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Abstract
Background: Existing sequence alignment algorithms assume that similarities between DNA or
amino acid sequences are linearly ordered. That is, stretches of similar nucleotides or amino acids
are in the same order in both sequences. Recombination perturbs this order. An algorithm that can
reconstruct sequence similarity despite rearrangement would be helpful for reconstructing the
evolutionary history of recombined sequences.

Results: We propose a graph-based algorithm for combining multiple local alignments to a query
sequence into the single combination of alignments that either covers the maximal portion of the
query or results in the single highest alignment score to the query. This algorithm can help study
the process of genome rearrangement, improve functional gene annotation, and reconstruct the
evolutionary history of recombined proteins. The algorithm takes O(n2) time, where n is the
number of local alignments considered.

Conclusions: We discuss two example applications of the algorithm. The algorithm is able to
provide useful reconstructions of the metazoan mitochondrial genome. It is also able to increase
the percentage of a query sequence's amino acid residues for which similar stretches of amino acids
can be found in sequence databases.

Background
The introduction of the Smith-Waterman local alignment
algorithm [1] and the subsequent development of the
FASTA [2] and BLAST [3,4] database search tools has rev-
olutionized comparative sequence studies. In the age of
completely sequenced genomes, these algorithms are
often used to compare a DNA or protein sequence of
unknown function – a query sequence – with one or more
reference sequences. Such reference sequences are often
contained in databases of many thousand DNA or protein
sequences. If the query sequence is similar to one or more

reference sequences with known function, an informed
guess about the function of the query sequence is possi-
ble. Sequence alignment algorithms, by their nature,
assume that similarities between pairs of sequences are
linearly ordered (homologous residues occur in the same
order in both sequences). Thus, these algorithms are not
well-suited to compare sequences that have undergone
rearrangements through recombination. However, during
evolution, rearrangements of genomic DNA occur fre-
quently and on all scales, from individual genes to entire
genomes. To give but a few examples: the mouse
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chromosome 16 shows substantial regions of synteny
(blocks of genes with conserved order) to six different
human chromosomes [5]; a comparison of metazoan
mitochondrial genomes demonstrated that the gene
orders between the major metazoan phyla are often essen-
tially random with respect to each other [6]; the genomes
of three yeast species closely related to the baker's yeast S.
cerevisiae show identifiable inversions and translocations
in comparison to that yeast [7]; and Seoighe and Wolfe
estimate that baker's yeast itself has undergone roughly 84
reciprocal translocations since a whole-genome duplica-
tion event roughly 100 Mya [8].

The question of how to deduce the number and order of
rearrangements that have occurred between any two
genomes has been the subject of intense research because
such rearrangements can be used for phylogenetic infer-
ence (see for instance [9,10]). Here we address an even
simpler question: How can one extend existing sequence
comparison algorithms such that they are no longer sensi-
tive to the linear ordering of sequence similarity? Doing so
would permit an automatic comparison of two or more
sequences for which rearrangements have occurred and an
identification of the rearranged sequence fragments. The
algorithm we propose achieves this goal. It combines local
alignments between a query and one or more reference
sequences without regard to the alignments' order in the
reference sequence(s). The algorithm is equally applicable
to short and long (genome-scale) sequences and to nucle-
otide and amino-acid sequences. The algorithm is also
agnostic about how local alignments are generated (i.e.
using BLAST, [3,4]; FASTA, [2]; or dynamic programming,
[1]).

Aside from being a starting point for reconstructing the
rearrangement history of genomes [10], the algorithm
also has other uses. First, it can give clues about the evolu-
tionary origins of proteins: Protein-coding genes often
contain multiple functional modules or domains, and
similar domains occur in various combinations in differ-
ent proteins [11-15]. Such combinations of domains have
come about through recombination, and the algorithm
can easily and automatically identify recombined proteins
in large databases of protein sequences.

