4G/5G genotype combinations associated with high risk and low risk for myocardial infarction from MDR analysis with the lowest prediction errorFigure 2
Summary of two-locus ACE I/D and PAI-1 4G/5G genotype combinations associated with high risk and low risk for myocardial 
infarction from MDR analysis with the lowest prediction error. For each genotype combination, the number of cases is dis-
played in the left bar while the number of controls is displayed in the right-box. Darker shade indicates the high risk group. 
Note that the pattern of high and low risk for the ACE polymorphism differs depending on the value of the PAI-1 polymorphism. 
This is evidence of epistasis or gene-gene interaction.

Table 2: Odds Ratios and 95% Confidence Intervals For ACE DD vs. ACE DI or II, Stratified by PAI-1 Polymorphism Status

CLR MDR

Not DD ACE DD

PAI-1 5G5G 1.00 Ref. 0.58 (0.29, 1.17) 0.69 (0.51, 0.94)
4G4G or 4G5G 1.00 Ref. 1.50 (1.04, 2.17) 1.44 (1.06, 1.95)

(CLR = Conditional Logistic Regression, MDR = Multifactor Dimensionality Reduction)

High-Risk
Low-Risk

4G4G 4G5G 5G5G

DD

DI

II

PAI-1

ACE

96 71

173

194

2717

57 51
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We had not originally calculated an internal prediction
error as part of our CLR analysis. In fact, most standard
statistical software packages do not provide such internal
validation measures by default with CLR approaches. This
motivated us to investigate whether and, if so, by what
procedures, we could derive an internal prediction error
using CLR models. The SAS macro CVLR [Clinton T.
Moore, U.S. Geological Survey, Patuxent Wildlife
Research Center, personal correspondence] allows one to
perform cross-validation with logistic regression models.
However, using the fact that the conditional likelihood for
one-to-one matched pairs is the same as the uncondi-
tional likelihood for a logistic regression model where the
response is always equal to one [26], the CVLR macro
allows performing cross-validation with conditional
logistic regression models as well. To parallel the internal
validation of the MDR approach, ten-fold cross-validation
with the CVLR macro was used to determine the predic-
tion error of the final CLR model. The observed prediction
error of 42% suggests a limited predictive ability of this
model, casting doubt on its clinical utility. This illustrates
that the additional effort required to obtain such predic-
tion errors with CLR models can suggest which seemingly
significant interactions are not likely to validate in subse-
quent samples.

External validation sample
After this initial analysis, we were left with a significant
gene-gene interaction that did not appear to validate inter-
nally. An external validation using an independent data
set obtained from a study design as similar as possible to
the present study could help gain further insight as to
whether or not this significant interaction was scientifi-
cally important [27]. Due to the fact that monitoring for
cardiovascular events is ongoing in the PHS, after comple-
tion of the original study an additional 141 cases, which
were not included in the original sample and had been
genotyped for the ACE and PAI-1 polymorphisms,
became available. For each of these cases, a single control
was selected at random from the remaining study partici-
pants using the same matching criteria as in the original
study. This independent sample of 141 matched case-con-
trol pairs was appreciably smaller than the sample in the
original study. Hence, concerns regarding adequate power
were magnified in this validation sample and failure to
validate the significant finding in this sample does not
preclude the presence of an effect. Nevertheless, given the
failure of the finding to internally validate, computing the
prediction error on the external sample may further sug-
gest that the initial significant finding does not validate,
particularly since the initial prediction error is typically
underestimated.

One complicating factor was that genotyping methods
had changed since completion of the initial study. The ini-

tial study used assays for each individual polymorphism,
which have been described in detail elsewhere [6,22,23].
Multilocus genotyping assays were used for the validation
sample [28,29]. However, since the majority of the partic-
ipants in the initial study (95%) had been re-genotyped
using the newer methods, we were able to confirm that
the rate of agreement between the two methods was 97%
and 93% for the ACE and PAI-1 polymorphisms,
respectively. Additionally, we obtained the same conclu-
sions when we repeated the original analysis replacing the
original genotyping results with the results using the
newer method. Thus, we present results using the original
genotyping methods for the initial sample and the multi-
locus genotyping methods for the validation sample.

