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Abstract

Background: Correlation between the expression levels of genes which are located close to each
other on the genome has been found in various organisms, including yeast, drosophila and humans.
Since such a correlation could be explained by several biochemical, evolutionary, genetic and
technological factors, there is a need for statistical models that correspond to specific biological
models for the correlation structure.

Results: We modelled the pairwise correlation between the expressions of the genes in a
Drosophila microarray experiment as a normal mixture under Fisher's z-transform, and fitted the
model to the correlations of expressions of adjacent as well as non-adjacent genes. We also
analyzed simulated data for comparison. The model provided a good fit to the data. Further,
correlation between the activities of two genes could, in most cases, be attributed to either of two
factors: the two genes both being active in the same age group (adult or embryo), or the two genes
being in proximity of each other on the chromosome. The interaction between these two factors
was weak.

Conclusions: Correlation between the activities of adjacent genes is higher than between non-
adjacent genes. In the data we analyzed, this appeared, for the most part, to be a constant effect
that applied to all pairs of adjacent genes.

Background

Several studies (Hamilton [1], Fukuoka[2]) have found
stronger correlation between the expression levels of
genes that are located close to each other on the genome
than between those of distant genes: when gene expres-
sions of many genes are measured for multiple tissue sam-
ples, for example using microarray technology, adjacent
genes are sometimes found to be consistently up- or
downregulated in a subset of the tissue samples.

Gene expression is influenced by many factors (for a
review, see Orphanides|[3]), many of which could influ-
ence the correlation between the expression of two genes
in general, and that between two adjacent genes in partic-
ular. Of particular interest are chromatin domains. DNA can
exist in either one of two states: a condensed state, termed
heterochromatin, which is broadly inaccessible to tran-
scription  (although there are exceptions (Orpha-
nides[3])), and an active state, termed euchromatin. A
chromatin domain (a segment of DNA which, in a given cell
at a given moment, is either entirely euchromatin or
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entirely heterochromatin) typically spans several genes
(Roy[4]). Therefore, one would expect the expressions of
two adjacent genes to tend to be positively correlated, at
least if it was possible to measure transcription in individ-
ual cells. If the chromatin state was completely random
(Jackson[5]) suggested a dynamic equilibrium, where
chromatin fluctuates, to some extent randomly, between
the two states), the effect of chromatin domains would
vanish when gene expression is measured in pools of
many cells, as with microarray technology. However,
there is ample evidence for non-randomness. For exam-
ple, chromatin states tend to be preserved after cell divi-
sion (Orphanides[3]). And Cho[6] demonstrated that the
states of chromatin domains in yeast are related to the cell

cycle.

In addition to the chromatin theory, several other expla-
nations have been suggested for the apparent correlation
between the expressions of adjacent genes. Several authors
(Cohen|[7], Kruglyak|8]) have noted that divergent gene
pairs show stronger correlation than tandem and conver-
gent pairs, possibly because divergent pairs share an
Upstream Activation Sequence. Lercher[9] found that
many of the co-expressed adjacent genes in Caenorhabditis
elegans are either operons or homologues (see also
Llorente[10] and Rossfll]), and it has been suggested that
evolution has arranged for functionally related genes to be
located close to each other, either in order to promote
consistent inheritance (Bleiweiss[12]), or in order to ben-
efit from the correlation accounted for by the chromatin
domains (Cohen|7]). Parisi[13] found a nonrandom dis-
tribution of the chromosomal location of genes with high
expression level in testis and ovaria in Drosophila. Jack-
son|5] suggested that the location of a gene in the nucleus
plays a role for its transcription, in relation to gradients of
the concentration of transcription factors.

Finally, since the action of a transcription factor on a pro-
motor gets weaker with distance, genes belonging to the
same pathway should show stronger correlation if they are
located close to each other (Dorsett [14]). Due to this
abundance of alternative theories, a study of gene-expres-
sion correlations should be designed in a way that makes
it possible to distinguish correlation structures predicted
by one model from those predicted by other models. The
same applies to the statistical analysis techniques used.

An important consequence of the evolution-based theo-
ries is that they predict a consistent coregulation structure.
Suppose that two genes (in this case, two adjacent genes)
are co-regulated because, for example, they participate in
the same pathway. They would, then, show a strong corre-
lation because they would be co-regulated in all tissue
samples. This need not necessarily be the case with the
chromatin domain model: the segments of euchromatin
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in one tissue sample may overlap with those in another
tissue sample. This latter scenario, we call an inconsistent
coregulation structure. With consistent coregulation, adja-
cent gene pairs will show either strong positive correla-
tion, or they will be uncorrelated. With inconsistent
coregulation, all adjacent gene pairs will show a modest
positive correlation.

