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Abstract
Background: Despite the continuous production of genome sequence for a number of organisms,
reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularly
true for genomes for which there is not a large collection of known gene sequences, such as the
recently published chicken genome. We used the chicken sequence to test comparative and
homology-based gene-finding methods followed by experimental validation as an effective genome
annotation method.

Results: We performed experimental evaluation by RT-PCR of three different computational gene
finders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram was
computed and each component of it was evaluated. The results showed that de novo comparative
methods can identify up to about 700 chicken genes with no previous evidence of expression, and
can correctly extend about 40% of homology-based predictions at the 5' end.

Conclusions: De novo comparative gene prediction followed by experimental verification is
effective at enhancing the annotation of the newly sequenced genomes provided by standard
homology-based methods.

Background
The draft sequence of the chicken (Gallus gallus) genome

has been recently obtained and an initial analysis com-
pleted [1]. This genome sequence will be extremely
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valuable for vertebrate development, avian biology, and
agriculture. To reap these benefits, however, we must be
able to determine with reasonable accuracy the amino
acid sequences of the proteins encoded by this genome.
We therefore set out to adapt three leading gene predic-
tion systems to the chicken genome sequence and to eval-
uate their predictions experimentally. Some features of
the chicken genome facilitate gene prediction while others
hinder it. Generally, gene prediction tends to be more
accurate in more compact genomes than in the large
mammalian genomes [2-6]. The chicken genome is about
40% the size of the human genome, but about three times
the size of the Takifugu genome [7-11]. This translates
into a substantial reduction in repeats and pseudogenes.
Interspersed repeats cover about 9% of the genome, far
less than the 40–50% found in mammals [1]. The small
number of processed pseudogenes is beneficial to auto-
mated annotation, as this technology often misclassifies
pseudogenes as functional. De novo prediction methods
need full open reading frame (ORF) mRNAs to train their
statistical models and homology-based methods rely on
these sequences in order to predict a core set of high qual-
ity genes. However, an abundant set of chicken full-length
cDNAs was not available at the start of this project, as only
about 1,800 putatively full-length cDNAs and 340,000
ESTs were deposited in GenBank [12].

We set out to determine how well the computational
methods used for annotating protein-coding genes in the
mouse and rat genomes [9,10] would perform in this
avian context, where transcriptome sequencing was much
less advanced and where sequence divergence may be
beyond the optimal distance. An assessment of the com-
putational methods was carried out by a large-scale exper-
imental verification by RT-PCR. The gene prediction tools
tested were Ensembl, SGP2 and TWINSCAN. Ensembl is a
homology-based method, which builds gene-models
using species-specific known sequences and proteins from
other species aligned to the genome [13]. SGP2 and
TWINSCAN are de novo comparative gene predictors
whose only inputs are the genome to be annotated and a
second informant genome [3,4,14-16]. In this case, the
informant genome selected for comparison was human.
Since Ensembl relies on mapping known genes from
chicken and other organisms to the chicken genome, we
surmised that its prediction set would contain fewer false
positives (predicted genes that are not real) and more
accurate gene structures, as well as more false negatives
(real genes that are not predicted) than the de novo meth-
ods. Conversely, SGP2 and TWINSCAN should be effec-
tive in detecting bona fide genes missed by the Ensembl
pipeline. In particular, we were able to verify gene struc-
tures simultaneously predicted by both de novo methods
about 50% of the time. In this respect, de novo compara-
tive methods complement homology-based methods,

which in general miss genes for which there is no pre-
existing evidence of transcription.

To test and compare the performance of these prediction
systems under the new conditions presented by the
chicken genome, we tested a large number of predicted
genes by RT-PCR and direct sequencing. We sampled indi-
vidually from the predictions for which either one or two
of the three methods agreed, and the remainder did not.
We thus focused our tests on the most difficult genes to
predict and on the differences between the various predic-
tion systems. We present here the largest experimental
comparison of multiple gene-prediction programs to date
as well as the first to use this kind of differential design.
We aimed to evaluate how de novo and homology-based
gene finding methods perform in a newly sequenced
genome for which a small number of gene sequences are
known. In particular we have (1) evaluated the three pre-
diction methods, (2) investigated TWINSCAN and SGP2
as possible effective methods to complement the Ensembl
prediction pipeline and (3) tested the overall specificity of
the Ensembl prediction set.

