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Abstract
Background: Subcellular localization of a new protein sequence is very important and fruitful for
understanding its function. As the number of new genomes has dramatically increased over recent
years, a reliable and efficient system to predict protein subcellular location is urgently needed.

Results: Esub8 was developed to predict protein subcellular localizations for eukaryotic proteins
based on amino acid composition. In this research, the proteins are classified into the following
eight groups: chloroplast, cytoplasm, extracellular, Golgi apparatus, lysosome, mitochondria,
nucleus and peroxisome. We know subcellular localization is a typical classification problem;
consequently, a one-against-one (1-v-1) multi-class support vector machine was introduced to
construct the classifier. Unlike previous methods, ours considers the order information of protein
sequences by a different method. Our method is tested in three subcellular localization predictions
for prokaryotic proteins and four subcellular localization predictions for eukaryotic proteins on
Reinhardt's dataset. The results are then compared to several other methods. The total prediction
accuracies of two tests are both 100% by a self-consistency test, and are 92.9% and 84.14% by the
jackknife test, respectively. Esub8 also provides excellent results: the total prediction accuracies are
100% by a self-consistency test and 87% by the jackknife test.

Conclusions: Our method represents a different approach for predicting protein subcellular
localization and achieved a satisfactory result; furthermore, we believe Esub8 will be a useful tool
for predicting protein subcellular localizations in eukaryotic organisms.

Background
Over recent years the number of new genomes and pro-
tein sequences has increased dramatically. Therefore, reli-
able and efficient sequence analysis tools are urgently
needed. The native subcellular localization of a protein is
important for understanding gene/protein function. Aber-
rant subcellular localization of proteins has been
observed in the cells of several diseases, such as cancer and
Alzheimer's disease [1]. Therefore, knowing the protein's
localization will be one important step identifying its

function. Even if we already know a protein's function,
information about protein localization may provide us
insights into the specific enzyme pathway [2-5]. Experi-
mental annotations of subcellular localization are often
based on operational, biochemical definitions that can be
error prone [1]. Therefore, predicting subcellular localiza-
tion has become one of the central problems in
bioinformatics.
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Actually, some methods have been developed to quickly
predict the subcellular localizations of proteins. Most of
these methods can be classified into two classes: one is
based on the N-terminal sorting signals [5] and the other
is based on amino acid composition. One advantage of
the former is a clear biological implication [6]. However,
in large genome analysis projects, genes are usually auto-
matically assigned and these assignments are often unreli-
able for the 5'-regions [7]. This can result in leader
sequences being missed or only partially included,
thereby causing problems for prediction algorithms
depending on them. Therefore, most methods are based
on the amino acid composition rather than the N-termi-
nal sorting signals alone. Our method is also based on the
amino acid composition.

Nakashima and Nishikawa [8] have indicated that intrac-
ellular and extracellular proteins differ significantly in
their amino acid composition. There are already several
algorithms based on amino acid compositions, such as
least Mahalanobis distance [9-11], neural network [7],
covariant discriminant algorithm [12,13], Markov Chain
[14], and support vector machine [15,16]. Some research-
ers also consider combining other features together with
amino acid composition. Feng and Zhang [17,18] pro-
posed two methods: one combined the hydrophobic
information, and the other combined Zp parameters.
Recently, many novel methods have been developed
based on new features. Gardy et al. developed a tool to
predict protein subcellular localizations for Gram-nega-
tive bacteria, PSORT-B, which combined several methods
together [19]. Rajesh and Burkhard developed a tool,
LOC3D, to predict subcellular localizations for eukaryotic
proteins of known three-dimensional (3D) structure [1].
Chou initially introduced the use of pseudo-amino-acid-
composition to predict protein subcellular localization
[20], and then Cai, Zhou and Chou developed several
methods based on this new feature [13,21,22]. Functional
domain composition was used by Chou and Cai [16,21]
who also presented a new method incorporating gene
ontology [22]. The results of above papers indicate that
some of these new features can improve the prediction
accuracy markedly, but a great shortcoming of these fea-

tures is that it is difficult to obtain these features for new
sequences, such as the functional domain composition
and gene ontology.

