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Abstract
Background: RNA secondary structure prediction methods based on probabilistic modeling can
be developed using stochastic context-free grammars (SCFGs). Such methods can readily combine
different sources of information that can be expressed probabilistically, such as an evolutionary
model of comparative RNA sequence analysis and a biophysical model of structure plausibility.
However, the number of free parameters in an integrated model for consensus RNA structure
prediction can become untenable if the underlying SCFG design is too complex. Thus a key
question is, what small, simple SCFG designs perform best for RNA secondary structure
prediction?

Results: Nine different small SCFGs were implemented to explore the tradeoffs between model
complexity and prediction accuracy. Each model was tested for single sequence structure
prediction accuracy on a benchmark set of RNA secondary structures.

Conclusions: Four SCFG designs had prediction accuracies near the performance of current
energy minimization programs. One of these designs, introduced by Knudsen and Hein in their
PFOLD algorithm, has only 21 free parameters and is significantly simpler than the others.

Background
Many RNAs conserve a base-paired secondary structure
that is important to their function [1,2]. Accurate RNA sec-
ondary structure predictions help in understanding an
RNA's function, in identifying novel functional RNAs in
genome sequences, and in recognizing evolutionarily
related RNAs in other organisms. Most RNA secondary
structure prediction algorithms are based on energy mini-
mization [2-7]. Alternatively, probabilistic modeling
approaches using stochastic context-free grammars
(SCFGs) can be used [8-10]. A potential advantage of a
probabilistic modeling approach is that it is more readily
extended to include other sources of statistical informa-
tion that constrain a structure prediction.

For example, an outstanding problem is consensus RNA
secondary structure prediction for a small number of
structurally homologous RNA sequences. Comparative
sequence analysis is probably the most powerful source of
information for RNA structure prediction [11-14].
Homologous RNAs tend to conserve a common base-
paired secondary structure, and conserved base-pairing
interactions are revealed by compensatory mutations in
multiple RNA sequence alignments [12,15-19]. Compara-
tive sequence analysis is extremely reliable, and has pro-
duced strikingly accurate RNA structure predictions
[14,20], but one is usually not blessed with the large
number of sequences (nor the time and human expertise)
that a purely comparative approach requires. There is a
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need for automated approaches that combine evolution-
ary information from comparative sequence analysis with
biophysical knowledge of what structures are most
plausible.

However, it is not clear how best to combine probabilistic
evolutionary information with the thermodynamic
parameters of the standard energy minimization model
into a meaningful, mathematically defensible objective
function. Clearly one can use the Gibbs-Boltzmann equa-
tion to convert an overall ∆G for a structure into a proba-
bility of that structure in an ensemble of all possible
structures [21,22], but it is not possible to interpret indi-
vidual energy parameters in the thermodynamic model as
log probabilities. Consequently, nearly all consensus RNA
structure prediction methods that have been introduced
optimize an ad hoc weighted combination of thermody-
namic parameters and comparative sequence analysis
terms, either for consensus structure prediction from pre-
determined multiple RNA sequence alignments [18,23-
26], or for the harder problem of simultaneous folding
and alignment of initially unaligned RNAs [27-34]. A
notable exception is the approach described by Knudsen
and Hein, who developed a full probabilistic model that
combines an explicit stochastic evolutionary model with
an SCFG-based probabilistic model of structure plausibil-
ity, so they can find a consensus structure that optimizes a
joint probability of that structure and multiple aligned
homologous sequences [18,26].

In addition to the Knudsen and Hein approach, at least
three other SCFG-based approaches to RNA secondary
structure prediction have been described. These include
an SCFG-based mirror of the standard Zuker algorithm for
single-sequence structure prediction [35], and two "pair-
SCFG" approaches for simultaneous folding and align-
ment of two homologous RNAs [31,36]. All four papers
use different underlying SCFG designs. No group appears
to have explored different possible SCFG designs before
settling on the one they used. Only Knudsen and Hein
reported any benchmark results for the accuracy of their
secondary structure predictions [18,26]. It is not known
how different designs affect the accuracy of SCFG-based
secondary structure prediction. Flexibility in model design
comes from the fact that SCFG probability parameter esti-
mation can be done by counting frequencies in databases
of trusted RNA secondary structures, so it is easy to param-
eterize different models that vary in complexity and cap-
ture different features of RNA structure. In contrast, energy
minimization algorithms are based on a standard set of
thermodynamic parameters, most of which are deter-
mined experimentally [2,7], so it would take substantial
effort to develop a radically new thermodynamic model.

Design decisions are likely to be particularly important in
consensus structure prediction applications, because a
natural trade-off arises. A complex RNA folding SCFG
might predict structures for single sequences better than a
simpler model, but extending a complex RNA folding
SCFG to deal with multiple evolutionarily correlated
sequences can easily result in a combinatorial explosion
of parameters, making the model impractical. One wants
to build consensus prediction models on top of small,
simple (i.e. "lightweight") SCFG designs that sacrifice as
little RNA structure prediction accuracy as possible, rela-
tive to state-of-the-art energy minimization approaches.

Here we explore the impact of different SCFG designs on
single-sequence RNA secondary structure prediction accu-
racy. Our goal is to identify lightweight SCFG model
designs that can serve as cores underlying more complex
integrated approaches. We have implemented nine differ-
ent lightweight SCFGs, estimated their parameters from
rRNA structure data, evaluated their prediction accuracy
on a benchmark of trusted RNA structures, and compared
these results to the accuracy of energy minimization
methods.