In a microarray analysis of gene expressions in 35 pools of
drosophila embryos and 54 adult drosophilae (Spellman
and Rubin[15], reviewed by Oliver[16]), it was shown
that adjacent genes with correlated expression levels tend
to cluster. The method they used to demonstrate this was
the following: let w be a fixed window size, e.g. 10. For
each window of w adjacent genes, the average pairwise
Pearson correlation coefficient within the window was
computed. If that measure was found to be significant at,
say, 1 - a = 0.999 (the p-value was estimated in a permu-
tation experiment), all the genes in the sequence were
tagged. Doing this for all windows (they were allowed to
overlap), the total number of tagged genes was counted.
Then the experiment was repeated with shuffled genes
(i.e., as it would behave in the absence of positionally
related correlation), and the number of tagged genes in
the shuffled experiment was subtracted from the number
of tagged genes in the original experiment. This difference
(called "net genes") grows with window size and starts
plateauing for a window size of approximately 10. Spell-
man and Rubin interpreted this as evidence for gene inter-
action within regions of approximately that size.

One problem with the above method of analysis is that
the increasing number of "net genes" would occur even
without direct interactions between genes separated by up
to ten positions. As shown in figure 1, the analysis gives
similar results when applied to simulated data from a nor-
mal distribution, in which an autocorrelation of AC =
0.10 or 0.05 was imposed artificially. So we cannot, on the
basis of the analysis described above, reject the hypothesis
that the data arose from a simple first-order autocorrela-
tion process, in which no clustering of correlated genes
exists. It is true that gene-pairs with high correlation form
clusters: the autocorrelation of Pearson's R for adjacent
genes is 0.1, with a standard error 0.01. However, this can
be explained by the fact that genes that tend to correlate
strongly with other genes in general (for example because
of low measurement noise) tend to correlate with both
their neighbors. If one eliminates that confounder by
looking at non-overlapping gene pairs only, the autocor-
relation vanishes (0.01, standard error = 0.01). Another
way of showing this is by means of cross-tables. We
divided the adjacent gene-pairs into three groups: posi-
tively correlated pairs(R>0.7), negatively correlated (R< -
0.7) and non-correlated. (The threshold of 0.7 was sug-
gested by Cohen[7]). If the correlated gene-pairs were
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Net genes for simulated data. Number of genes that contribute to a high moving average of Pearson R in simulated data, as
a function of the size of the windows used for computing the moving average. The shapes of the curves are similar to the find-
ings by Spellman and Rubin, although the convergence is somewhat faster. The simulated data are first-order Gaussian autocor-

relation processes.

Table I: Average correlation between gene pairs of different
physical distances. The distances are minimal distances in bases.

Distance Mean R SE(R)
Overlapping 0.10 0.01
0-999 0.17 0.0l
1000-1999 0.14 0.0l
2000-2999 0.12 0.0l
3000-3999 0.10 0.0l
40004999 0.08 0.0l

clustered, one would expect that a gene-pair belonged to
the same group as the next gene-pair more often than
would happen by chance. This is indeed the case when
overlapping gene-pairs are considered: 627 gene pairs out
of 12949 (4.8%) had an R > 0.7 while the next (overlap-
ping) gene pair also had an R > 0.7. This is 2.22 times
more than what we expected due to chance alone. How-
ever, the same was observed when only one of the two
overlapping gene-pairs was was a neighbor pair and the
other was a random pair (if the genes were labelled
ABCD...Z, a strong correlation between A and B predicted
a strong correlation between B and C but also between B
and X, where X is a random gene). But when non-overlap-
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Pearson R for adjacent genes in Spellman and Rubin's data set, compared to non-adjacent genes. The QQ-plot is
shifted away from the diagonal over the whole correlation spectrum, suggesting that co-regulation applies to all pairs of adja-

cent genes.

ping adjacent gene pairs were considered (say, AB versus
CD), the contingency was 332 out of 12878(2.6%) which
is only 1.18 times more than expected due to chance. So
the apparent clustering of correlated gene pairs is mainly
due to overlap rather than to adjacency.