Results and discussion
Experimental evaluation of gene finding in chicken
We aimed to estimate the accuracy of each of the gene pre-
diction sets, which consisted of 29,430 SGP2 (S) and
29,052 TWINSCAN (T) gene predictions, with one tran-
script per gene, and 17,709 Ensembl (E) genes containing
28,416 transcripts. We classified the predictions according
to the Venn diagram defined by the three-way intersec-
tions of the sets and their complements (Figure 1A, Table
1). The subsets were populated with intron assemblies
(IAs), defined as a list of exons and introns contiguous in
a predicted transcript (see Figure 2 and Methods for
details), and can be classified into three types: (1) the
orphan subsets, containing those elements that are in one
set but not in any of the other two, (2) the two-way inter-
section subsets, containing those elements that are in two
sets and not in the third, and (3) the triple intersection,
containing those elements that are in all three sets. Subse-
quently we tested pairs of adjacent exons from each of the
subsets.

Complementing homology-based gene prediction with de 
novo methods
Selected IAs belonging to the three possible two-way inter-
sections were experimentally tested. The results are sum-
marized in Figure 1 and detailed in Table 2. After RT-PCR,
gel purification, and direct sequencing, about 50% of the
tested transcripts predicted by both SGP2 and TWINS-
CAN, but not by Ensembl yielded spliced alignments to
the gene targeted (Figure 1C). This rate is higher than that
reported for human using a combination of homology-
based and single-genome predictors [16,17] in spite of the
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lack of available known gene sequences for the chicken
genome. There is a total of 4,769 IAs in the '(S and T) not
E' subset, corresponding to a total of 13,470 exons. Pro-
jecting these results onto genes and using an average dis-
tribution of coding exons per gene from other vertebrates
(Human, Mouse and Rat), we estimate that approximately
740 to 840 bona fide chicken genes that are not in the cur-
rently predicted Ensembl set can be found by the de novo

comparative methods followed by direct amplification
and sequencing.

Considering the set of IAs unique to one prediction set
(orphans), 39% of these have one single intron and 80%
have 1 or 2 introns. On the other hand, after testing exper-
imentally 96 orphans from TWINSCAN, 88 orphans from
SGP2 and 30 orphans from Ensembl, we found that about

Venn diagram of the prediction setsFigure 1
Venn diagram of the prediction sets. Venn diagram obtained from the comparison of the three prediction sets: Ensembl 
(E), SGP2 (S) and TWINSCAN (T). (A) Description of each subset in the Venn diagram. (B) Total number of intron assemblies 
(IAs) populating each subset. (C) Percentage of experimentally verified IAs for each subset (top) and number of assayed IAs 
(bottom). (D) Percentage of correctly predicted splice junctions (top) from the experimentally verified IAs (bottom).
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77% of the Ensembl orphans are real genes, compared to
an average 18% for TWINSCAN and SGP2 (see Figure 1,
see Table 2). Thus while Ensembl orphans are more likely
to be real genes not predicted by the other methods,
orphan de novo predictions are more likely to be false
positives.