Algorithms
Dynamic programming algorithms for non-pseudoknot-
ted RNA secondary structure prediction work by calculat-
ing scores for optimal foldings for all subsequences xi...xj,
starting with subsequences of zero length and working
outwards recursively on increasingly longer sequences [2].
For example, an example of an RNA folding algorithm [3]
is:

Initialization:

γ(i, i - 1) = 0

γ(i, i) = 0

Iteration:

δ(xi) and δ(xj) are scores for single-stranded nucleotides,
and δ(xi, xj) are scores for base pairs. For a sequence of
length L, the score calculation terminates when γ(1, L) is
calculated, the score of the best structure on the complete
sequence. The optimal structure itself is retrieved by a
traceback of the dynamic programming matrix.
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When δ(xi, xj) = 1 for base pairs and all other scores are
zero, this algorithm finds the structure that maximizes the
number of base pairs with the final score γ(1, L) as the
number of base pairs in the optimal structure [3]. In the
more complicated loop-dependent algorithms (e.g. the
Zuker algorithm), the algorithm is fundamentally the
same (though with more terms, more matrices, and min-
imization instead of maximization); but the scores are
energy parameters, and the final score is ∆G, the calcu-
lated thermodynamic stability of the optimal structure
[2].

In a probabilistic approach, the algorithm again remains
fundamentally the same, but the parameters are log prob-
abilities (we will call the parameter set Θ) and the final

score is the log probability of the optimal structure ( )
and the sequence (x) given the model parameters, log

P( , x|Θ). This is the quantity we need for statistical infer-
ence approaches [37,38]. Probabilities must sum to one,
so we have to be sure that for our model,

 over all possible sequences x and

all possible structures v for those sequences. But there are
an infinite number of possible sequences and a combina-
torial explosion of possible structures, so we can't enu-
merate all these possibilities; we need a formal system to
be confident that we can form a correct probabilistic
model.

Stochastic context-free grammars (SCFGs) are that formal
system. SCFGs are probabilistic models capable of captur-
ing the long range, nested, pairwise correlations, such as
those induced by base pairing in non-pseudoknotted RNA
secondary structures [8-10]. Here we give a somewhat
informal introduction to SCFGs, specifically as they apply
to RNA folding, starting with (nonstochastic) context-free
grammars. For a review of the use of SCFGs for RNA fold-
ing, see [10]. For more formal descriptions of CFGs, see
[39-41].

Context-free grammars

A context-free grammar  can be defined by  = (V, T,
P, S) where:

• V is a finite set of nonterminal symbols ("states"),

• T is a finite set of terminal symbols (for RNA: {a, c, g,
u}),

• P is a finite set of production rules (described below), and

• S is the initial (start) nonterminal (S ∈ V).

Production rules describe how the grammar generates an
observed symbol string in steps, starting from the initial

start nonterminal S. Production rules take the form A → α
where A ∈ V and α is any combination of nonterminals T
and/or terminals V. By convention, capital letters denote
nonterminal symbols and lower-case letters are terminals.
S → gSc is an example of a CFG production rule; it gener-
ates a 'g' and a 'c' terminal symbol in one correlated step.
The ability to generate or score two or more correlated
symbols in a single step is what gives CFGs the power to
deal with base pairing.

At each step of a production from the grammar, one has a
current string of terminals and/or nonterminals; one
chooses a nonterminal, and transforms that nonterminal
into a new substring using a valid production rule. This
process starts with the initial string S, iterates until one
arrives at a string consisting solely of terminal symbols.

For example, consider a "palindrome grammar" V = {S},
T = {a, b}, and P = {S → aSa, S → bSb, S → ε}, where ε is
a null string used as an ending production. This little
grammar generates only strings consisting of palindromes
of a and b symbols. RNA base pairing is essentially palin-
dromic, except pairings are complements rather than
identities. An example production is S ⇒ aSa ⇒ abSba ⇒
abbSbba ⇒ abbbba, resulting in the string abbbba. Note that
the grammar produces this string in an nested fashion (as
opposed to a left-to-right fashion, the way simpler string
alignment algorithms work), and that this CFG efficiently
describes the set of all palindromes over the alphabet {a,
b}.

Now consider an example CFG that generates RNA struc-
tures: V = {S}, T = {a, c, g, u}, and P =

where '|' represents 'or' between production rules. The
productions can be rewritten in a shorthand as:

S → aS  | aS | Sa | SS | ε

where we are now using a generically to represent any sin-

gle terminal symbol in T, and the rule S → aS  implies a

basepairs with . (We could also allow GU pairs here. In
SCFGs, below, we will have probability scores for all 16
base pairs including noncanonical ones, or in the case of
grammars that take base-pair stacking into account, the
full 16 × 16 matrix of possibilities.)
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A CFG derivation has an elegant representation known as
a parse tree, π. Figure 1 shows an example RNA structure
and two example parse trees for the RNA CFG. Given
appropriate production rules, a parse tree has a natural
correspondence with an RNA secondary structure.

Nonstochastic CFGs are used in pattern search applica-
tions, where one represents an RNA structural consensus
as a CFG and ask if a particular sequence matches or
doesn't match that query. They are not useful for structure
prediction. For the CFG above, for example, for any RNA
sequence there will be a huge number of valid parse trees,
each of which corresponds to a possible RNA secondary
structure. However, our problem in structure prediction is
not to determine whether an RNA sequence has at least
one possible structure. Given a sequence, we want to score
and rank the possible parse trees for that sequence to infer
the optimal one. To score and rank parse trees, we need to
use stochastic context free grammars. In addition, we need
efficient algorithms for finding the optimal SCFG parse
tree for a given sequence.

Stochastic context-free grammars

In an SCFG , we associate a probability with each CFG
production rule. The probabilities of the set of produc-

tions from any given nonterminal must sum to one. We
refer to the full set of probabilities (the parameters of a

model) as Θ. The probability P(x, π| , Θ) is the product
of all the probabilities of the production rules used in a
parse tree π for sequence x. An SCFG is a probabilistic
model that describes a joint probability distribution P(x,

π| , Θ) over all RNA sequences x and all possible parse
trees π.