We noted that in most of these methods using traditional
amino acid composition to represent a protein, all the
sequence-order information is neglected; consequently,
the methods based on amino acid composition bear a
bias of losing the sequence-order information. Chou
firstly introduced a set of sequence-order-coupling num-
bers based on the physicochemical distance between
amino acid to reflect the sequence order effect [23]. Actu-
ally this effect is a quasi-sequence-order effect. This paper
takes into account sequence-order information by a differ-
ent method. We also think that 1-v-1 multi-class SVM is
better than 1-v-r SVM, so in this paper 1-v-1 SVM is used
and the sequence-order information is also considered.
We achieved excellent results: the total prediction accura-
cies of two tests on Reinhardt's dataset (predict three
localizations for prokaryotic proteins and four localiza-
tions for eukaryotic proteins) are 100% by the self-con-
sistency test, 92.9% and 84.14% by the jackknife test. Our
method represents a different approach for predicting
protein subcellular localization and achieved a satisfac-
tory result. Our results show that the prediction accuracies
are significantly improved. In this paper we also devel-
oped a tool, Esub8, to predict eight subcellular localiza-
tions for eukaryotic proteins: the total accuracies are
100% by the self-consistency test and 87% by the jack-
knife test. The results indicate Esub8 is a useful tool.

Results
Prediction accuracy
The prediction accuracies of subcellular localization for
prokaryotic sequences on Reinhardt's dataset are shown
in Table 1. The total accuracy by the self-consistency test
reaches 100%. The total accuracy by the jackknife test
reaches 92.9%. The prediction accuracies of subcellular
localization for eukaryotic proteins Reinhardt's dataset are
shown in Table 2. The total accuracy by the self-consist-
ency test reaches 100%, the total accuracy by the jackknife
test reaches 84.14%.

Table 1: Prediction accuracies of traditional subcellular localization for prokaryotic sequences with RBF kernel function

Location Accuracy (%) (Self-consistency test) Accuracy (%) (Jackknife test)

Extracellular 100 75.7 (75.7)
Periplasmic 100 81.2 (78.7)
Cytoplasmic 100 99 (97.5)

Total accruacy 100 92.9 (91.4)
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The prediction accuracies of Esub8 are shown in Table 3.
The total accuracy by the self-consistency test reaches
100%, the total accuracy by the jackknife test reaches
87%. The kernel functions are all Radial Basis Functions
(RBF). Esub8 and the other two traditional prediction
programs, after cross-validation tests, all achieved optimal
results with the same parameters: C = 500, γ = 50.

Comparison with other methods
In this section, our traditional localization results are
compared with results obtained by other methods. These
methods include Reinhardt and Hubbard's method using
neural networks [7], Chou and Elrod's method using a
covariant discriminant algorithm [12], Yuan's method
based on the Markov Chain [14], Hua and Sun's method
using a 1-v-r SVM method [15], Feng and Zhang's two
methods using Bayesian discriminant function [17,18].
These methods are all based on Reinhardt and Hubbard's
dataset [7], that is, all these methods used an identical
dataset and their input vectors are all based on amino acid
composition alone (Feng and Zhang's two methods are
based on input vectors combining amino acid composi-
tion with other features). As shown in Table 4, for
prokaryotic sequences, the total accuracy by the self-con-
sistency test is about 10% higher than that of method 3
and about 2.3% higher than that of method 6. The total
accuracy by the jackknife test is about 11.8% higher than
that of method 2, 5.9% higher than that of method 3,

3.8% higher than that of method 4, 3.3% higher than that
of method 7, 2.5% higher than that of method 6 and 1.5%
higher than that of method 5. For eukaryotic sequences,
other methods did not match the results of the self-con-
sistency test; the total accuracy by the jackknife test is
about 18.14% higher than that of method 2, 11.14%
higher than that of method 4 and 4.74% higher than that
of method 5. From these we know our method represents
a different approach for predicting protein subcellular
localization that achieved a satisfactory result.