On the other hand, it is clear that there is some higher
order correlation structure in Spellman and Rubin's data.
This can be seen by computing the average correlation
coefficient for subgroups of the gene pairs, based on their
physical distance (table 1) - it decreases much slower with
distance than would a first-order process. Hence, the
question remains how the correlation structure should be

modelled and analyzed. In this paper, we present a
method to separate

A) Correlation of gene expression that can be attributed to
consistent coregulation, from

B) The uniform correlation expected under an hypothesis
of inconsistent corregulation.

Results

Data

We used the Drosophila data published by Spellman and
Rubin[15]. This data set consisted of normalized expres-
sion levels of 13090 genes in 89 flies (35 pools of embryos
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Table 2: Random gene pairs. Fitted parameters in the three-component mixture of ArcTanH(R) for random gene pairs. i has been

back-transformed so that it can be interpreted as a correlation.

Component fraction SE (fraction) Y7 SE(w) o SE(o)
.1687 .0007 -.660 .001 332 .002
0 .5955 .0006 014 .002 .330 .001
+ 2352 .0008 571 .002 439 .002

Table 3: Adjacent genes. Fitted parameters in the three-
component mixture of ArcTanH(R) for adjacent genes. u has
been back-transformed so that it can be interpreted as a
correlation.

Component fraction Y7 o
118 -.647 312

0 571 114 344

+ 31 .655 480

and 54 pools of adults), obtained with Affymetrix Gene-
Chip microarrays. For the purpose of analysis based on
physical distance between genes, the data set was linked to
Flybase[17] on the basis of the CG-identifiers provided by
Spellman and Rubin. 1871 genes had to be omitted from
that analysis because of unmatched CG-identifiers. We
checked that these omitted genes were not a biased sam-
ple with respect to correlation in expression with their
neighbor genes.

Non-adjacent gene pairs

The distribution of the correlation coefficient between
gene pairs in general, (i.e., genes that are not necessarily
adjacent) was fitted with a three-component normal mix-
ture, based on the Arcus Tangens Hyperbolic-transform
(Fisher's z) of the correlation coefficients, which was vali-
dated with a Kolmogorov-Smirnov test (p = 0.6). As
shown in table 2, the mean of the middle component,
tanh(g,), was 0.014 with a standard error of 0.002. (In all
tables, u has been transformed back with tanh so that it
can be interpreted as a correlation). The fact that the
standard deviation of the third component, o,, is greater
than that of the other components, suggests that the co-
regulation of some gene pairs was stronger than that of
others.

Adjacent gene pairs

Table 3 shows the fitted parameters in the same model,
but for adjacent gene pairs. The results are very similar to
those for the random gene pairs, although 4, and g, are
substantially higher. This suggests that the effect of adja-
cency is, for the most part, a mechanism that applies to

adjacent-gene pairs in general, not just to specific adja-
cent-gene pairs. One way to illustrate this is by means of a
qq-plot (figure 2), which shows that the correlation for
random gene pairs and adjacent gene pairs have a similar
structure, although the overall correlation is stronger in
adjacent gene pairs. This contrasts with the qg-plot in fig-
ure 3, in which the gene-expression correlations in the
subset of adult flies is compared to those in a mixed fly
group. On average, the correlation is zero in both the
adult group and the mixed group. However, the standard
deviation of the correlation is much higher in the mixed
group, presumably because genes that are expressed
specifically in the adults (or specifically in the embryos)
correlate strongly with each other in the mixed group.

Table 4 shows the fitted values of the parameters g, 1,
and the size of the third component (that is, the fraction
of the genes that are positively co-regulated), for random
and adjacent gene pairs in four subsets of the flies: one
containing all 54 adult pools, one containing all 35
embryo pools, and two random subsets of 35 and 54
pools, respectively. One can observe that y, (which can be
attributed to corregulation of gene pairs in general, i.e.,
inconsistent co-regulation) is always high for adjacent
gene pairs and low for random gene pairs. On the other
hand g, and the "+"-fraction (which can be attributed to
corregulation of specific gene pairs, i.e., consistent co-reg-
ulation) are always high in heterogenous fly groups and
low in homogenous one. That difference between heter-
ogenous and homogenous groups is what we expected: In
a homogenous fly group, less gene pairs will come up as
co-regulated, because some pathways may either be active
in all flies, or inactive in all flies. That age groups does not
explain all correlation, is hardly surprising: although the
adult group and the embryo group are less heterogenous
than the mixed group, neither is homogenous.