Extending homology-based gene predictions with de novo 
methods
As Ensembl predictions often fail to correctly predict one
or both ends of a gene [13], we reasoned that de novo pre-

diction methods could help in extending the homology-
based predicted transcripts. To test this hypothesis, we
identified candidate 5' extensions: exons predicted by
TWINSCAN, SGP2 or both to the 5' side of Ensembl genes
on the same strand. We found that 8,368 (47%) Ensembl
genes have such candidate extensions. However, not all
these extensions were as likely to correspond to real exons.
From this total, 7,630 genes had extensions suggested by
de novo predictions that overlap the Ensembl gene (linked,
see Figure 3A), and 738 (4%) had extra exons from de novo
predictions that did not overlap the Ensembl gene

Comparison of two predictionsFigure 2
Comparison of two predictions. From the comparison of two predictions (a) we obtain three differentiated sets of intron 
assemblies (IAs): the set of IAs that are identical in both transcripts ('A and B'), and two set of the IAs that are in one predic-
tion but not in the other ('A not B' and 'B not A'). When two sets have the same intron with different outside boundaries for 
the flanking exons these boundaries are taken from the intersection of the exons. Ensembl predictions (b) have in general 
more than one transcript per gene (two top yellow tracks). The intersecting intron assemblies (IAs) are therefore defined as 
the longest non-redundant IAs common between the transcripts from either prediction. For the novel IAs we take the longest 
non-redundant IAs in one that are not present in the other set.
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(unlinked, see Figure 3B). As 99% of Ensembl introns
were no longer than 100 kb, we considered only exon
extensions that were no further than 100 kb from the 5'-
most Ensembl exon. Interestingly, we found that 93% of
the linked extensions were to multiexonic Ensembl tran-
scripts, the remainder being extensions to single-exon
Ensembl transcripts; however, for unlinked extensions,
only 58% were to multiexonic Ensembl transcripts.

We investigated experimentally 60 linked and 29
unlinked extensions by designing one primer in the 5'-
most exon of the Ensembl prediction and the second
primer within one of the upstream exon suggested by
TWINSCAN and/or SGP2 to the 5' side. The RT-PCR
results (see Table 3) show that de novo methods-suggested
linked extensions were correct in about 40% of the cases.
This rate dropped to a mere 7% for the unlinked
extensions.

Separating the extensions according to whether the extra
exon was predicted either by SGP2 or by TWINSCAN
showed that both methods had a comparable contribu-
tion. From the 60 linked tested extensions, 46 were pre-

dicted by SGP2 with 21 (46%) RT-PCR positives, 36 were
predicted by TWINSCAN with 15 (42%) positives, and 22
were predicted by both programs with 12 (54%) positives.
On the other hand, from the 29 tested unlinked exten-
sions 15 were predicted by SGP2, with 2 positives, and 17
were predicted by TWINSCAN, with 1 positive. Finally,
there were 3 cases where both, SGP2 and TWINSCAN, pre-
dicted the unlinked extra exon of which one was positive.

Testing Ensembl specificity
A randomly selected set of Ensembl predictions was
assayed to evaluate Ensembl's specificity. This test meas-
ured a false positive rate of 4% (see Table S5 of the supple-
mentary material for more details). On the other hand,
the tested exon-pairs for the two-way intersection sets that
included Ensembl ('(E and S) not T' and '(T and E) not S')
had an average false positive rate of 19% and 35%, respec-
tively (see Figure 1). The disparity is greater with the two-
way intersection set that excludes Ensembl ('(S and T) not
E'), which shows a false positive rate of 53%. One expla-
nation for this difference is the observation that most of
the Ensembl predictions have exons predicted by both
SGP2 and TWINSCAN. Indeed, 25,222 (89%) of the

Table 1: distribution of intron assemblies (IAs) for each of the 7 subsets of the Venn diagram of the three prediction sets: Ensembl (E), 
SGP2 (S) and TWINSCAN (T) (see also Figure 1). The number of transcripts from each prediction set participating in the intron 
assemblies is indicated on the right.