Second, the algorithm may help infer a query sequence's
function from database searches in cases where the query
sequence shows similarity to short regions of several data-
base sequences, but where there is no single database
sequence with similarity extending over most of the
query's length. For such query sequences, it may some-
times be possible to infer function by combining informa-
tion from multiple partial matches. Current sequence
database search tools are less than ideal for this purpose.
They return lists of reference sequences ordered by the sta-

tistical significance of their similarity to the query. Such
lists of matches, however, cannot be readily converted
into a single combination of alignments for use in func-
tional inference. Our algorithm solves this problem.

Below, we first discuss how to optimally combine multi-
ple local matches to a query sequence into one alignment
combination. Then, we evaluate the statistical significance
of these alignment combinations. Specifically, we pro-
pose two distinct optimality criteria for use when combin-
ing alignments. The algorithm takes a very similar form
for both criteria. The first criterion is to select the one com-
bination of alignments (out of all possible such combina-
tions) that covers the maximum number of sites in the
query sequence. Figure 1A illustrates this idea. The second
criterion uses alignment scores: the sum of match, mis-
match, and gap scores for an alignment, usually based on
a cost matrix such as PAM [16,17] or BLOSUM [18]. One
might ask why we have chosen raw alignment scores
rather than a measure of alignment significance such as E
or P value. The reason is that E-values are not additive
across alignment combinations (see equation 2) and
hence cannot be evaluated by our algorithm.

We refer to the combination of alignments selected under
either criterion as the "Optimal Alignment Combination"
(OAC). Unfortunately, as the number of local alignments
to a query sequence grows, the number of possible com-
binations of local alignments increases very quickly. In
the worst case when no two local alignments overlap, 2n

such combinations are possible (although in this special
case finding the OAC is trivial). Note that n can be very
large in realistic applications: Programs such as BLAST
may return many hundreds of database matches when
performing whole genome comparisons. Clearly, an
exhaustive search for the OAC can be computationally
demanding. However, our algorithm can determine an
OAC in O(n2) time, where n is the number of initial local
alignments.

Algorithm description
We represent each local alignment as a node in a directed
graph (see Figure 1A). Each node m is given a name, as
well as a starting position mstart, a length mlen and the score
mscore of the alignment corresponding to it.

We sequentially process each node m, checking all other
nodes n to see if they meet the following criterion

mstart + mlen - 1 ≤ nstart + overlap

Note that mstart + mlen - 1 gives the end position for the
alignment represented by m. A directed edge is added
from m to n in any case where the above criterion is met.
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The maximal coverage alignment problemFigure 1
The maximal coverage alignment problem: For a query sequence to which multiple local alignments (through standard 
alignment methods or database search) have been generated, we wish to pick the combination of local alignments that covers 
the maximum proportion of the query sequence. A) Representing a series of alignments as a graph. Each lettered alignment is 
shown as a node. Letters indicate the order of these sequences in the reference sequence (i.e. the fourth alignment is letter "a" 
because it occurs first in the reference sequence). Edges join nodes with permissible overlap. The path through this graph cor-
responding to the OAC is shown with darkened arrows. At right is a representation of some of the data stored by each node 
and edge. The five most important pieces of information stored in the nodes are the starting position and length of the align-
ment (start and len), the alignment score (if that is used as an objective function), the sequence alignment for the node in ques-
tion (needed when overlap is permitted and alignment scores are the objective function) and the list of "in nodes:" those nodes 
with a directed edge leading to the current node. Edges store the extent of overlap between the nodes they connect (which is 
also easily calculated from the two nodes' values of start and len. B) Pseudo-code implementation of the last step in our algo-
rithm, the depth-first search (see text). The dot (.) operator represents access to data structure members.