Gene pairs of intermediate distance

To get an impression of the size of the segments involved
in co-regulation, we fitted the three-component mixture
to the correlation coefficient between the expressions of
more distant gene pairs. x4, was 0.114 for the correlation
between the expression of a gene and that of its direct
neighbor, and 0.08 for the correlation with its second
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Figure 3

Pearson R for non-adjacent genes in the adult flies, compared to a mixed fly group of the same size (54 flies).
The average correlation is the same in both fly groups, but strong positive and negative correlation occurs in the mixed group.
This is consistent with the assumption that strong correlation of two genes can occur when both genes are upregulated (or
downregulated) in one age group relative to the other age group.
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Table 4: Subsets of the flies. Parameters in the three-component mixture of ArcTanH(R) for different subsets of the flies. 1z has been

back-transformed so that it can be interpreted as a correlation.

Flies Gene pairs Ho My "+" fraction

35 embryos Adjacents 0.09 0.44 0.21
35 embryos Random 0.03 0.30 0.16
35 random Adjacents 0.11 0.68 0.32
35 random Random 0.02 0.60 0.25
54 adults Adjacents 0.08 0.37 0.18
54 adults Random 0.0l 0.25 0.15
54 random Adjacents 0.12 0.65 0.31
54 random Random 0.08 0.57 0.24

Table 5: Physically close gene pairs. Fitted parameters in the
three-component mixture of ArcTanHyp(R) for gene pairs
within a distance of between 100 and 1000 bases from each
other. u has been back-transformed so that it can be interpreted
as a correlation.

Component fraction M o
- A -0.66 .34
0 64 0.14 46
+ .25 0.74 49

neighbor. From the fifth neighbor and until at least the
tenth, a stable level of 0.03 is reached, which is still higher
than for distant gene pairs. One possible interpretation of
this is that two different co-regulation effects exist: a short-
segment effect accounting for a correlation of approxi-
mately 0.114-0.03 = 0.081, and a long-segment effect
accounting for a correlation of approximately 0.03-0.014
= 0.016. At first we had the suspicion that this stable level
of 0.03 was a whole-chromosome effect, but that was not
the case. We found no significant difference between the
overall average correlation of random gene pairs from the
same chromosome and random gene pairs from different
chromosomes.

In a first-order autocorrelation process, tanh(z,) for the
second neighbor would be the square of that for the first
neighbor. However, the unexpectedly small difference
between the two values could be due to the fact that some
second neighbors are physically quite close. To confirm or
reject the hypothesis of a first-order process, however, the
analysis must be based on physical distance rather than
simple adjacency. As shown in table 1, the decrease in
average correlation as a function of physical distance is
still too slow for a first-order process.

Table 5 shows the fitted parameters for gene pairs within
a physical distance of between 100 and 1000 bases.

Unlike the fitted parameters for neighbor genes, #, is not
significantly higher than for random gene pairs.

Simulated data

To validate our approach, we computed the correlation
coefficients of adjacent and random gene pairs in simu-
lated data, based on either consistent or inconsistent co-
regulation. As expected, the simulated data with inconsist-
ent co-regulation resulted in a correlation structure with
only one component, whereas those with consistent
coregulation showed two components. (Not three, since
the segment effect (see Methods) was always positive in the
simulated models).

Discussion

There are many theories that could explain correlation
between the expressions of two genes in general, and that
of two adjacent genes in particular. For the verification of
the specific correlation structures predicted by each the-
ory, Spelmann and Rubin's data turned out to be very use-
ful. Their experimental design was based on two distinct
classes of experimental conditions (in this case, embryos
and adults), which makes a relatively simple correlation
structure plausible. Also, the data from each of their
microarrays could be fit nicely with a normal mixture,
which makes it possible to analyze their data on the basis
of the Pearson R. As expected, most of the consistent
correlation was found to be related to age group and
unrelated to adjacency. Maybe more surprisingly, most of
the correlation that was related to adjacency could not be
accounted for by consistent co-regulation. This suggest
that, at the statistical level, co-regulation of adjacent genes
should be understood in terms of the mechanics of the
transcription process, rather than in terms of the evolu-
tionary origin of specific gene groups. In other words, in
this particular data set, consistent correlation was very
widespread, applying to 40% of all gene pairs (table 2),
half of this could be attributed to the two age groups
(table 3), but this consistent correlation was not the most
important contributor to the elevated correlation coeffi-

Page 7 of 10

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:10

cients for adjacent gene pairs. Correlation between the
expression of adjacent genes is evident, but it is possible,
as suggested by Spellman and Rubin, that such a correla-
tion between expression levels for two adjacent genes
does not generally imply a relationship with respect to
biological function.