Figure 3 summarizes the distribution of cases and controls
in the validation sample for the two-locus genotype com-
binations of ACE and PAI-1. The shading in the figure cor-
responds to the classification of that genotype
combination in the original analysis (darker = high-risk &
lighter = low-risk). Each genotype combination contains a
nearly even split of cases and controls, with 48.9% of sub-
jects in the validation sample misclassified using the
groupings from the original model. This further suggests
that the significant interaction observed in the initial sam-
ple of 343 matched case-control pairs may not hold up
under further scrutiny.

Conclusions
For studies attempting to examine possible interactions
among two or more genetic polymorphisms, traditional
methods such as conditional logistic regression may
either prove infeasible due to combinations of factors
with no observations or have limited power to detect clin-
ically relevant interactions due to a low number of events
per parameter in the model. The MDR method was pro-
posed as a possible solution in such settings. However,
this example does not fully illustrate the potential of MDR
since it is within the capabilities of standard CLR. In these
instances, one would hope that the conclusions obtained
from the MDR analysis are consistent with those obtained
from the more traditional CLR analysis. In fact, we
obtained a significant interaction between the ACE and
PAI-1 polymorphisms on risk of MI using both methods.
The magnitude of the risk was substantial (1.5-fold
increase in risk for those with the combined ACE DD gen-
otype and at least one PAI-1 4G allele) and comparable to
that of other risk factors for which interventions are
undertaken. The fact that the MDR analysis led to the
same conclusions as the more traditional CLR analysis in
this example supports the fact that the MDR method is
useful for analyzing data in situations where traditional
methods cannot be applied. In many instances, research-
ers might attempt to publish such significant findings.
However, the model validation procedures built into the
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MDR method suggest that, although the model was
significant, there was poor internal validation. In addi-
tion, applying the MDR method to an independent vali-
dation sample drawn from the same study population
suggested a lack of external validation as well. This nega-
tive result upon cross-validation is informative and serves
as a stern warning that researchers should not publish sig-
nificant results in genetic interaction studies without
looking at model validation measures. We strongly feel
that the lack of validation in this example arises due to the
fact that the initial finding may be a type 1 error. Had we
published the initial significant findings without model
validation, readers (and future researchers) may have
been led to accept a result that, upon further review, may
prove to be a type 1 error. This is a serious problem that

explains why many published, significant findings are not
replicated [30,31].

Although one cannot completely rule out the fact that the
lack of validation may be due to an improper modeling
method or poor data quality, we feel that this is highly
unlikely in this situation. First, the PHS data set is known
to be of high quality and has been one of the most widely
published studies with regards to genetic determinants of
disease. Furthermore, all analyses using PHS data must be
verified by an independent statistical reviewer before the
PHS team will release the data for publication. Second,
although the MDR method is new, it can be shown that
the classification method used by MDR once a combina-
tion of SNPs has been selected is no different than a Bayes

Summary of two-locus ACE I/D and PAI-1 4G/5G genotype combinations in the independent validation sampleFigure 3
Summary of two-locus ACE I/D and PAI-1 4G/5G genotype combinations in the independent validation sample. Darker shade 
indicates those combinations that were classified as high-risk in the original analysis while lighter shade indicates those combi-
nations that were classified as low-risk in the original analysis. Note that each genotype combination contains a nearly even 
split of cases and controls. Hence the significant interaction observed in the initial dataset does not appear to validate.

High-Risk
Low-Risk

4G4G 4G5G 5G5G

DD

DI

II

PAI-1

ACE

36 31

75 77

1211

19 21
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classifier and is equivalent to the gold standard in data
mining and machine learning. Finally, application of
MDR to real data sets has revealed evidence of gene-gene
interactions with statistically significant cross-validation
prediction errors as low as 20% in data sets with smaller
sample sizes than that analyzed in this study. Due to the
reasons stated above, we feel that it is highly unlikely that
the negative validation result is due to an improper mod-
eling method or poor data quality.