1) Sub recurse_search (node) {

2) Foreach (i ∈ node.in_nodes) {
3) If (i.Done = FALSE)

4) recurse_search(i)

5) }

6) best_so_far=0

7) Foreach (i ∈ node.in_nodes) {
8) If (i.best+node.len-edges{node,

i}.over > best_so_far) {

9) node.best=i, 

10) best_so_far= i.best+node.len 
-edges{node,i}.over

11) }

12) }

13) node.Done=TRUE;

14) }
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Overlap is an integer greater than or equal to zero. Its use
in the above expression reflects the fact that we allow local
alignments to overlap by a limited amount, because align-
ments may not end exactly where sequence similarity
does. Nodes representing alignments with overlapping
regions longer than overlap are not connected by edges:
they cannot co-occur in any alignment combination. A list
is kept of every node with an out-degree of 0. These nodes
are potential end points for the OAC, since there are no
other alignments which end after them relative to the
query.

The final step in our algorithm is a variant of a depth-first
search [19] of the graph, starting from each of the nodes
of out-degree 0. The pseudo-code shown in Figure 1B
describes this search. The code is shown with the longest
combination as the optimality criterion. We discuss the
algorithm with this optimality criterion first and then dis-
cuss the minor changes required to use alignment scores
as the optimality criterion.

Our algorithm is a divide-and-conquer approach based
on the observation that membership in alignment combi-
nations that can be part of an OAC is associative. This
associatively means that if nodes m and n can occur in an
optimal alignment combination, and if n and o can occur
in the combination, then m and o can also occur in the
optimal alignment combination. Practically, this means
that it is possible to recurse through the graph, picking for
every node the combination of ancestors – nodes repre-
senting alignments starting before the current node's
alignment on the query sequence – that gives the longest
combination up to and including that node. The depth-
first ordering of the nodes in the search guarantees that all
of a node's ancestors will have been processed already and
that their best combination of alignments will be known
by the time the node is visited. In other words, as nodes
are processed in the search, the OAC problem is solved up
to the currently visited node.

Figure 1B describes this search, showing a recursive rou-
tine recurse_search that analyzes a node "node". The rou-
tine first steps through each node i in the list in_nodes,
which contains all nodes who have outgoing edges
pointed at the current node. Each node i is checked to see
if it has already been processed (lines 2–5 in Figure 1B),
in which case i.Done has the value TRUE. For any i where
i.Done is FALSE, recurse_search is called recursively for that
node (line 4).

Once this recursion is complete, the algorithm finds the
best alignment combination up to the current node node
as follows. First, note that the length of the best combina-
tion for a node is stored in its variable best. To determine
node.best, each member i of in_nodes is examined to see if

it forms the best combination when combined with node
(lines 7–11). The best combination for each node i (i.best)
is already known as a result of the depth-first search order-
ing. To create a combination including the current node,
the algorithm adds this i.best value to the length of the
alignment corresponding to the current node (node.len),
subtracting any overlap (over). The value of over is
obtained from the data structure edges{node, i}, which
returns this value in O(1) time (lines 8 and 10).

For each node i, we compare i.best+node.len – over (line 8)
to the best alignment combination found so far
(best_so_far). If the new combination is better, it replaces
best_so_far. When this loop over all nodes i has completed,
best_so_far must contain the best combination; that length
is assigned to node.best (line 10).

After the depth-first search from each node of out-degree
0 (see above) is complete, one simply has to examine each
of these nodes with out-degree 0 to find the one associ-
ated with the combination of alignments with the largest
number of residues in it. This, by definition, is the OAC.

When looking for the largest alignment score rather than
the longest alignment combination, two modifications to
the above routine must be made. In the first place,
node.score replaces node.len in lines 8 and 10 of figure 1B.
This has the effect of selecting combinations with high
scores rather than long combinations. The second modifi-
cation comes in calculating the value of over. If over were
not computed, the score of any overlapped residues
would be counted twice: once in node.score and once in
i.score. Thus, over must be determined using the two align-
ments, which are held in the data structures node.align-
ment and i.alignment. Knowledge of the alignment score
scheme used (for instance BLOSUM62 with a gap opening
penalty of -12 and an extension penalty of -2) then allows
one to calculate the score of the two combined alignments
with the overlapping residues counted only once. All
other details remain the same for this optimality criterion.