Spellman and Rubin concluded that the adjacent genes
with correlated expressions were confined to certain
domains, which spanned 20% of all genes. Our findings
are different, in that we distinguished between two com-
ponents of the correlation structure. We found a baseline
correlation of 0.1 (the difference between g, in table 2 and
table 3) applying to all adjacent gene pairs. In addition to
that, we found that 8% of all adjacent gene pairs (the dif-
ference between the "+" -fractions in table 2 and table 3)
were strongly positively correlated. Finally, unlike Spell-
man and Rubin, we found no evidence for clustering of
the strongly correlated gene pairs.

Since this data set contained data from whole animals, we
cannot say anything about the role of chromatin domains
(or other mechanisms causing correlation of the expres-
sion of adjacent genes) in tissue differentiation. Parisi et
al. [13] found clustering of genes that were upregulated in
drosophila germ cells, which suggests that one would find
elevated consistent coregulation of adjacent genes when
applying our model to data sets with different tissue
classes.

Even for random (non-adjacent) gene pairs, 4, was
slightly positive. It is hard to imagine a biological effect
that could cause g, to be significantly greater than zero,
but it could be an artifact of the normalization: if gene g is
expressed at the same level in all tissue samples, and gene
h as well, they should have a correlation coefficient of
zero, but since they will both yield elevated measurements
in flies in which the normalization bias is positive, the
observed correlation will be positive. The fact that y, is
almost zero suggests that normalization bias is not a
major problem with this data set. The fact that g, for ran-
dom gene pairs is not generally higher in mixed age
groups than in pure adult or embryo groups (table 4) is
consistent with the assumption that g, for random gene
pairs does not have a biological interpretation. Although
looking at adjacent genes is computationally convenient,
it would probably be more correct to use physical dis-
tance, rather than adjacency, as a covariate. Actually,
Fukuoka[2] found that physical distance is stronger
related to correlation of expression levels than is adja-
cency. Table 5 shows that when a subgroup of the gene
pairs is selected on the basis of physical distance, it
becomes even more clear that the elevated correlation is a
general property of all near-by gene pairs. This is not sur-
prising since the group of adjacent gene pairs is heteroge-
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nous, containing gene pairs with vastly varying distances.
Unfortunately, there are some problems related to the use
of physical distance.

First, it is not clear with respect to which anchor the phys-
ical distance should be defined. We have chosen to use the
minimal distance (using the end nearest to the neighbor
as an anchor), because it is not confounded by the length
of the gene. However, depending on which co-regulation
mechanism one has in mind, other distance measures
might be more natural. This question becomes crucial if
one wants to make subgroup analysis based on conver-
gent, divergent and tandem gene pairs.

Second, physical distance is a continuous variable, which
means that the model must be augmented with an
assumption regarding the relationship between distance
and correlation.

The question remains to what biological phenomena the
baseline correlation between adjacent genes should be
attributed. Several of the theories that have been proposed
could account for it, and it is likely that several mecha-
nisms play a role.

In addition to the baseline correlation, we also found
more consistent correlation between adjacent genes and
inconsistent co-regulation, but this does not necessarily
imply a combination of two mechanisms: one could
imagine a kind of quasi-consistent mechanism, in which
groups of adjacent, co-regulated genes could have bound-
aries everywhere, but with some boundary locations being
more likely than others. Finally, it has been suggested that
the correlation between the expressions of adjacent genes
should be understood in terms of enhancer-promotor
interaction, which weakens with distance(Dorsett[14]). It
is possible that such a model would predict a pattern sim-
ilar to what we have found.

Conclusions

It is possible to analyze correlation structures in gene
expression data on the basis of simple, parametric models
with known mathematical properties and parameters
with biological interpretations, or at least some candidate
interpretations. When applied to the data from Spellman
and Rubin, it appeared that the expressions of two genes
can show positive correlation for either of two largely dis-
tinct reasons: because they share some confounder unre-
lated to adjacency (this is often the age group, but could
also be some other biological parameter, or a technical
artefact), or because they are located close to each other
on the chromosome. The underlying biological mecha-
nisms remain unknown, but there appears to be a compo-
nent of the correlation that depends on distance only and
not of the biological function of the genes. If this is true,

Page 8 of 10

(page number not for citation purposes)



BMC Bioinformatics 2005, 6:10

gene clustering algorithms might benefit from making
distinction between the adjacency-related and not-adja-
cency-related co-regulation, for example by subtracting
the effect of adjacency from the correlation of adjacent
genes. Doing that would, according to our findings, lead
to more reliable identifications of gene pairs with related
biological functions.