Esub8 uses the same method to predict more rigorous
localization (8 localizations) for eukaryotic proteins.
From the data in Table 3, we know Esub8 is a satisfactory
tool. The Institute of Bioinformatics, Tsinghua University
also provided a web server, http://bioinfo.tsing
hua.edu.cn/CoupleLoc/eu8.html, for eight localizations
prediction of eukaryotic proteins, but the accuracies are
unpublished.

Discussion
Subcellular localization of a new protein sequence is very
important and fruitful for understanding its function, and
predicting subcellular localization has become one of the
central problems in bioinformatics. In this paper, we have
developed a novel tool for protein eight subcellular
localization predictions. We also test our method on Rein-
hardt's dataset. The proposed method differs from the

Table 2: Prediction accuracies of traditional subcellular localization for eukaryotic sequences with RBF kernel function

Location Accuracy (%) (Self-consistency test) Accuracy (%) (Jackknife test)

Extracellular 100 86.5
Mitochondrial 100 67.6
Cytoplasmic 100 80

Nuclear 100 91.2
Total accruacy 100 84.14

Table 3: Prediction accuracies of Esub8 with RBF kernel function

Location Accuracy (%) (Self-consistency test) Accuracy (%) (Jackknife test)

Chloroplast 100 89.9
Cytoplasm 100 86.2

Extracellular 100 81.5
Golgi apparatus 100 68.2

Lysosome 100 85.0
Mitochondria 100 72.0

Nucleus 100 92.2
Peroxisome 100 72.6

Total accruacy 100 87
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existing method with the use of the 1-v-1 SVM and the
order information of the protein sequence. The experi-
mental results show that our method represents a differ-
ent and satisfactory approach for predicting protein
subcellular localization. Furthermore, our method has an
advantage common to other methods based on amino
acid composition: it is robust to errors in gene 5'-region
annotation. We believe that Esub8 is a useful and efficient
tool for protein localization prediction and is an impor-
tant auxiliary tool for protein function prediction.

We have also found that the parameters of SVMs play an
important role in the prediction results. RBF kernel func-
tion is better than linear kernel and polynomial kernel
functions in solving this problem. After the cross-valida-
tion experiment, we obtain the optimal results with C =
500, γ = 50 both for Esub8 and for traditional subcellular
localizations. We think SVMs with advanced kernel func-
tion will achieve better results. Combining our method
with the method based on N-terminal sorting signal also
will achieve better results. We also noted that looking for
better features is very important. As described above,
some new features were used, such as hydrophobic infor-
mation [17], Zp parameters [18], pseudo-amino-acid-
composition [20], and functional domain composition
[16,21], and some of these methods achieved satisfactory
results. More recently Keun-Joon and Minoru presented a
method that used amino acid pairs as features based on
SVM [25]. Another point that should be mentioned is that
one can provide new datasets to be applied by this
method.

Conclusions
In this paper, we proposed a novel tool to predict protein
subcellular localizations for eukaryotic proteins based on
amino acid composition alone. As a result, the total pre-
diction accuracies of two traditional tests are both 100%
by the self-consistency test, and are 92.9% and 84.14% by
the jackknife test respectively. Esub8 also obtains excellent
results: the total prediction accuracies are 100% by the
self-consistency test and 87% by the jackknife test. As

described above, our method represents a different
approach for predicting protein subcellular localization
and achieved a satisfactory result. We believe that Esub8 is
a useful and efficient tool for protein localization predic-
tion and is an important auxiliary tool for protein func-
tion prediction.

Methods
Materials
The training dataset used in Esub8 was downloaded at
http://bioinfo.tsinghua.edu.cn/CoupleLoc, Institute of
Bioinformatics, Tsinghua University. The dataset used to
test our method on the three traditional subcellular local-
izations for prokaryotic proteins and four subcellular
localizations for eukaryotic proteins is the same as that
used by Reinhardt and Hubbard [7]. For more details,
please contact the above authors. Table 5 shows the data-
set used in Esub8, which includes 8305 eukaryotic
sequences classified into 8 localization classes (chloro-
plast, cytoplasm, extracellular, golgi apparatus, lysosome,
mitochondria, nucleus and peroxisome). Table 6 shows
Reinhardt and Hubbard's dataset that includes 997
prokaryotic sequences, classified into three localization
classes (extracellular, periplasmic and cytoplasmic), and
2427 eukaryotic sequences belonging to four localization
classes (extracellular, mitochondrial, cytoplasmic and
nuclear).