Distribution of intron assemblies
Subsets Number of IAs Transcripts involved

E S T

E and S and T 10650 10282 8974 9888
(S and T) not E 4769 0 3930 3924
(E and S) not T 4757 3636 3273 0
(T and E) not S 1748 1592 0 1507
S not (E+T) 25119 0 20740 0
T not (S+E) 27592 0 0 22239
E not (T+S) 13514 11014 0 0

Table 2: Experimentally verified of intron assemblies (see also Figure 1)

Experimentally verified intron assemblies
Total tested No amplimer Amplimer correctly 

predicted
Amplimer but junction not 

correctly predicted

S and T and E 20 3 (15%) 16 (80%) 1 (5%)
(S and T) not E 76 40 (53%) 27 (35%) 9 (12%)
(E and S) not T 64 12 (19%) 44 (69%) 8 (12%)
(T and E) not S 40 14 (35%) 22 (55%) 4 (10%)
S not (T + E) 88 67 (76%) 6 (7%) 15 (17%)
T not (S + E) 96 83 (86%) 9 (9%) 4 (5%)
E not (T + S) 30 7 (23.3%) 16 (53.3%) 7 (23.3%)
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28,416 Ensembl transcripts have at least one exon, which
is also in the SGP2 and TWINSCAN sets, and 82% of these
transcripts have 2 or more exons in common with both de
novo methods. Thus, Ensembl predictions are most likely
to fall within a triple intersection, resulting in an increased
rate of true positives. Based on previous experiments [16],
we expected the triple intersection to give a yield close to
100% positive rate. We tested 20 cases of triple intersec-
tion and found 85% positive rate (see Figure 1C). Moreo-
ver, 94% of these positive cases had the exon-intron
boundaries correctly predicted (see Figure 1D).

We compared the accuracy of the human-based predic-
tions with the accuracy of a fish-based set of predictions.
We predicted genes in chicken with SGP2 and TWINSCAN
using Tetraodon nigroviridis as informant genome, and
found that they are less accurate than the human-based
ones (see Table S7 of the supplementary material). Addi-
tionally, we found that 85% and 98% of the Tetraodon-
based predictions from TWINSCAN and SGP2, respec-
tively, overlap the corresponding human-based ones.
Interestingly, 85% of the TWINSCAN orphans overlap
TWINSCAN Tetraodon-based predictions, and 80% of the

Ensembl extensionsFigure 3
Ensembl extensions. Exon extensions to Ensembl predictions can be obtained from exons predicted by TWINSCAN and/or 
SGP2. These exons can either (a) be part of a transcript with exons in common with the Ensembl transcript (linked) or (b) be 
part of a close but non-overlapping transcript (unlinked).

Table 3: Experimental verification of IAs corresponding to Ensembl 5' extensions. The extensions are separated according to whether 
the 5'-most Ensembl exon also existed in TWINSCAN and/or SGP2 (linked) or not (unlinked) (see Figure 3).

Experimentally verified Ensembl extensions
Ensembl extensions Total tested No amplimer Amplimer correctly 

predicted
Amplimer but junction not 

correctly predicted

linked 60 36 (60%) 11 (18%) 13(22%)
unlinked 29 27 (93%) 2 (7%) 0
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SGP2 orphans overlap SGP2 Tetraodon-based
predictions. On the other hand, 99% of the IAs common
to TWINSCAN and SGP2 but not in Ensembl, overlap
TWINSCAN or SGP2 Tetraodon-based predictions.

Conclusions
In this paper we have evaluated how effective purely com-
putational approaches for genome annotation can be,
even in the absence of a large collection of previously
known genes, by means of the largest attempt so far to
experimentally compare several gene finders. After testing
the accuracy of Ensembl, SGP2 and TWINSCAN on the
chicken genome we have shown that de novo comparative
methods followed by experimental verification remain a
successful approach in the annotation of newly sequenced
genomes from which little is known.

We found that approximately 50% of predictions that
were in TWINSCAN and SGP2 but not in Ensembl could
be experimentally verified (Figure 1). These experiments
demonstrate that de novo comparative prediction methods
are effective at complementing homology-based methods
and confirm that a combination of methods can improve
the prediction accuracy [18-22]. Moreover, in spite of the
limited gene sequence data available for chicken, the com-
bination of TWINSCAN and SGP2 achieves better accu-
racy than previous attempts to verify by RT-PCR
computational predictions that fall outside a set of anno-
tations [17,23]. On the other hand, looking at the intron
assemblies unique to one prediction set, the proportion of
positives is largely reduced for predictions not in
Ensembl. The predictions unique to one of the de novo
methods show an abundance of gene models with 2 and
3 exons, which may be artefacts due to genome misassem-
blies. These results are in contrast with the high success
rate (77%) of the predictions unique to Ensembl. This is a
reasonable observation considering that the Ensembl
prediction pipeline has access to genes that do not follow
a 'standard' gene-grammar (e.g., unusual codon usage),
but which may nevertheless be represented in the cDNA/
protein databases used.