Given a parameterized SCFG ( , Θ) and a sequence x, the
Cocke-Younger-Kasami (CYK) dynamic programming
algorithm finds an optimal (maximum probability) parse

tree  for a sequence x,

 = argmaxπ P(π, x| , Θ).

For notational and formal reasons, the CYK algorithm is
usually described for SCFGs in a special "Chomsky nor-
mal form" with only two kinds of production rules, A →
AA and A → a; any SCFG can provably be converted to a
set of production rules of this form [10]. But in applica-
tions, it is convenient to avoid this conversion and express
a CYK algorithm directly in terms of the grammar's own

Examples of CFG parse trees for an example RNA structureFigure 1
Examples of CFG parse trees for an example RNA structure Left: an RNA secondary structure with two stems. Mid-

dle: a parse tree for that structure using the grammar S → aS  | aS | Sa | SS | ε, with nonterminals in red and terminals in 
black. Note the correspondence between the RNA structure and the structure of the parse tree; that the individual steps in 
the grammar correspond to base pairs and single nucleotides (that is, the grammar is used to factor the structure down into 
individually scored steps); and that the RNA sequence can be read off the parse tree by following the margin of the tree coun-
terclockwise. Right: an alternative parse tree for the same structure, demonstrating that this grammar is structurally ambigu-
ous.
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production rules. For an RNA SCFG based on the example
grammar in the previous section, the CYK algorithm is:

Initialization:

γ(i, i - 1) = log p(S → ε)

Iteration:

When the algorithm terminates, γ(1, L) is logP(x, | ,

Θ), the log probability of the most probable parse tree 

for the sequence x given the grammar  and parameters
Θ. A traceback recovers this optimal parse tree.

The near-exact correspondence between the CYK algo-
rithm and standard dynamic programming algorithms for
RNA folding should be clear. SCFG algorithms are essen-
tially the same as existing RNA folding algorithms, but the
scoring system is probabilistic, based on factoring the
score for a structure down into a sum of log probability
terms, rather than factoring the structure into a sum of
energy terms or arbitrary base-pair scores. The thermody-
namic scoring parameters for energy minimization are
largely derived by experimental melting studies of small
model structures [7]; in contrast, SCFG log probability
parameters are derived from frequencies observed in
training sets of known RNA secondary structures. That is,
instead of scoring a G-C pair stacked on a C-G base pair by
adding a term for the free energy contribution of the GC/
CG stack, an SCFG would add a log probability that GC/
CG stacks are observed in known RNA structures.

A related SCFG algorithm, the Inside algorithm, is used to
obtain the total probability of the sequence given the
model summed over all parse trees,

The Inside algorithm replaces the max operations in CYK
with sums and additions of terms with multiplications. It
is analogous to the McCaskill algorithm for calculating
partition functions using the thermodynamic model of
RNA folding [10,21]. Suboptimal parse trees can be sam-
pled from their posterior probability distribution by a
probabilistic traceback of the Inside matrix, analogous to
techniques used for energy minimization algorithms
[10,22,42].

Grammar ambiguity
A grammar is said to be ambiguous when there is more
than one possible parse tree for some sequence [39-41].
Any SCFG that will be useful for RNA secondary structure
prediction must be ambiguous in this sense. We are inter-
ested in looking at all possible base paired structures for
the sequence, represented as a set of possible parse trees,
and finding the optimal (highest probability) one.

A more subtle form of grammar ambiguity concerns us
here. The CYK algorithm finds the mathematically opti-

mal parse tree ; we want the optimal secondary structure

. The optimal parse tree gives us the optimal structure if
and only if there is a one to one correspondence between
parse trees and secondary structures. However, a given sec-
ondary structure does not necessarily have a unique parse
tree. For instance, consider the two possible parse trees for
the example in Figure 1, both of which express the same
set of base pairs but use different series of production
rules. (We consider two structures to be identical if they
have the same set of base pairs.) When multiple valid
parse trees describe the same secondary structure, we call
the grammar structurally ambiguous. If a grammar is struc-
turally ambiguous, then we cannot equate the probability
of a parse tree with the probability of its structure [43].
The probability of a structure is a sum over the probabili-
ties of all parse trees consistent with that structure. This
summation is not reconcilable with the CYK algorithm;
an optimal structure cannot be calculated efficiently if we
need to do the summation over multiple possible parse
trees for each structure. Thus, we will either have to use
grammars that are structurally unambiguous, or we will
have to assume that it is a valid approximation to assume
an optimal parse tree gives us the optimal structure. We
explore this issue in the results.

It can be tricky to write grammars that are structurally
unambiguous, and it appears to be difficult to prove that
they are so, except in simple cases. Determining grammar
ambiguity in the usual formal language sense is undecid-
able [40,41]. We can, however, test empirically whether a
particular grammar is unambiguous for a given sequence
x and structure v. We do this with a conditional Inside algo-
rithm that calculates:

by limiting the Inside calculation to (v), those parse
trees consistent with the given structure v. For example,
the conditional Inside algorithm for the RNA grammar
described above is:

Initialization:
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γ(i, i - 1) = p(S → ε)

Iteration:

If P(x, | , Θ) calculated by CYK equals P(x, v| , Θ)
calculated by conditional Inside then there is only one

parse tree, namely , of nonzero probability for the struc-
ture v. Operationally, we consider a grammar to be struc-
turally unambiguous if this condition holds for a large
sample of different sequences.