Methods

Non-adjacent gene pairs

First, we constructed a model for those co-regulation
effects that were unrelated to the relative location of the
two genes. Suppose that a gene can be active either in
adults, in embryos, in both, or in neither. Let Y,; be the
log-scale measured activity of gene g in fly i, fly i having
development stage s (either "adult" or "embryo"). A
natural model for Y,; would be a two-component normal
mixture:

if gene i active in stage s

YgiN{N(TSIVs) (1)

N(7tg,v9) otherwise

Since the data were normalized so that the average logs-
cale activity across all 89 flies was zero, the activity of gene
g in the other development stage should be taken into
account. We therefore assumed a three-component nor-
mal mixture:

N(t’ v ;) if genei passive in stage s and active in the other stage
Ygi ~ 1 N(0,v5,5) if gene i is either passive in both stages or active in both (2)
N(7}, v} ) if geneiis active in stage s and passive in the other stage

Actually, of the 89 flies, the gene expressions in 87 of
them could be nicely fitted with a three-component, nor-
mal mixture, while in two of the adult flies we identified
only two components (the component of genes that were
passive in adults while active in embryos vanished in
those two cases).

If the three-component model is correct, Fisher's z-trans-
form, which is the hyperbolic arcus tangens of the Pearson
correlation coefficient R, for two genes, g and h, is

N(u_,0_) gactive only in one stage, h only in the other
ArcTanHyp(Rgp,) ~ 4 N(to,00)
N(uy,0,) if both genes are active only in, say, adults

if either gene is insensitive to the stage (3)

We expected £, to be close to zero. This model was vali-
dated by implementing it on the neighbor correlations in
a shuffled data set, that is, for each gene its Pearson R with
a random gene was computed. This procedure was
repeated with 10 shuffled data sets, each generated by
shuffling the genes in the original data set and subse-
quently computing the Pearson R for each pair of adjacent
genes. For each shuffled data set, the parameters in the
model were estimated with the EM algorithm (Dempster
et.al[18]).

http://www.biomedcentral.com/1471-2105/6/10

Adjacent genes

Second, the distribution of the correlation coefficients of
the pairs of adjacent genes in the unshuffied data set were
compared to the same distribution for the shuffled data
sets. Doing that, we could distinguish two different contri-
butions to the correlation; A) co-regulation effects that are
unrelated to the fact that two genes are adjacent, and B)
co-regulation effects related to the fact that two genes are
adjacent. We also analyzed each gene's correlation with its
second, third etc. (up to the tenth) neighbor, in order to
get an idea of the lengths of the chromatin domains in
question.

Third, we applied the above two procedures to two subsets
of the data, namely the data for adult flies and the data for
embryos. If our assumption, that all (or at least most) cor-
relation could be attributed to the development stage, one
would expect much less correlation in those subsets.
However, those subsets differ from the entire data set by
the mere fact that they are smaller. Therefore, we also
applied the same procedure to two random subsets of 35
and 54 flies, respectively, stratified by development stage.

Physical distance

For those gene pairs where the start and the end of the
open reading frame (ORF) was available, we defined the
physical distance as the distance between the end of the
OREF of the first gene and the start of the ORF of the second
gene. We chose that definition because other distance def-
initions (defined on the basis of the direction of transcrip-
tion, or on the basis of mid-points) would be confounded
by the length of the ORFs.

Simulated data

Finally, in order to validate our method, we applied it to
6 simulated data sets, which we simulated on the basis of
the two alternative hypothesis of consistent and inconsist-
ent co-regulation. The simulated data sets contained 100
tissue samples and 1000 genes. The genes were randomly
divided into either 67, 200 or 500 segments,
corresponding to average segment sizes of 15, 5 and 2.
This means that each gene belonged to exactly one seg-
ment. For each average segment size, we simulated one
data set with consistent co-regulation, in which the same
segments were used for all 100 tissue samples, and one
data set with inconsistent co-regulation, in which a separate
segmentation was sampled for each tissue sample. If gene
g belongs to segment s in sample i, the expression Y,; was
given by

Ygi =X+ & (4)

where x; + and &,; were both sampled from the standard
normal distribution. Notice that this model does not
account for different tissue classes, so it should be com-
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pared to the results from the adults-only and embryos-
only subsets. The error term ¢, should be interpreted as a
combination of measurement errors and biological effects
that are unrelated to the segmentation.
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