Statistical significance of OACs
To evaluate the statistical significance of an alignment,
programs such as BLAST typically determine expectation
values (E-values). An E-value gives the expected number
of chance hits having an alignment score at least as high
as that observed, given the size of the database used in the
search. Analytic descriptions of the statistics of ungapped
alignments and their expected scores are known [20].
Although it has not been formally shown that gapped
alignments obey the same distributions as do ungapped
alignments, there is considerable empirical evidence that
this is the case [21]. Karlin and Altschul have given a for-
mula for computing a P-value – a measure of significance
closely related to an E-value – for the sum of the scores of
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an alignment combination, which we use here to com-
pute the significance of our combinations [22] (but see
also [21]). Their analysis allows the calculation of a P-
value for the combination of r different alignments, given
the scores of those alignments (Si) and two parameters (K
and λ) that characterize the alignment scoring matrix used
(for example BLOSUM [18]). Specifically, the probability
of seeing a combination of alignments where the sum of
the normalized alignment scores (given by

) is at least as large as some critical

value t is given by:

If we assume that the number of cases in a random data-
base where T exceeds the Tobs from our real data follows a
Poisson distribution, we can use this P-value to obtain E
(see [20] for details). For alignments of practical impor-
tance, P is small (<10-2) and in that case P and E-values are
essentially identical.

We note that combinations of alignments will always
have a lower net E-value than a single alignment of the
same alignment score, since E-values decrease exponen-
tially with increasing alignment score. We illustrate this
point with a simple example involving the duplicate S.
cerevisiae genes SSA1 and SSB1. In the first comparison, we
aligned SSA1 against the complete sequence of SSB1. This
resulted in an alignment of length 582, a (non-normal-
ized) score of 1814, and an E-value of 7.0 × 10-189. We
next split the SSB1 sequence into two equally sized pieces
and aligned those pieces to SSA1. These two non-overlap-
ping alignments were input into our algorithm for finding
OACs. The result was an alignment combination of 582
residues with an E-value of 1.8 × 10-182. When considered
separately, the alignment of SSA1 to the first half of SSB1
has a score of 1043 and an E-value of 3.5 × 10-107. The
alignment of SSA1 to the second half of SSB1 has a score
of 771 and an E-value of 2.3 × 10-78.

Note that the E-values of the global alignment and the
OAC are different (7.0 × 10-189 versus 1.8 × 10-182) even
though the sum of the independent alignment scores
(1043 + 771) was equal to the alignment score when the
full-length genes were aligned (1814).

Performance
An arbitrary graph of n nodes can have at most O(n2)
edges (one edge between every possible pair of nodes).
The above algorithm visits every edge in the graph three
times: once initialising the graph, and twice in the above
search procedure. Thus, the worst case of the algorithm, in

running time and memory, is O(n2). In other words, the
running time of the algorithm has an upper bound pro-
portional to the square of the number of alignments. Real-
world performance is also acceptable: a list of 580 local
alignments can be processed in less than 70 ms on an 800
MHz Pentium III, while 3100 local alignments take only
3 seconds on the same platform.

Example data
We have evaluated the performance of our algorithm for
two different problems. The first regards recombination in
metazoan mitochondrial genomes. We compared the
human mitochondial genome (GenBank accession
number NC_001807 [23]; our query sequence) to three
other mitochondrial reference genomes: the hagfish Myx-
ine glutinosa (GenBank accession number NC_002639,
[24]), the fruit fly Drosophila melanogaster (Genbank acces-
sion number NC_001709), and the nematode Caenorhab-
ditis elegans (GenBank accession number NC_001328).
We used the LALIGN package [25] to find all local align-
ments between each pair of genomes. Only alignments
with E-values of 10-5 or less were included in our analysis.
We input the resulting alignments into the above algo-
rithm, searching for the combination of alignments that
resulted in the highest alignment score. We allowed an
overlap of 50 nucleotides between alignments.