In the original CLR analysis, we did not initially calculate
an internal prediction error as this measure is not rou-
tinely reported nor is it included in the output of most
standard logistic software packages. Using a special user-
written macro to perform cross-validation, we have
shown that an internal prediction error may be computed
with CLR analyses. Furthermore, we have demonstrated
that such internal prediction errors can provide the same
information regarding the validity of the model as that
obtained using the MDR approach. Although the
construction of a prediction error from logistic regression
using cross validation is not a novel result, we believe that
this deserves wider attention. We recommend that, until
prediction error capabilities are added to standard logistic
regression software, users consider ways to compute these
statistics to facilitate the standard reporting of internal
prediction errors when examining genetic interactions in
such models.

The primary conclusion of this study is that validation of
genetic models using independent samples plays an
important role in model-building using data-driven
methods such as multifactor dimensionality reduction
(MDR). Although there is general agreement regarding the
importance of model validation, this problem is too often
ignored in published research. As Altman and Royston
[18] state, "It is striking that the statistical problem of
overoptimistic prediction is mentioned in very few prog-
nostic studies...". They offer several reasons for this,
including the fact that correction for overestimation often
leads to less significant, and hence less impressive, results.
The purpose of research is not to obtain 'significant p-val-
ues' (statistical significance), but to uncover relationships
between variables and outcomes that can lead to
improved treatments, therapies, or understanding of dis-
ease processes (scientific, public health, or clinical signifi-
cance). As data-driven methods are developed to examine
complex genetic interactions, it will become increasingly
important to stress model validation in order to ensure
that significant effects represent true relationships rather
than chance findings.

Methods
PHS example
These data are from a nested case-control study involving
participants from the PHS, a randomized, double-blind,
placebo-controlled trial of aspirin and beta carotene in the
prevention of cardiovascular disease and cancer in a
cohort of predominantly white, male U.S. Physicians [32].
For the study described in this paper, 343 cases were iden-
tified who developed an MI during follow-up and had
been genotyped for the ACE, PAI-1, and t-PA polymor-
phisms. For each case, a single control was selected at ran-
dom from the subset of study participants who had been
genotyped for the three polymorphisms of interest and
remained free of cardiovascular disease during the follow-
up period. Controls were matched to the cases on age (+/
- 1 yr), time since study initiation (+/- 6 months), and
smoking history (current, past, never).

Conditional logistic regression approach
Our originally planned analysis utilized CLR models with
backwards selection to choose a final model. The 'full
model' consisted of the 19 parameters described above.
With the exception that we did not allow the removal of
main effects terms for a polymorphism until all interac-
tion terms involving that polymorphism had been
removed, at each step, the term with the highest p-value
(provided it was greater than 0.20) was removed from the
model and the model was refit with all remaining terms.
This process was continued until no remaining terms
could be removed. Furthermore, because the existing liter-
ature suggests that any possible effects may be due to the
ACE DD genotype [11-13,15,16], the presence of the PAI-
1 4G allele [11-13], or the t-PA II genotype [17], we
allowed for the collapse of appropriate genotypes if no
significant difference was suggested by the model (i.e. we
considered a recessive model for the ACE D and t-PA I alle-
les and a dominant model for the PAI-1 4G allele). After
obtaining the 'final model', the primary hypothesis was to
test whether the effects of the ACE I/D polymorphism on
the risk of MI depends on the presence of the PAI-1 4G/5G
or t-PA I/D polymorphisms.

