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Abstract
Background: Evolutionary distances are a critical measure in comparative genomics and
molecular evolutionary biology. A simulation study was used to examine the effect of alignment
accuracy of DNA sequences on evolutionary distance estimation.

Results: Under the studied conditions, distance estimation was relatively unaffected by alignment
error (50% or more of the sites incorrectly aligned) as long as 50% or more of the sites were
identical among the sequences (observed P-distance < 0.5). Beyond this threshold, the alignment
procedure artificially inflates the apparent sequence identity, skewing distance estimates, and
creating alignments that are essentially indistinguishable from random data. This general result was
independent of substitution model, sequence length, and insertion and deletion size and rate.

Conclusion: Examination of the estimated sequence identity may yield some guidance as to the
accuracy of the alignment. Inaccurate alignments are expected to have large effects on analyses
dependent on site specificity, but analyses that depend on evolutionary distance may be somewhat
robust to alignment error as long as fewer than half of the sites have diverged.

Background
Evolutionary distance, the number of substitutions per
site separating a pair of homologous sequences since they
diverged from their common ancestral sequence, is an
extremely important measure in molecular evolution and
comparative genomics. It is used for a wide variety of pur-
poses, ranging from phylogenetic analysis [1,2], to esti-
mating times of divergence [3,4], the tempo and mode of
evolutionary change [5], and functional constraints [6,7].
Evolutionary distance estimation is often one of the first
steps in high-throughput sequence analysis; errors in
these estimates may have wide-ranging consequences on
downstream analyses and conclusions.

There are many ways to estimate evolutionary distance;
accuracy of various methods tends to be dependent on
proper specification of the substitution model and
sequence length [8,9]. One factor that has not been well
examined with respect to evolutionary distance estima-
tion, however, is alignment (although see [10-12]).
Sequence alignment is an extremely common analytical
tool used in comparative genomics. The purpose of align-
ment is to identify positions in homologous sequences
that are descended from a common ancestor. Because
alignment is the first step in many complex, high-
throughput studies [13], it is often forgotten that align-
ment algorithms produce a hypothesis of homology (just as
a phylogenetic tree is a hypothesis of evolutionary
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history). As with other hypotheses, these alignments may
contain more or less error depending on the nature of the
data. While it is widely recognized that highly divergent
sequences are more difficult to align and will contain
more error than less divergent sequences (e.g., [14,15]),
the nature of this error appears to be underappreciated
and is usually ignored.

Little attention has been paid to how errors in sequence
alignment affect downstream analysis. Individual studies
have shown that error in alignment can have broad effects
on computational approaches to discovering functional
elements [16,17] and phylogenetic analysis (e.g., [18-
24]); these studies have been based on specific data sets
and generally show that different results are obtained by
different alignments, rather than estimating the amount
of error generated by incorrect alignment.

I performed a simulation study to examine the relation-
ship between global alignment accuracy and evolutionary
distance estimation of noncoding DNA sequences. It con-
sists of a profile of the magnitude of error one expects to
find in paired sequence alignment under the simulation
conditions and the comparison of evolutionary distance
estimates from correct and hypothesized alignments as
the true divergence increases.

Results and discussion
Under the baseline simulation conditions, alignment
accuracy (measured as the proportion of aligned sites that
are truly homologous) is largely dependent on the pro-
portion of homologous sites containing identical nucle-
otides. When sequence identity exceeded 80%, essentially
all aligned sites (>99%) were truly homologous (Figure
1). As identity declined, the proportion of correctly
aligned sites rapidly decreased. When identity reached
65%, about 90% of the aligned sites were still correct, but
when identity reached 50% accuracy dropped to 30–65%
(depending on the complexity of the substitution model).
When fewer than 50% of truly homologous sites were
identical, alignment accuracy becomes essentially zero.