An interesting difference between the thermodynamic
and probabilistic approaches with respect to ambiguity is
worth noting. The thermodynamic scoring scheme is not
normalized, so structural ambiguity is not an issue for
finding optimal structures; regardless of how many differ-
ent ways there are of scoring the energy of a structure, the
lowest energy structure still wins. However, ambiguity
becomes a painstaking issue for calculating the equilib-
rium partition function [21], where one must be careful
not to count any structure more than once. For SCFG-
based methods, with normalized probabilities as scores,
exactly the opposite is the case. Ambiguity is an issue for
optimal structure prediction, but the summed Inside cal-
culation (the analog of the summed partition function
calculation) gives the correct result even for ambiguous
grammars.

SCFG designs
The RNA SCFG shown above factors a secondary structure
into scoring terms for each individual base pair and each
individual unpaired residue. In this paper we will examine
four additional grammars of this type. However, state of
the art thermodynamic models use a loop-dependent
thermodynamic model that factors a structure in a more
complex way, into nearest-neighbor base stacking terms
(as opposed to individual base pairs) and tables of penal-
ties for different lengths of different kinds of loops (bulge,
interior, hairpin, and multifurcation). SCFG methods can
also capture more sophisticated folding features.

Base pair stacking is a first order Markov dependence. It
can be modeled in a grammar by capturing a limited
amount of context dependency, a technique called lexical-
ization in natural language processing. One uses produc-

tion rules of the type, , where the

probability of emitting a new pair a,  is dependent on

the previous base pair b, . The notation  indicates

that the P nonterminal will "remember" that it just gener-

ated an a,  pair. Formally, in the production rules, this

means 16  nonterminals, one for each pair of nucle-
otides, each one of which can generate 16 possible pairs:
thus, we have the desired 16 × 16 table for base stacking
parameters in terms of our production rules. However,
lexicalized nonterminals do not incur any extra storage
nor additional computational cost when parsing, because
the lexicalization depends completely on the local

sequence context; the 16  nonterminals can just be
treated as one "meta" P nonterminal, with scores condi-
tioned on the local context around the base pair xi, xj.

The simplest (and most common) model of loop lengths
in a grammar uses recursive rules like S → aS, which imply
a geometric length distribution. Explicit loop length dis-
tributions can be modeled by enumerating a set of pro-
duction rules, one for each possible length. A set of such
loop length probabilities is no different in effect than the
lookup table of loop length penalties in the thermody-
namic parameters.

Base stacking and explicit loop lengths are the most
important two features of SCFGs that would closely mir-
ror the current thermodynamic model. Most other desira-
ble features, such as parameterizing stacked terminal
mismatches for hairpin and internal loops, dangled bases,
and special stable tetraloops, can also be dealt with using
techniques like the above. Coaxial stacking [44,45] can
also be accommodated [46], but adds to complexity. In
this paper, four grammars model base stacking, but we do
not explore the use of explicit loop lengths or other more
complex features included in the thermodynamic model.

Parameterization
The parameters of each SCFG were estimated from fre-
quencies observed in annotated secondary structures. The
training data were large and small subunit rRNAs,
obtained from the European Ribosomal Database
[47,48]. Sequences containing more than 5% ambiguous
bases and with less than 40% base pairing are discarded.
The resulting data set was then filtered to remove
sequences with greater than 80% identity. The final train-
ing set contains randomly chosen equal numbers of LSU
and SSU sequences from the filtered data, totaling 278
sequences, 586,293 nucleotides, and 146,759 base pairs.

For a given grammar, a parse tree for each structure is
determined from the secondary structure annotation, and
the number of occurrences of each production type is
counted. Production probabilities are then estimated
from these counts using a Laplace (plus-one) prior [10].
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When determining a parse tree for an ambiguous gram-
mar, one possible parse tree was arbitrarily chosen. A
more sophisticated approach is possible (for example,
expectation maximization using a conditional Inside/
Outside algorithm, to estimate the expected number of
occurrences of productions in all possible parse trees
given a structure), but we did not explore this.

We separated each production rule into a product of a
transition probability (to go from one nonterminal to the
new one) and an emission probability (for generating zero
or more terminal symbols). This is the standard treatment
in hidden Markov models.

Testing
A benchmark data set was built from the Ribonuclease P
database [49], the Signal Recognition Particle database
[50] and the tmRNA database [51]. Each of these data-
bases provides high quality individual sequence structure
information and curated structural alignments in a readily
parsable form. Each structural alignment was filtered to
remove sequences with greater than 80% identity. The
structure for each member of the filtered families were
then retrieved from the databases. Any sequence contain-
ing ambiguous bases was removed. The resulting test set
contains 403 total sequences, consisting of 225 RNase P's,
81 SRP's, and 97 tmRNA's.

We count the number of base pairs that are correctly pre-
dicted, given a predicted structure and the trusted bench-
mark structure. That is, if we predict a base pair i, j, it is
correct if and only if base pair i, j is present in the trusted
structure. No helix offsetting/sliding is allowed, so our
accuracy percentages are systematically lower than other
published benchmarks that count base pairs as correct if
they are within one base of a trusted base pair.

Predicted base pairs that are in the trusted structure are
true positives (TP); predicted base-pairs not in the trusted
structure are false positives (FP); base-pairs in the trusted
structure but not predicted by the algorithm are false neg-
atives (FN).

Sensitivity is the fraction of base pairs in the trusted struc-
tures that are predicted correctly: TP / (TP + FN). Positive
predictive value (PPV; often called specificity) is the
number of predicted base pairs that are in the trusted
structure: TP / (TP + FP).

Rfam v5.0 [52] was utilized to build a second, larger test
set for grammar ambiguity experiments, from a wide vari-
ety of different RNA structures. This set was constructed by
filtering the seed alignments at 80% identity and then
imposing the family's consensus structure onto each
sequence to infer individual secondary structures. Any

sequence containing ambiguous bases was removed. The
resulting dataset contains 2455 sequences from 174 dif-
ferent RNA families.