Figure 2 shows the results for the three comparisons. The
fragments of the reference genomes with partial matches
to the query genome are indicated by numbers corre-
sponding to their starting and ending positions in the ref-
erence genome. Figure 2A shows that the human and
hagfish genomes have identical order except for a short
region of similarity near the beginning of the human
genome which is located near the end of the hagfish
genome. Since the mitochondrial genome is circular, this
constitutes a minor difference and does not indicate a his-
tory of many rearrangements. A similar situation exists in
the human/fruit fly comparison, except that an inversion
appears to have occurred between the two species (Figure
2B; indicated in grey). In contrast, the evolutionarily more
distant nematode sequence shows only short regions of
similarity to the human sequence, with two or three pos-
sible inversion events indicated (Figure 2C). Collectively,
these results suggest that information about the relative
ordering of circular genomes can be conserved for a long
time (such as that separating Drosophila and humans).
Whether this method is sensitive enough to produce dis-
tance measures of sufficient accuracy for problems such as
phylogenetic inference remains to be seen. A potential
problem in applying the algorithm to phylogenetic infer-
ence is that sequences not only get rearranged but they
also diverge through point mutations. Thus, a loss of
detectable homology due to sequence divergence may
bias the inference of the number of rearrangements that
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Comparison of the human mitochondrial genome to three other mitochondrial genomesFigure 2
Comparison of the human mitochondrial genome to three other mitochondrial genomes: A) hagfish Myxine gluti-
nosa (Mg); B) fruit fly Drosophilia melanogaster (Dm); C) nematode Caenorhabditis elegans (Ce). Blocks indicate regions of local 
similarity between two genomes. Numbers in these blocks (Gm1 etc.) indicate the order of the blocks in the reference 
genome. Grey blocks indicate inversions relative to the human genome (i.e. these sequences are found on the opposite strand 
of the DNA helix and in the reverse direction)
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have occurred between two sequences. However, the
method is attractive in that it can be applied automatically
to many genomes: there is no need for explicit manual
declarations of homology between sequences, which is
often required with other approaches [10].

With our second analysis, we sought to demonstrate the
increase in sequence coverage provided by the OAC. To do
so, we ran BLASTP on every protein-coding gene in the
Saccharomyces cerevisiae genome [26], using the protein-
coding genes of the Drosophila melanogaster genome [27]
as the database. We have used the Washington University
implementation of BLAST [28] rather than the NCBI ver-
sion because this first version is more conservative in
attempting to extend short regions of similarity into
longer alignments. We considered only hits with E-values
smaller than 1 × 10-5 in this analysis. In calculating the
OAC, we allowed a maximum overlap of 10 amino acid
residues between alignments: matches with overlap below
this threshold were considered as connected nodes in the
alignment graph of Figure 1A. For each gene with at least
one significant hit we calculated the proportion of that

gene covered by the top BLAST hit (pb) and by the OAC
(pm). The average number of residues in the query
sequences covered by only the top BLAST hit was 71%.
This average increased to 80% when the OAC was used.
Note that our inclusion of queries with only a single hit
will underestimate the increase in the number of residues
covered in a typical application of the algorithm, because
for such queries the single hit is the OAC and thus pb = pm.
Figure 3 shows the proportion of genes with pb ≥ X and pm
≥ X, where X is the proportion of the total gene covered by
the alignments. It is clear from this figure that a higher
proportion of query residues are aligned to the database
when the OAC is used.

As we have discussed, this algorithm to combine multiple
local alignments to a query sequence can serve to improve
functional gene annotation, the reconstruction of the evo-
lutionary history of shuffled proteins, and the discrimina-
tion of rapidly from slowly evolving gene regions. The
algorithm is thus a tool to further increase leverage in
inferring functional and evolutionary information from
sequences.

Abbreviations
OAC: Optimal Alignment Combination
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