A distinction needs to be made between the true identity
of the sequences (the proportion of truly homologous
sites in a pair of sequences containing identical nucle-
otides) and the aligned identity (the proportion of
hypothesized homologous sites from an alignment that
contain identical nucleotides). The nature of alignment
algorithms is to predict homology by inserting gaps so
that sites with identical nucleotides align. When true vari-
ation among sequences is large, algorithms can be quite
efficient at incorrectly inferring identity. The theoretical
minimum identity for a pair of sequences under the
present simulation conditions is 25–26% (depending on
the specific substitution model), yet Clustal yields

Relationship of alignment accuracy and sequence identityFigure 1
Relationship of alignment accuracy and sequence 
identity. (A) Proportion of sites correctly aligned versus 
true percent identity among the sequences. (B) Proportion 
of sites correctly aligned versus observed percent identity 
after alignment. (C) Observed versus true percent identity. 
JC = Jukes-Cantor model [37]; HKY = Hasegawa-Kishino-
Yano model [38]; HKY + Γ = Hasegawa-Kishino-Yano plus 
gamma-distributed rates model. All points represent the 
average of 1000 simulation replicates.
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sequences with a minimum identity of 44% (Figure 1),
even for random data (similar results have been reported
by others, e.g., [10,25]). The inflation in observed identity
is predominantly found in sequences that truly differ by
more than 50% of their sites; sequences with true identity
of 50% or more have less than a 1% absolute increase in
observed identity after alignment.

The results represented in Figure 1 describe the accuracy of
pair wise alignment by Clustal under the specific simula-
tion conditions and alignment parameters. While these
exact profiles cannot be taken as representative of align-
ment accuracy for all sequences and algorithms, the shape
of the curve probably does reflect a general pattern. Differ-
ent evolutionary conditions and algorithms may lead to

varying inflection points, but the general shape of the
curve is likely to be constant (e.g., similar accuracy curves
were found in [26]).

Up to a point, evolution distance estimation is somewhat
robust to alignment error (Figures 2,3). The relative differ-
ence between evolutionary distances estimated from the
true and hypothesized alignments (= |dtrue - dalign|/dtrue) is
less than 10%, even when up to 50% of the sites are
aligned incorrectly (Figure 3). Distance estimates from the
hypothesized alignments begin to differ to a greater extent
from the true alignment only when more than half of the
sites are aligned incorrectly. For the JC and HKY substitu-
tion models, alignment inaccuracy did not have an effect
on distance estimation for true distances less than 1.0
(Figure 2). For HKY + Γ, alignment inaccuracy produced
little effect on distance estimation even when true dis-
tances were as large as 2.0. When scaled to percent identity
(the proportion of aligned sites that contain the same
nucleotides in the paired sequences), the curves for the
different substitution models become congruent (Figure
3B). The robustness of these estimates appears to be
related to the inflation of sequence identity (Figure 1C).
As long as the true identity is greater than 50%, there is lit-
tle inflation in the estimated identity due to alignment
(even when the alignment is largely wrong). This trans-
lates to relatively little error in the estimation of distance,
because distance estimates are based solely on the
observed proportions of sites that differ among the
sequences; JC distance is based on the overall count,
Tamura-Nei distances partition the count into transver-
sions and purine and pyrimidine transitions. Since these
counts are being estimated reasonably accurately (even
though the specific sites are wrong) the distance estimates
are also reasonably accurate. The 50% barrier for distance
estimate accuracy was also reported by [10] using a least-
squares approach to estimating P-distance.

It may be possible to reduce the sequence identity infla-
tion by changing the gap and mismatch penalties (or
using more sophisticated methods of alignment); these
changes would also alter the accuracy of the alignment.
The purpose of this study was not to test the best possible
way to construct alignments, but rather to examine the
effects of typical alignment errors on evolutionary dis-
tance estimation from DNA sequences.

The effects of evolutionary parameters on alignment and
distance estimation accuracy varied by parameter, but one
general observation is that when the value of a specific
parameter has an effect, the effect is amplified when the
true distance between the pair of sequences is larger (Fig-
ure 4). While sequence length generally affects the accu-
racy of evolutionary distance estimates [9], there was no
interaction between sequence length and the effect of

Relationships among true and estimated evolutionary distancesFigure 2
Relationships among true and estimated evolution-
ary distances. True distances were measured using the 
appropriate substitution model. (A) True P-distance versus 
true evolutionary distance. (B) Estimated evolutionary dis-
tance from aligned data versus true evolutionary distance.
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alignment accuracy on evolutionary distance estimation.
The mean alignment accuracy was unaffected by sequence
length, although standard deviations were much reduced
for longer sequences (Figure 4A). On the other hand, dis-
tance estimates became marginally better with longer
sequences (Figure 4B). In contrast to sequence length,
increasing both indel size and rate had large effects on
alignment accuracy (Figures 4C, E). Evolutionary distance
estimation, however, was unaffected by changes in these
parameters (Figures 4D, F), showing a lack of association

between alignment accuracy and evolutionary distance
estimation (i.e., Figure 4 shows a 40% decrease in align-
ment accuracy with essentially no corresponding change
in the accuracy of estimated evolutionary distances).