Implementations
Training (parameter estimation), CYK parsing (structure
prediction), and conditional Inside (ambiguity testing)
code was written for each of the nine grammars. Inside
with stochastic traceback (suboptimal sampling of parse
trees) was implemented for the ambiguous grammars.
The ANSI C source code for these implementations is
freely available under the GNU General Public License
(GPL) from http://www.genetics.wustl.edu/eddy/publica
tions/#DowellEddy04. The data sets (training, testing,
and benchmark) are freely available from the same URL.

For benchmarking experiments, we used mfold v3.1.2,
Pfold (Oct 2003), PKNOTS v 1.01, RNAstructure v4.0,
and the Vienna RNA package vl.4. The mfold software was
obtained from Michael Zuker at http://www.bio
info.rpi.edu/~zukerm/rna/mfold-3.0.html. An early
release of RNAstructure v4.0 [53] was graciously provided
by Dave Mathews. Both mfold and RNAstructure was run
with MAX = 750 P = 20 W = 0 and efn2 rearrangement as
recommended by [7]. The Vienna RNA package was
obtained at http://www.tbi.univie.ac.at/~ivo/RNA/ and
was run with default parameters. Bjarne Knudsen pro-
vided Pfold executables and guidance on how to run the
package (personal communication). The PKNOTS pro-
gram was run with default parameters, which does not
attempt to predict pseudoknots. All benchmarks were
conducted on Intel-based servers running a GNU/Linux
operating system, with the exception of RNAstructure
which was run in batch mode under Windows XP Pro
2002.

For all the grammars in this paper, the CYK and Inside
algorithms are O(ML2) and O(ML3) in memory and time
respectively, for M nonterminals in the grammar and a
sequence of length L.

Results and discussion
Two ambiguous grammars
We first implemented two structurally ambiguous
grammars:

G1 is the simple grammar we used as an example in Meth-
ods. G2 extends it to include base pair stacking
parameters.

G S aSa aS Sa SS

G S aP a aS Sa SS

P aP a S

aa

bb aa

1

2

: | | | |

: | | | |

|

→

→

→

ε

ε
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It seemed possible that structural ambiguity might be only
a formal concern. This would be the case if, in a set of pos-
sible parse trees for any particular structure, one parse tree
has a probability that dominates the others, and approxi-
mates the summed probability of the ensemble. For exam-
ple, many of the alternative parse trees are pathological
cases that invoke fruitless cycles of bifurcation and
destruction; any S ⇒ ε derivation in a parse tree could also
be S ⇒ SS ⇒ εS ⇒ εε, but these more elaborate trees have
probabilities that asymptote towards zero. Additionally,
our parameterization of ambiguous grammars will tend to
be biased towards concentrating probability in a single
possible parse tree, because we nonrandomly choose only
one possible parse tree for each training structure, favor-
ing smaller, more sensible parse trees where ambiguous
choices were possible. And finally, if all structures have
about the same amount of probability diffusion to ambig-
uous parses, the rank order of the best parse trees might
still reflect the rank order of the best structures, so that a
CYK algorithm that finds the best parse tree would still
recover the best structure.

To test whether structural ambiguity made a practical
impact on structure prediction, we performed the follow-
ing "reordering" experiment. For a given RNA sequence,

we use CYK to find the optimal parse tree . We sample
N more suboptimal parse trees from the posterior distri-
bution (using Inside with stochastic traceback). We rank

the N + 1 trees by their probabilities P(x, π| , Θ), where
the optimal CYK parse is ranked first by definition. Then
for each parse tree π, we get the base-paired structure v and

use conditional Inside to calculate the P(x, v| , Θ)
summed over all parse trees for that structure. We then ask
two questions: first, if the rank order of the N + 1 parse
trees is the same as the rank order of their N + 1 structures;
second, if the structure of the optimal CYK parse tree
becomes suboptimal in the ranked list of structure proba-

bilities P(x, v| , Θ). If ambiguity does not matter in prac-
tice, we should not see many differences in rank order,
and we hope to never see the top-ranked structure differ
from the structure implied by the top-ranked CYK parse.
We did the reordering experiment on all 2455 sequences
in the Rfam5-based test set, for N varying from 10 to 3000
suboptimal parse trees.

The results showed that even in a small number of sam-
ples, the rank order of the parse tree probabilities and the
structural probabilities were nearly always significantly
different. For N = 10 suboptimals, for grammar G1 a bet-
ter structure than the CYK parse was found for 2% of the
sequences (41/2455), and for G2, a better structure was
found for 69% (1704/2455). Sampling deeper into the
posterior probability distribution for parse trees increases
the chance of finding a more optimal structure; for N =

1000 suboptimals, better structures than the CYK parse
were found for about 20% of the sequences for G1 (495/
2455), and 98% of the sequences for G2 (2417/2455).

Thus these results showed that the CYK algorithm often
does not give the optimal secondary structure if one is
using a structurally ambiguous grammar. Structural ambi-
guity appears to be a practical concern. We therefore
focused on developing several lightweight unambiguous
grammars.

Four unambiguous grammars
It is something of a challenge to make unambiguous
grammars with a small number of productions. We do not
know of a way to systematically generate and explore the
space of unambiguous grammars. There appear to be
many different ways to make unambiguous RNA gram-
mars that have the same simple emission parameteriza-
tion (4 probabilities for unpaired residues, 16
probabilities for base pairs). We used the following four
grammars:

G3 was developed by RDD. We challenged Graeme
Mitchison to make a smaller one, and he produced G4 (G.
Mitchison, personal communication). The ultracompact
G5 grammar is from Ivo Hofacker (personal communica-
tion). G6 is the Knudsen/Hein grammar utilized in the
Pfold package [18,26]. Each of the four grammars was
conjectured to be unambiguous by inspection. Each one
also passed the empirical test for ambiguity described in
Methods, using the test set of 2455 Rfam sequences.