Table 4: Comparing the total accuracies with other 6 methods. From 1 to 7, the methods are our method, Reinhardt and Hubbard's 
method, Chou and Elrod's method, Yuan's method, Hua and Sun's method, Feng and Zhang's method 1 and method 2.

1 2 3 4 5 6 7

P. S. 100 - 90 - - 97.7 -
P. J. 92.9 81 87 89.1 91.4 90.4 89.6
E. S. 100 - - - - - -
E. J. 84.14 66 - 73.0 79.4 - -

P. S. denotes prokaryotic sequences prediction accuracies by self-consistency test, and then P. J., prokaryotic sequences prediction accuracies by 
jackknife test, E. S., eukaryotic sequences prediction accuracies by self-consistency test, E. J. eukaryotic sequences prediction accuracies by jackknife 
test. En dash denotes there is no result by the corresponding method.

Table 5: The dataset used in Esub8.

Subcellular localization Number of sequences

Chloroplast 1019
Cytoplasm 2088

Extracellular 595
Golgi apparatus 211

Lysosome 133
Mitochondria 644

Nucleus 3199
Peroxisome 116
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Feature vector
In many methods, the feature used to classify protein sub-
cellular localizations is mainly amino acid composition
[7-9,12,14,15,17,18]. In these papers, no matter how long
the protein sequence is, the input vector is a twenty-
dimensional vector because there are twenty kinds of
amino acid in biological proteins. Each element in the fea-
ture vector denotes the presence frequency (or tendency)
of an amino acid, so a feature vector can be represented by

 ∈ R20. However, one drawback of this representation is
that it neglects the order information of the protein
sequence, that is, one cannot observe any amino acid
order information from the feature vector. The order
information may play an important role in protein sub-
cellular localization.

In this paper, we present a novel approach for considering
the sequence order information by dividing a protein
sequence into two equal half sequences. For the first half
sequence, we compute the amino acid composition to
construct a 20D feature vector, and do the same with the
second one. Then a forty-dimensional vector is con-
structed by combining the first 20D feature vector with
the second one. Then the new feature vector can be repre-

sented by  ∈ R40. The results prove that our new 40D fea-
ture vector based on amino acid composition is better
than 20D feature vector and then prove that amino acid
order information plays an important role in protein sub-
cellular localization.

Multi-Class SVM
SVM was introduced by Vapnik [26], and has been
applied in many classification and regression problems.
The standard SVM [26] was originally developed for
dichotomic classification problems (binary classifica-
tion). A classification problem usually involves training
data and testing data that consist of some data instances.
Each instance in training data contains one class label and
one feature vector. The goal of SVM is to construct a clas-
sifier that classifies the data instances in the testing data.

For a binary classification problem, assume that we have
a series of feature vectors xi and class labels yi (i = 1, 2... N,
where N is the number of samples), where xi ∈ Rd, yi ∈
{+1, -1}. For protein sequences localization, the input
vector dimension is 40, as described in the above section.
The SVM requires the solution of the following optimiza-
tion problem:

Subject to yi(wTφ(xi) + b) ≥ 1 - ξi, ξi ≥ 0. (1)

Here, feature vectors xi are mapped into a higher dimen-
sional space by the function φ(x) ∈ H and then SVM con-
structs an Optimal Separating Hyperplane (OSH), which
maximizes the margin in the higher dimensional space. C
> 0 is the penalty factor of the error term. Furthermore,
K(xi, xj) = φ(xi)Tφ(xj) is called the kernel function. There are
several typical kernel functions:

Polynomial kernel function: K(xi, xj) = (xi • xj + 1)d,  (2)

Radia Basic Function (RBF): K(xi, xj) = exp(-γ||xi - xj||2), γ >
0, (3)

Sigmoid function: K(xi, xj) = tanh(γ xj + c) (4)

Here, d, γ and c are kernel parameters.