Changing the α parameter of the Γ-distributed rate varia-
tion had an easily predictable effect on alignment accu-
racy given the results in Figures 2,3. Decreasing α,
increases the magnitude of intersite rate variation (an α of
infinity indicates equal rates among all sites); thus,
decreasing α will increase the proportion of identical sites
found among the paired sequences since substitutions
will occur at a fewer sites. As already shown, increased
identity among the sequences leads to increased accuracy
of alignment, a result confirmed in Figure 4G. Accuracy of
distance estimates appear driven by the sensitivity of the
results to proper specification of the site rate distribution
[9], and a relationship with alignment accuracy is uncer-
tain. Estimation of evolutionary distance with intersite
rate variation substitution models requires user specifica-
tion of the Γ-distribution shape parameter α. There are no
established methods for estimating α from only a pair of
sequences (all described methods require 3 or more
sequences). The effect of alignment accuracy on distance
estimation is dependent on the accuracy of α (results not
shown). When α is underestimated (i.e., intersite rate var-
iation is less than predicted), evolutionary distance will be
underestimated for both the true and hypothesized align-
ments, but the difference between these estimates is
reduced (relative to the correct specification of α). When
α is overestimated (i.e., intersite rate variation is more
than predicted), evolutionary distance will be overesti-
mated for both the true and hypothesized alignments and
the difference between these estimates is accentuated.

Not surprisingly, nucleotide frequency biases have a large
effect on the accuracy of both alignment and distance esti-
mation (Figures 4I–J). Alignment accuracy decreases with
increasing nucleotide frequency bias due to the increased
probability of false homology (Figure 4I). A correspond-
ing increase in the error of distance estimation is seen
(Figure 4J), but the lack of alignment accuracy cannot nec-
essarily be considered causal. Note the contrast between
this result and that for indel rate and size (Figures 4C–F).
Increased indel rate and size show a similar magnitude of
effect on alignment accuracy as nucleotide frequency, but
without the corresponding change in distance estimation.
This emphasizes the independence of distance estimation
to alignment accuracy for moderate evolutionary
divergences.

Overall, these results are somewhat encouraging, particu-
larly when one considers that the more realistic substitu-
tion models (i.e., HKY + Γ in this study) are more robust
to alignment error for much longer evolutionary

Effect of alignment error on evolutionary distance estimationFigure 3
Effect of alignment error on evolutionary distance 
estimation. Relative error in evolutionary distance is meas-
ured as the absolute difference between the distance esti-
mated from the true alignment and the distance estimated 
from the observed alignment, divided by the distance esti-
mate from the true alignment. (A) Relative error in evolu-
tionary distance versus proportion of correctly aligned sites. 
(B) Relative error in evolutionary distance versus true per-
cent identity.
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Effects of parameter changes on alignment accuracy and relative error in evolutionary distance estimationFigure 4
Effects of parameter changes on alignment accuracy and relative error in evolutionary distance estimation. 
Ordinate axes are scaled to match Figure 3. Alignment accuracy (A, C, E, G, &I) and evolutionary distance estimation (B, D, 
F, H, &J). (A &B) Effect of initial sequence length. (C &D) Effect of mean insertion and deletion size. (E &F) Effect of insertion 
and deletion rate. (G &H) Effect of intersite rate variation. (I &J). Effect of nucleotide frequency bias (G+C content). Error bars 
represent ± one standard deviation. Black and white points represent HKY simulations with expected distances of 0.5 and 1.0, 
respectively.
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distances. However, the robustness of these distance
estimates is extremely context dependent. Whether a 10%
error in distance estimate is large or small depends on the
questions being asked as well as the relative distances of
other sequence pairs being analyzed.