The Ensembl chicken gene set has been found to have a
96% positive rate, whereas the IAs from the two-way inter-
sections that include Ensembl, '(E and S) not T' and '(T
and E) not S', and the Ensembl orphans, have a lower pos-
itive rate, 81%, 65% and 77%, respectively, which stems
from the fact that most exons predicted by Ensembl are
also predicted by both SGP2 and TWINSCAN. Addition-
ally, de novo comparative methods are useful for extending
partial predictions from homology-based methods.
Ensembl may generate predictions based on protein frag-
ments or on partial homology from other species, and
TWINSCAN and SGP2 predictions can add bona fide exons
to the Ensembl predictions they overlap with. For the 5'

end we show that 40% of the tested cases, where either
TWINSCAN or SGP2 predicted at least one additional
exon, were verified (Table 3). To our knowledge, this is
the first time that experimental evidence is provided for
extensions to homology-based models produced by de
novo methods.

We observed that the subsets containing SGP2 IAs (e.g.,
'(S and E) not T)') have in general a higher proportion of
RT-PCR positives than those containing TWINSCAN IAs
(e.g., '(T and E) not S)') (Figure 1C, Table 2). There are two
factors that may contribute to this difference. The first is
an intrinsic difference between TWINSCAN and SGP2 –
SGP2 uses TBLASTX (translated) alignments between
human and chicken to reward exons overlapping aligned
regions, whereas TWINSCAN uses BLASTN (nucleotide)
alignments to influence the scores of exons, splice sites,
and translation initiation and termination sites. Human
and chicken are sufficiently diverged that translated align-
ments may be more sensitive, whereas nucleotide align-
ments fail to cover many known exons. The other factor is
incidental to the way TWINSCAN was trained and run to
produce the predictions tested. TWINSCAN used 525
chicken RefSeqs to estimate parameters for its probability
model. This training set was probably too small to pro-
duce optimal parameter values. SGP2, on the other hand,
was run with a combination of parameters estimated from
the much larger set of known human genes (for its model
of chicken DNA sequence) and parameters were hand
tuned using the same 525 chicken genes (for its scoring of
human-chicken alignments). Although a larger fraction of
SGP2 predictions yielded positive experimental results,
we found that TWINSCAN tends to be more accurate than
SGP2 in the prediction of the intron boundaries (Figure
1D, Table 2). This difference stems from the intron model
used by TWINSCAN, as opposed to SGP2, which does not
model introns explicitly. TWINSCAN was re-run after
completion of the experiments with an improved intron-
length model, yielding a prediction set that was substan-
tially smaller and more accurate (see Table S6) than the
set tested. In spite these differences, comparing the gene
predictions with a set of coding cDNAs released after the
completion of these analyses, we found that all three
methods have similar sensitivity (79%) (see Methods for
details), hence the de novo comparative methods cover a
fraction of the transcriptome similar to homology-based
methods with a minimal initial amount of genome-spe-
cific expression data.

The experimentally verified IAs represent a fraction of the
actual number of chicken genes that can be eventually
found using our methods. If we extrapolate the propor-
tions of experimentally verified IAs (Figure 1C) to all the
generated IAs in the Venn diagram (Figure 1B) and using
an average distribution of coding exons per gene from
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other vertebrates (Human, Mouse and Rat), we estimate a
range of 14,600 to 17,500 experimentally verifiable
chicken genes from our computational predictions. In this
paper we only analysed intron assemblies and deliber-
ately left out a number of chicken protein-coding intron-
less predictions (3,049 from SGP2, 2,727 from
TWINSCAN and 1,855 from Ensembl). The triple intersec-
tion of these intronless genes contains 148 genes, which
are worth investigating and for which techniques different
from the ones applied here will be required.