Each grammar imposes slightly different restrictions on
the "language" of possible structures. G3 imposes a mini-
mum hairpin loop length of one nucleotide, G6 has a
minimum of two, and G4 and G5 do not impose mini-
mum hairpin loop lengths. Also, G3 and G6 can not emit
an empty string, ε, whereas G4 and G5 can. Figure 2 shows
parse trees for an example RNA structure using these four

π̂

G

G

G

G3:

G4

S aSa aL Ra LS

L aSa aL

R Ra

S aS T

T Ta aSa TaS

→
→
→

→
→

ˆ | | |
ˆ |

|

: | |

| ˆ | ˆ

ε

ε
aa

S aS aSaS

S LS L

L aFa a

F aFa LS

G5

G6

: | ˆ |

: |
ˆ |
ˆ |

→

→
→
→

ε
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grammars G3-G6. The figure shows how each grammar
factors a structure into elementary scorable steps in a dif-
ferent manner.

Table 1 shows the resource requirements of these four
grammars as well as the simple ambiguous grammar G1.
Each non-terminal of a grammar requires storage of a
dynamic programming matrix, so memory usage scales
linearly with nonterminal number.

Three unambiguous stacking grammars
The G6 grammar is readily extended to include stacking
parameters, by changing the F nonterminal parameteriza-

tion to a first order Markov chain, . We

call this grammar G6S. We also restructured two of the
simple backbones (G3 and G4) to include base pair stack-
ing parameters, resulting in grammars G7 and G8:

As written, these grammars do not permit lone pairs (a
base-pair with no stacking partner). An alternative formu-

lation (  → N) that does allow lone pairs was found to
give slightly poorer results (data not shown), even though
roughly one quarter of the sequences in our benchmark
set have annotated lone pairs.

Table 2 shows the general resource requirements for each
of the stacking grammars. Each one is conjectured to be
unambiguous. Each one passed the empirical ambiguity
test for the set of 2455 Rfam sequences.

Prediction accuracy
The secondary structure prediction accuracy of each of the
nine parameterized grammars was then measured, by cal-
culating sensitivity and PPV on the benchmark set of 403
trusted secondary structures derived by comparative anal-
ysis. The results are shown in Table 3.

In order to minimize performance differences due to dif-
ferences in free parameter number, as opposed to gram-

mar structure, we tied emission parameters together
where possible. That is, each grammar uses only one emis-
sion distribution for 4 unpaired bases and 16 base pairs
(and, in the case of the stacking grammars, 256 stacking
parameters). Thus the effective (tied) number of parame-
ters only differs because of the number of transitions in
each grammar (Tables 1 and 2). To minimize differences
caused by the grammars having slightly different lan-
guages, we also forced each grammar to have the same
minimum hairpin loop size (two) by implementing the
appropriate steps in dynamic programming parsers to
ignore hairpin loops of length one or zero, even if the
grammar permits them. Maximum a posteriori parame-
ters were then determined for each grammar using a set of
annotated ribosomal RNA secondary structures (see
Methods).

For comparison, we also evaluated the performance of
several implementations of energy minimization algo-
rithms for predicting secondary structure on the same
benchmark set: mfold v3.1.2, PKNOTS vl.0l, RNAstructure
v4.0, and the Vienna RNA package vl.4. Vienna RNA and
mfold use the thermodynamic parameters described in [7]
but use slightly different implementations of the rules for
exterior and multibranch loops. RNAstructure uses a
recently revised set of parameters [53], and PKNOTS uses
an earlier set of thermodynamic parameters [54].

We also benchmarked the Knudsen and Hein Pfold pro-
gram, which independently implements the G6 grammar.
The Pfold program was parameterized on a different train-
ing set composed of rRNAs and tRNAs, and has heuristics
to call only confident base pairs, which increases PPV at
the expense of sensitivity. Pfold is intended for consensus
structure prediction, using an RNA evolutionary model to
fold a given input RNA alignment, but we have used it
here in single-sequence mode to compare to our imple-
mentation and parameterization of G6.

Among the four simple (nonstacking) unambiguous
grammars, the simplest grammar, G5, with only three
types of production rules, has an abysmal prediction per-
formance. The grammar with the most rules, G3, did not
give the best performance. The best simple SCFG design
we tested is G6, the grammar used in Knudsen and Hein's
Pfold. Though G6 does not perform quite as well as
energy minimization methods, it does surprisingly well
considering its simplicity. G6's performance is nearly
comparable to the performance of PKNOTS, which uses
the older (1995) thermodynamic energy rules. G6 has
only 21 free probability parameters, compared to the sev-
eral hundred thermodynamic parameters in energy mini-
mization programs.

F aF a LSbb aaˆ ˆ ˆ |→

G7: S aP a aL Ra LS

L aP a aL

R Ra

P aP a aNa

N

aa

aa

bb aa

→

→
→

→
→

ˆ

ˆ

ˆ ˆ

ˆ | | |

ˆ |

|

ˆ | ˆ

ε

aaL Ra LS

S aS T

T Ta aP a TaP a

P aP a aNa

aa aa

bb aa

| |

| |

| ˆ | ˆ

ˆ | ˆ

ˆ ˆ

ˆ ˆ

G8: →

→

→

ε

NN aS Ta TaP aaa→ | | ˆˆ

Pbb̂
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Example parse trees for four different unambiguous grammars, G3-G6Figure 2
Example parse trees for four different unambiguous grammars, G3-G6. Each grammar's production rules defines 
how the example structure will be described. Some aspects seem artificial, having more to do with the constraints of being 
unambiguous rather than biologically meaningful features of RNA. G3 must bifurcate to accomodate a bulge on one side, but 
not the other. G4 shows a stutter-step behavior in stems, with a cycle of S ⇒ T ⇒ aS  productions for each base pair. G5 
(rightmost) uses a bifurcation and a null production for every base pair. G6 uses bifurcations at every single stranded residue.