We repeated the backwards selection process including
such known MI risk factors as hypercholesterolemia,
hypertension, diabetes mellitus, body mass index, exer-
cise, alcohol intake, angina, and randomized treatment
assignment to aspirin as factors. Controlling for these
known risk factors made no material difference in the
odds ratios and corresponding confidence intervals
related to the ACE and PAI-1 interaction. Furthermore,
although the MDR methods allow the inclusion of
covariates, the use of these methods in the presence of
known covariates makes it much harder to disentangle the
final model. For these reasons, we present only the unad-
justed analyses in this manuscript.
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MDR approach
Figure 1 illustrates the general steps involved in imple-
menting the MDR method for matched case-control stud-
ies. First, a set of genetic and/or discrete environmental
factors of interest are identified. Next, the MDR method is
applied in the following stepwise manner: 1) The
matched pairs are randomly divided into 10 equal sub-
sets. The data are then divided into a training set (e.g. 9/
10 of the matched pairs) and an independent holdout set
(e.g. 1/10 of the matched pairs) as part of cross-validation.
The MDR model is developed on the training sample. 2)
Some set of n factors are selected from the pool of all fac-
tors. 3) The n factors and their multifactor cells are repre-
sented in n-dimensional space. For example, for two
polymorphisms with three genotypes each, there are nine
two-locus genotype combinations. 4) The ratio of cases to
controls is computed in each multifactor cell in n-dimen-
sional space. Each multifactor cell is labeled as "high-risk"
if the number of cases exceeds the number of controls.
Otherwise, the multifactor cell is labeled as "low-risk".
This process reduces the n-dimensional multifactor classes
into a one-dimensional model with two multifactor
classes: high-risk and low-risk. 5) Steps 2–4 are repeated
for all other n factor combinations and the n factor model
chosen which has the fewest misclassified individuals in
the training set as the 'best' n factor model. 6) The classifi-
cation from the 'best' n factor model is used to predict
disease status for the remaining 1/10 of the data (i.e. the
holdout set). By necessity, empty cells in either the train-
ing or holdout sample are ignored since there is nothing
to predict. The proportion of subjects is computed in the
holdout set for which an incorrect prediction was made.
The 10-fold cross validation is repeated for each possible
9:1 split of the data.

To protect against chance divisions of the data, the 10-fold
cross validation is repeated ten times, i.e. the matched
pairs are shuffled 10 times into 10 equal subsets and the
cross validation is applied to each possible 9:1 split for
each of the 10 shufflings. Finally, for the 'best' n factor
model, two statistics are reported: 1) The prediction error
is the average of the 100 estimates of the proportion of
subjects in the holdout set for which an incorrect predic-
tion is made. 2) The cross-validation consistency is the
percentage of times a particular set of n factors are identi-
fied across the 100 cross-validation data sets.

The MDR approach first considers all two-factor combina-
tions and chooses the single "best" two-factor model with
the lowest prediction error among all two-factor combina-
tion models. This process is then repeated among all pos-
sible higher order factor combinations, with a "best"
model chosen at each step. From the set of best models,
we choose the model which minimizes the prediction
error and/or maximizes the cross-validation consistency.

When several models achieve the same prediction error
and cross-validation consistency, the smaller model is
chosen for parsimony. For example, in the PHS data, the
best two-factor model is chosen from the 3 possible two-
factor models (ACE &PAI-1, ACE &t-PA, PAI-1 &t-PA) and
compared to the three-factor model containing all three
polymorphisms. The model that minimizes the predic-
tion error is chosen as the final model. The significance of
the final model is determined using a permutation test.
For each of 1000 permutations, the matched pairs are per-
muted by flipping the case-control status within a pair
with a probability of 0.50, a new best model is selected,
and the minimum prediction error from the best model is
tabulated. This provides an empirical distribution of the
average prediction error or cross-validation consistency
under the null hypothesis of no association. The p-value
for the observed prediction error or cross-validation con-
sistency is computed by comparing its value to this empir-
ical distribution.

Although useful in a wide variety of situations, the MDR
method is not without its shortcomings. First, when MDR
methods are used in the presence of main effects or
known important covariates, it becomes much harder to
disentangle the final model. For example, if an MDR anal-
ysis suggests that the optimal model contains four factors,
in many cases it is not readily clear whether this final
model represents a four-way interaction, two separate
two-way interactions, two main effects and a two-way
interaction, etc. This is clearly an important area of future
research. Also, MDR assumes that there is no genetic
(locus) heterogeneity. For example, if half of the individ-
uals were affected due to two loci and the other half due
to two other loci, there would be a decrease in MDR power
since the cross-validation consistency would be lower and
the prediction error higher for either pair of loci [25].
Genetic heterogeneity severely impacts power and future
research is needed to address this problem.
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