Considering all 2-way IAs (see Table 1), one would need
11,274 RT-PCR reactions to experimentally confirm about
7,232 (64%) genes. This number of experiments com-
pares favourably to large-scale EST projects with the added
benefit of having almost no redundancy (only gene
fissions and misassemblies will contribute to redun-
dancy). The biggest drawback to EST sequencing is its
large redundancy and extensive overlap. The falling cost of
primers and the increased flexibility of large-scale molec-
ular biology centers make this approach of computational
prediction followed by experimental verification cost
effective and scalable [5,6]. As RT-PCR primers can be
designed with appropriate linker sites such an approach
could also provide a physical resource of clonable frag-
ments. We conclude that de novo comparative gene predic-
tions followed by experimental verification is an effective
way to carry out the annotation of a newly sequenced
genome for which little gene sequence information is
known. In particular, as our results show, performing RT-
PCR and sequencing for all the predicted novel genes,
starting with those predicted by multiple de novo methods,
should enhance the quality of the annotation in forth-
coming eukaryote genome sequencing projects.

Methods
Generation of predictions
The initial lack of an abundant set of known chicken gene
sequences forced us to adapt the methodology for training
of the de novo methods and running the Ensembl gene
build. The Ensembl prediction pipeline [13] builds gene
models from known vertebrate proteins and cDNA
sequences, whereas gene models based solely on ESTs are
usually kept separated as ESTGenes [24]. For the chicken
genome, ESTs were combined with the standard gene
build to include additional genes and transcripts. The
alignments from approximately 400,000 ESTs and 24,000
full-length cDNAs [12,25] from multiple tissues were con-
ciliated into non-redundant transcript structures [24].
Those predicted models that fell on non-annotated loci
and those that contributed with at least two new exons in
previously annotated loci were added to the protein-based
gene set. Single-exons transcripts produced by the EST/
cDNA-based models were rejected, as they could not be
distinguished from cloning artefacts without protein evi-

dence. For our analyses we did not include the untrans-
lated regions that Ensembl annotates combining the
cDNA/EST and protein evidence [13]. Ensembl also anno-
tates processed pseudogenes [13], which we did not con-
sider either.

TWINSCAN was trained on 525 chicken RefSeq sequences
[26] aligned to the chicken genomic sequence. This set is
based on a set of 1266 provisional RefSeq mRNAs from
GenBank (27 March 2004) March 27 filtered in the fol-
lowing way: The Refseq mRNA sequences were matched
with the corresponding mRNAs placed on the Chicken
genome assembly at UCSC. Any mRNA not placed was
not considered. Additionally, sequences without an
ungapped alignment between the entire CDS portion of
the Refseq mRNA and the extracted unmasked genomic
sequence were removed. Additionally, cases with in-frame
stop codons and/or non-canonical splice sites were also
removed. TWINSCAN uses nucleotide alignments and has
specific models for how the alignments modify the scores
of the gene signals. The BLASTN [27] alignments used by
TWINSCAN covered 3.8% of the chicken assembly.

SGP2 training followed a hybrid approach. SGP2 was run
with human parameters for the coding statistics and splice
sites, whereas the score weights that reward the human-
chicken homologies and penalize the lack of them were
optimised using the same set of 525 Chicken RefSeqs used
for the TWINSCAN training. SGP2 was then run on unseg-
mented chicken chromosomes using the TBLASTX [27]
alignments with the human genomic sequence (assembly
NCBI34). These alignments, which covered approxi-
mately 3% of the Chicken genome, were enriched with
391,610 extra HSPs obtained from the ungapped Exoner-
ate [28] alignments of human proteins from the Ensembl
predictions (release NCBI34c), the GeneId prediction set
for the same human assembly and the set of vertebrate
RefSeq proteins (version of April 2004). The extra align-
ments covered 43% of the nucleotides in TBLASTX HSPs
and 5% of their sequence represented 5,840 non-redun-
dant homology regions that had no overlap with the
TBLASTX hits. These extra alignments produced a consid-
erable improvement of the sensitivity and specificity at the
gene level with respect to SGP2 predictions using only
TBLASTX HSPs when tested against the Ensembl set and
the aforementioned 525 RefSeqs. It also achieved a slight
improvement of the sensitivity at the exon and nucleotide
level.