â
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Performance for two of the grammars (G3 and G4)
increased significantly when these grammars were
extended to include stacking correlations (G7 and G8,
respectively). Interestingly, G6 did not show any real per-
formance gain when extended to include stacking correla-

tions (G6S); this was unexpected. Once stacking
correlations are included, four of the grammars (G6, G7,
G8, and G6S) have comparably good performance, at the
cost of increasing parameter number to include the 16 ×
16 parameters set for the three with stacking correlations.

Table 1: Simple grammar specifications.

Parameters
Grammar NT Total Tied C. elegans LSU Memory (MB) Notes

G1 1 29 (25) 25 (22) 26.9 ambiguous
G3 3 56 (47) 28 (23) 79.4 min 1 nt loop; no ε string
G4 2 46 (40) 26 (22) 53.2 none
G5 1 23 (20) 23 (20) 26.9 none
G6 3 42 (36) 26 (21) 79.4 min 2 nt loop; no ε string

Each simple grammar requires a different number of nonterminals (NT) and parameters (with free parameters in parenthesis). Memory 
requirements were determined empirically by measuring the memory each grammar utilizes to fold a single C. elegans large subunit ribosomal RNA 
sequence (3662 nucleotides). Under "notes", we give some of the implications each grammar has on the language it describes.

Table 2: Stacking grammar specifications.

Parameters
Grammar NT Total Tied C. elegans LSU Memory (MB) Notes

G2 2 287(281) 283(278) 53.2 ambiguous
G7 5 341(326) 289(281) 128 min 1 nt loop; no lone pairs; no ε string
G8 4 347(334) 287(280) 103 min 1 nt loop; no lone pairs
G6S 3 282(276) 282(276) 79.4 min 2 nt loop; no ε string

Stacking adds to grammars more nonterminals (NT) and total (free) parameters. This translates into increased memory requirements, as shown by 
the folding of C. elegans large subunit ribosomal RNA (3662 nucleotides). It also may introduce other restrictions such as not permitting lone pairs.

Table 3: Grammar performance.

Sensitivity % (PPV %)
Grammar Full Benchmarking 

Set Sensitivity % (PPV %)
RNase P SRP tmRNA

G1 17 (12) 14 (11) 37 (32) 10(6)
G3 34 (31) 37 (35) 28 (28) 31 (22)
G4 10 (8) 10(8) 19 (17) 4(2)
G5 3(4) 3(4) 2(3) 4(3)
G6 47 (45) 49 (49) 47 (49) 44 (33)
G2 36 (25) 31 (23) 59 (48) 33 (17)
G7 45 (43) 46 (46) 50 (52) 40 (30)
G8 46 (44) 46 (46) 52 (53) 44 (32)
G6S 49 (45) 50 (50) 50 (51) 44 (32)

mfold v3.1.2 56 (48) 56 (51) 70 (66) 46 (30)
Vienna RNA 55 (47) 55 (51) 67 (64) 45 (30)

PKNOTS 50 (41) 53 (46) 58 (55) 38 (24)
RNAstructure 56 (47) 58 (52) 62 (58) 46 (30)

Pfold 39 (69) 42 (76) 35 (64) 33 (54)

The first section contains simple grammars, the second contains stacking grammars, and the last section contains other available software packages 
that predict secondary structure. The nine grammars were trained on rRNA as described in the text. The second column gives the performance on 
the full benchmarking dataset, which is subdivided into each family in the subsequent columns. The metrics are calculated over base pairs as 
described in the text, evaluating the metrics over individual sequences shows similar results (data not shown).
Page 11 of 14
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The reason for the strong differences between different
designs is probably related to how naturally the produc-
tion rules of the grammar correspond to the biological
constraints of RNA structures. The compact G5 grammar,
for instance, must invoke the same bifurcation rule S →

aS S for every base pair and for every structural bifurca-
tion, which are quite different structural features that
occur with very different frequencies. The productions of
G5 are thus "semantically overloaded": they collapse too
many different types of information into the same param-
eters. Looking at Figure 2, G6 and G3 arguably have the
most natural parse trees, in the sense that they invoke one
dedicated production per base pair (as opposed to two, as
in G4's stutter-step for each base pair, or the overloaded
basepair/bifurcation production in G5).

Our results here probably underestimate the performance
that could be wrung from any of these SCFGs if they were
more systematically and carefully parameterized. Our
parameterization here was based just on counts from a
large rRNA database. SSU and LSU ribosomal RNAs,
though large, are not representative of all RNA structures;
the ideal training set would be a large number of evolu-
tionarily unrelated RNA secondary structures. Additional
performance can probably be achieved from these SCFGs
by training on larger, more diverse datasets. One might
also explore more sophisticated parameterization strate-
gies. We have done some exploratory work using condi-
tional maximum likelihood training [55] to find
parameters that directly optimize the accuracy of structure
predictions in the training rRNA data, rather than using
maximum likelihood parameters, but did not obtain a sig-
nificant performance increase. Another potentially prom-
ising strategy would be to "crosstrain" the parameters,
incorporating the thermodynamic parameters in some
way as prior information to smooth some of the more
poorly determined probabilistic parameters, analogous to
how probabilistic data is increasingly being used to aug-
ment the energy rules [7].

Comparison to Mathews et al. benchmark
The sensitivity of mfold and RNAstructure was reported to
be 73% on a different benchmark dataset, which is quite
a bit higher than the 56% as obtained here [7]. This con-
cerned us, so before drawing any conclusions from our
results, we did additional work to verify our benchmark-
ing of the thermodynamic methods, using mfold as a rep-
resentative method.