The multi-class classification problem is commonly
solved by a decomposing and reconstructing procedure
when the binary class SVM is implied. Protein subcellular
localization is a multi-class problem, so we should
decompose this problem into several binary classifica-
tions and then reconstruct them together. In this paper,
we use the 1-v-1 SVM. For the 1-v-1 multi-class SVM, the
decomposing method constructs all the possible binary
machines from K-class training samples, each SVM being
trained on only two out of all K classes. The usual recon-
struction method is a parallel structure: when a new entry
is presented, each binary learned machine provides one

Table 6: The final sequences in each location class of the dataset

Species Subcellular localization Number of sequences

Prokaryotic Extracellular 107
Periplasmic 202
Cytoplasmic 688

Eukaryotic Extracellular 325
Mitochondrial 321
Cytoplasmic 684

Nuclear 1097
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output concerning the classes involved in the training
phase; then an algorithm interprets these two-class classi-
fier outputs to determine the label to be assigned to the
input. There exist several combinatorial algorithms for the
outputs. Voting schemes are used in this paper because
the output scale of a SVM is not robust. Since it depends
on just the support vectors, voting schemes are more prac-
tical [27].

Implementation of the prediction system
In this paper, the 1-v-1 SVM was used to construct a pro-
tein subcellular localization system, Esub8, based on a
40D amino acid input vector. Esub8 is a program to clas-
sify one protein sequence into one of the eight classes. We
also test our method on three traditional localizations for
prokaryotic proteins and four localizations for eukaryotic
proteins. Esub8 and the other programs were all written in
Matlab using the software package, Osusvm, which was
developed by Junshui Ma and Yi Zhao et al. based on
SVMlight [28]. Our hardware platform is a PC running at
2.4 GHz. In traditional localizations, the self-consistency
test can be finished in one minute; the jackknife test takes
about two hours for all eukaryotic sequences and about
10 minutes for all prokaryotic sequences. In eight locali-
zations, self-consistency can be finished in several min-
utes; the jackknife test takes about four days for all 8305
eukaryotic sequences. For Esub8, predicting the subcellu-
lar localization of an unknown sequence will take several
seconds; hence, Esub8 is an efficient subcellular localiza-
tion predication tool.

Self-consistency test and Jackknife test
Usually, the prediction results are evaluated by the self-
consistency and jackknife tests. Although the sum-sam-
pling test method is still widely used in biology literatures,
the self-consistency and jackknife tests are more objective
and rigorous, see Chou and Zhang's paper for a compre-
hensive discussion [29]. The former reflects the consist-
ency of the prediction system, and the latter reflects the
extrapolating effectiveness of the algorithm. When the
self-consistency test is performed, the subcellular localiza-
tions of each protein in the dataset are in turn identified
using the rule parameters derived from the training data-
set. However, the prediction system parameters obtained
by the self-consistency test are from the training dataset
that includes the information of the later query protein.
Since the same proteins are used to train the predictive
system and test themselves, the error will be underesti-
mated and the success rate will be enhanced, so a more
reliable and rigorous test method, the jackknife test, is
introduced. However, the self-consistency test is abso-
lutely necessary because it reflects the self-consistency of
the predictive system [30,31].

The jackknife test is the most effective and objective test
method in statistical prediction. In the jackknife test, each
protein in the dataset is singled out in turn as an inde-
pendent test sample, and all the parameters of SVM are
derived from training all the remaining proteins. In the
process of jackknife tests, each protein has one chance to
be the test sample, and for other tests this protein will be
included in the training dataset.

Prediction system assessment
The total prediction accuracy is given by the following
equations:

As described by Hua and Sun [15], N is the total number
of sequences, k is the class number, obs(i) is the number
of sequences observed in localization i, and p(i) is the
number of correctly predicted sequences of localization i.
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