Some of the general results in this study have been
reported previously [10,11,27], but the present study dif-
fers from these in the inclusion of more complicated sub-
stitution models (HKY + Γ vs. JC) and distance estimates
(Tamura-Nei vs. P-distance), as well as a somewhat differ-
ent approach to sequence alignment. Clustal is among the
most commonly used alignment programs and imple-
ments a variation of the most commonly used pair wise
alignment method, the Needleman-Wunsch algorithm
[28]. Algorithms which make statistical estimates of align-
ment, either maximum likelihood or Bayesian [27,29-32],
may also incorporate evolutionary distance estimation,
sometimes estimating distances over the alignment prob-
ability landscape [12]. These methods may be more accu-
rate than Clustal and thus the relationships between
alignment accuracy and distance estimation may be very
different for these approaches than those described within
this study [10,11,27]. One goal of this study was to profile
alignment and distance estimation errors as commonly
used by the bioinformatics and genomics community; the
methods I employed in the present work are much more
commonly used that are the statistical alignment
procedures.

The performed simulations represent a global alignment
condition (there were no rearrangements which would
change homology of the overall sequences) and thus
focused on global alignment. Local alignment programs
and algorithms, such as BlastZ [33] or Dialign [34],
implicitly assume that subsections of the sequences are
simply not homologous (or that homologous regions
occur in different orders). By finding only conserved
regions, local alignment algorithms essentially decrease
the probability of false positives (aligned sites which are
not truly homologous) while increasing the number of
false negatives (unaligned sites which are truly homolo-
gous). Thus, within the aligned regions, local alignment
may be expected to be more accurate than global align-
ment, but also may lead to underestimates of evolution-
ary distances since the poorly conserved homologous
regions will likely be excluded from the alignment. The
tradeoffs between local and global alignment with respect
to distance estimation need to be explored in some depth.

Because alignment error appears to be somewhat under-
appreciated by the genomics community, the alignment
error profiles are in-and-of themselves interesting. While
it is generally known that sequences become difficult to
align as they diverge (e.g., [14,15]), the precipitous

decline in accuracy (Figure 1) has only recently been pro-
filed through simulation [26]. Not surprisingly, the exact
nature of these curves appears to be highly dependent on
indel size and rate (Figure 4). To some extent, the align-
ment accuracy profiled in Figure 1 can be viewed as a best-
case-scenario since the simulation parameters could be
considered realistic, but otherwise low, values. As inser-
tion and deletion events increase in size and rate, align-
ment accuracy, particularly for more divergent sequences
will decline precipitously. It is certainly possible that addi-
tional accuracy may be recovered by use of different align-
ment algorithms or better optimization of the alignment
parameters.

Conclusion
In this study, I've shown evolutionary distance estimation
to be somewhat robust to errors in alignment for moder-
ate divergences (>50% identity). Other uses of aligned
data, including for example, identification of conserved
sites relative to exploration of genetic disease [35,36], are
likely to be highly dependent on the accuracy of align-
ment and even a tiny error may have a large effect on the
results. Different alignments are known to lead to differ-
ent hypotheses in phylogenetic analysis [18,19]; how
various phylogenetic methods respond to alignment error
is an open question in need of future study.

Methods
Three large sets of simulations were conducted, each dif-
fering by the nucleotide substitution model: Jukes-Cantor
(JC) [37], Hasegawa-Kishino-Yano (HKY) [38], and HKY
+ Γ distributed site rate variation. A summary of all simu-
lation conditions is found in Table 1. For JC, initial
sequences consisted of 1000 random nucleotides, with
the expected base composition equal for all nucleotides
(i.e., 25% each). Initial sequences were replicated into a
pair of independent lineages and allowed to evolve under
the JC model of evolution to an expected fixed divergence
(the realized number of substitutions were drawn from a
Poisson distribution), ranging from 0.02 to 2.0. Insertions
and deletions were also allowed to occur, with the
expected rate of deletion events being one occurrence
every 40 substitutions and the expected rate of insertion
events being one occurrence every 100 substitutions (as
observed in primates and rodents) [39]. Realized number
of insertions and deletions were drawn from a Poisson
distribution with mean equal to the expected value. The
lengths of individual insertion and deletion events were
also chosen from a truncated (so as not to include zero)
Poisson distribution with a mean of 4 bases (as observed
from primate and rodent lineages) [39,40]. Each simula-
tion condition was replicated 1000 times.

The second set of simulations conducted was identical to
the first, except using the HKY model of nucleotide
Page 6 of 9
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substitution. For this model, initial and expected nucle-
otide frequencies were πC = πG = 0.3, πT = πA = 0.2, and the
transition-transversion bias was set to that observed at
neutral sites in mammals, κ = 3.6 [41]. The third set of
simulations conducted was identical to the second, except
allowing rate variation among sites within the sequence,
modelled by a gamma distribution with a shape parame-
ter of 1.0 [9].