Dave Mathews kindly provided us the benchmark set used
in [7]. Because some of the sources of his structure data
were privileged, Mathews could not grant us permission
to freely distribute this benchmark set (which is why we
report performance results on a new benchmark set we are
comfortable distributing). We measure mfold at 67% sen-

sitivity on Mathews' dataset instead of the 73% sensitivity
reported in Mathews et al. [7]. Our procedure differs from
theirs in two steps. First, we count only exactly correct base
pair predictions, whereas Mathews et al. count a base pair
as correct even if there is a slight (1 nt) slip in the predic-
tion. Second, we report the sensitivity over all base pairs
(total correct base pairs / total base pairs predicted in the
whole benchmark), whereas they calculate an average of
this value over each sequence. We found that each of these
differences contributes about a 3% difference in the meas-
ured sensitivities, with our procedures systematically pro-
ducing more conservative measures than Mathews et al.

The difference between the 56% we report and the 67%
obtained by applying our method to Mathews' dataset lies
in the choice of secondary structures. Most importantly,
prediction accuracy varies significantly from RNA family
to RNA family. We have excluded tRNAs from our bench-
mark set because they are small and reasonably predicted
by both methods (the G6S grammar achieves roughly 80%
sensitivity on the Mathews' tRNAs, and Mathews reports
83% for energy minimization [7].) Instead, we included
tmRNAs, which tend to be difficult to predict (mfold and
G6S achieve around 45% sensitivity) because of the pres-
ence of pseudoknots which account for 21% of base pairs
in the family. These differences account for some of the
difference, since Mathews et al. included tRNAs but did
not use tmRNAs.

We also looked carefully at the overlap between the 16
RNase P's in the Mathews benchmark and the 225 RNase
P's in ours: 9 are unique to the Mathews set; 218 are
unique to ours; and 7 occur in both sets. mfold predicts the
9 structures unique to the Mathews set with 65% sensitiv-
ity and the 218 structures unique to our dataset at 56%
sensitivity, so there may be some bias towards more diffi-
cult-to-predict structures in our set. In addition, there are
differences between the secondary structures in our data-
set and in Mathews' set even for exactly the same
sequences. We compared the structures for the 7 RNase Ps
included in both sets and found that these matched in
only about 90% of their base pairs. mfold predicted those
structures annotated in the Mathews benchmark at 60%
sensitivity, whereas it predicted those in ours (e.g. struc-
tures as annotated in Jim Brown's current RNase P data-
base) at 56% sensitivity. The secondary structures of many
bacterial and archaeal RNase P's were revised in 2001 in
light of additional comparative sequence analysis [56].
This suggests (not unexpectedly) that there is a slight bias
towards mfold in benchmarks. RNA secondary structures
are derived from a combination of manual comparative
analysis and computational prediction, so there is some
logical circularity when benchmarking (that is, we are
benchmarking mfold on structures that sometimes may
have been produced in part by mfold.) This bias disappears

â
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gradually as comparative evidence accumulates and struc-
tures are refined. We therefore feel we can adequately
account for the absolute differences in prediction accuracy
as measured by the two benchmarks.

The most relevant question is whether different prediction
methods are ranked the same on either data set. This
appears to be the case. For example, on the Mathews
benchmark set measured by our procedures, the G3 gram-
mar has a sensitivity of 41%, G6 has a sensitivity of 55%,
and mfold is at 67%, which is essentially the same relative
difference as shown in Table 3. We therefore believe that
the relative performances reported in Table 3 are reasona-
bly fair and largely independent of our choice of test struc-
tures. The benchmark set we used in Table 3 is available
from our web site.

Conclusions
Our goal in this work was to explore how much SCFG
design decisions impact RNA secondary structure predic-
tion accuracy. Structural ambiguity is clearly a concern if
structure prediction is the goal, as we showed with the
reordering experiment. The results in Table 3 indicate that
even among different unambiguous SCFG designs, design
decisions matter quite a bit.

The prediction accuracy of relatively simple SCFGs is not
too far from the accuracy of the energy minimization
methods. SCFGs are easily trained from secondary
structure databases, and different designs can be explored
fairly easily. It might be useful to explore more sophisti-
cated SCFG designs to see if an appropriately designed
SCFG might even be able to outperform the existing
energy minimization methods for single-sequence predic-
tion. For instance, it would be interesting to know how an
unambiguous SCFG mirror of the Zuker algorithm would
perform, with probabilistic parameters for stacking, hair-
pin, bulge, and interior loop lengths, multifurcations,
dangles, and coaxial stacking. Although one implementa-
tion of an SCFG mirror of the Zuker algorithm has been
described [35], it used a structurally ambiguous grammar
(it was not intended for secondary structure prediction per
se; it was only used in summed Inside algorithm calcula-
tions where ambiguity doesn't matter, not in a CYK algo-
rithm where ambiguity does matter).

Apparently without considering alternative designs,
Knudsen and Hein had already described the simple and
effective G6 grammar, and extended it to analysis of input
multiple sequence alignments in the program Pfold
[18,26]. Because our exploration has not been exhaustive,
we can not say that G6 is the best possible simple gram-
mar. However, after exploring various alternative SCFG
designs, we confirm that the Knudsen/Hein grammar is an

excellent, simple framework in which to develop some
probabilistic RNA analysis methods.

The long term goal of this line of work is to extend a single
sequence SCFG design into a pairwise SCFG to address the
problem of structural alignment, combining structural
and evolutionary information in the same model. Given

that the pairwise algorithm will be (MN4) in memory

and (MN6) in time for grammars of M nonterminals
and sequences of length N [27], we know that we will
have computational complexity issues and therefore must
seek the simplest reasonably performing grammars. While
the G6 grammar is small and works well, the G7 and G8
grammars look easiest to extend to the pairwise SCFG
case. We are currently implementing methods to extend
them to pair-SCFGs for pairwise alignment and structure
prediction.
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