Sequence length is known to play an important role in
evolutionary distance estimation; to test for an interaction
between sequence length and alignment accuracy, subsets
of the HKY simulations were repeated with initial
sequences of 100, 200, 300, 400, 500, 1500, 2000, 5000,
and 10000 bases. To test the effect of rate and size of inser-
tions and deletions on distance estimation, subsets of the
HKY simulations were repeated with mean indel lengths
of 2, 6, 8, and 10 bases (the original simulations had a
mean of 4 bases) and with insertion and deletion rates of
1 every 200 (insertion) & 80 (deletion) substitutions (half
the original rate), 150 & 60 substitutions (2/3 the original
rate), 75 & 30 substitutions (4/3 the original rate), and 50
& 20 substitutions (double the original rate). The effects
of nucleotide frequencies (G+C% = 60%, 70%, 80%, and

90%) and gamma-distributed rate variation (α = 0.25,
0.5, 1.0, and ∞) were similarly examined.

For every simulated data set, the fate of each of the origi-
nal sites was tracked and an alignment representing the
true homology was constructed for each data set (that is,
the simulation program produced gapped sequences in
which all aligned sites were truly homologous). The gaps
were removed from the sequences and each data set was
then aligned using Clustal W version 1.83 [42] with the
default parameters, as is common in high-throughput
analysis and comparative studies of this sort [26,34,43-
45]. This produced a hypothesized alignment, just as one
would obtain from analysis of real data. Clustal is one of
the most widely used global alignment programs, particu-
larly for high-throughput genomic analysis, and tends to
be among the most accurate [26,46]. While it is possible
that another program or algorithm or changing the
default Clustal parameters might lead to more accurate
alignments, the primary purpose of this study is not to
highlight the accuracy of this (or any other) alignment
program, but rather to examine the effects of alignment
error on evolutionary distance estimation. One could pur-
posefully misalign the sequences by hand, but using a

Table 1: Summary of all simulation conditions

Model G+C% Initial # 
Sites

κ α Insertion/
Deletion Rate

Mean Indel 
Size

True distances simulated

JC 0.5 1000 n/a n/a 100/40 4 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
HKY 0.6 1000 3.6 n/a 100/40 4 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
HKY + Γ 0.6 1000 3.6 1.0 100/40 4 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0
HKY 0.6 100 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.6 200 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.6 300 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.6 400 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.6 500 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.6 1500 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.6 2000 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.6 5000 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.6 10000 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.6 1000 3.6 n/a 100/40 2 0.5, 1.0
HKY 0.6 1000 3.6 n/a 100/40 6 0.5, 1.0
HKY 0.6 1000 3.6 n/a 100/40 8 0.5, 1.0
HKY 0.6 1000 3.6 n/a 100/40 10 0.5, 1.0
HKY 0.6 1000 3.6 n/a 200/80 4 0.5, 1.0
HKY 0.6 1000 3.6 n/a 150/60 4 0.5, 1.0
HKY 0.6 1000 3.6 n/a 75/30 4 0.5, 1.0
HKY 0.6 1000 3.6 n/a 50/20 4 0.5, 1.0
HKY 0.7 1000 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.8 1000 3.6 n/a 100/40 4 0.5, 1.0
HKY 0.9 1000 3.6 n/a 100/40 4 0.5, 1.0
HKY + Γ 0.6 1000 3.6 0.25 100/40 4 0.5, 1.0
HKY + Γ 0.6 1000 3.6 0.5 100/40 4 0.5, 1.0

κ is the transition/transversion bias. α is the shape parameter for Γ-distributed intersite rate variation. Insertion/Deletion Rate is relative to the point 
mutation rate, i.e., a rate of 100/40 indicates 1 insertion every 100 point mutations and 1 deletion every 40 point mutations. Each simulation condition 
was replicated 1000 times.
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common alignment program allows us to create errors
consistent with those found in alignment of real data.

Evolutionary distances between sequence pairs were esti-
mated for both the correct and hypothesized alignments
using the Jukes-Cantor [37], Tamura-Nei, and Tamura-
Nei + Γ formulas [47], as appropriate.

After the initial analyses, the order of the nucleotides in
every simulated sequence was completely randomized to
create random sequences with identical nucleotide con-
tent as the simulated sequences. The random sequences
were also aligned using Clustal.
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