Classification of predictions
We classified the predictions according to the Venn dia-
gram defined by the intersections of the three sets:
Ensembl (E), TWINSCAN (T) and SGP2 (S). Using the
exact identity between transcripts is problematic because
the exon-structures from each prediction are in general
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not identical. Thus we defined the intron assembly (IA) as
the element of comparison. An IA is a list of exons and
introns that are contiguous in a given predicted transcript.
When comparing two predictions three differentiated sets
are produced: the set of IAs that are identical in both tran-
scripts, and the two sets of IAs that are present in one pre-
diction and not in the other (see Figure 2). If the
boundaries of the exons do not agree between two predic-
tions the produced IA contains only the exonic sequence
that is common to both predictions, i.e., an intersecting IA
contains the sequence and exon-structure on which both
predictors agree (see Figure 2). An intron assembly repre-
sents naturally the entities to be tested by RT-PCR, where
an exon-pair, separated by one or more introns and by not
more than about 1 Kb, is tested for amplification in cDNA
tissue libraries. As each IA contains the maximal set of
introns in a given genomic locus that fall in one of the dif-
ferent categories of the Venn diagram, we picked up one
exon-pair from each IA, making sure to test different genes
in each Venn diagram.

Combining the operations of set-difference 'not', set-
intersection 'and', and set-union '+', we populated the
Venn diagram. For instance: the subset 'E not (T+S)' was
generated by first obtaining the union of T and S predic-
tions (T+S) and then comparing the Ensembl predictions
with this latter set, hence 'E not (T+S)' contains Ensembl
IAs that are not in TWINSCAN or SGP2. Similarly, we
obtained the subset '(S and T) not E' by first calculating
the intersection of S and T, and then calculating the set-
difference against E. Note that the set-difference is non-
commutative, as we keep elements from one set and use
the other for comparison, hence S not T ? T not S. These
operations divide the subsets into three types: (1) orphan
subsets, formed by those elements that are in one set but
not in any of the other two, (2) the two-way intersection
subsets, formed by those elements that are in two sets and
not in the third one, and (3) the triple intersection,
formed by those elements that are in the three sets. Figure
1B shows the number of IAs in each of the subsets (see
also Table 1).

When considering the Ensembl predictions we introduced
a slight modification of the operations, as one Ensembl
gene may have more than one transcript (see Figure 2b).
We defined the intersecting IAs as the longest non-redun-
dant common IA between the transcripts from either pre-
diction. That is, from all the redundant intron assemblies
in an Ensembl gene that are also in a prediction from
SGP2 or TWINSCAN, we took the longest one. By the con-
cept of redundancy of two intron assemblies we mean that
they have the same splicing structure or one is included in
the structure of the other, allowing for mismatches in the
exon edges. Likewise, for the set difference involving
Ensembl predictions we took the longest IA from all the

ones in an Ensembl gene that were novel with respect to
the de novo prediction. The inverse case works similarly: an
IA in TWINSCAN or SGP2 which is not in an Ensembl
gene is the longest IA that is novel with respect to all the
Ensembl transcripts in that gene.

We classified IAs according to their position relative to the
predictions from the other set against which they are com-
pared. We considered an IA to be:

• Intergenic: if it falls outside the genomic extension of
any of the predictions from the other set.

• Bridge: if it bridges between two different predictions in
the other set.

• Intronic: if it extends one or more introns of the
excluded prediction, i.e., the exons of the IA fall in the
introns of the other prediction.

• External: if it extends the 5' or 3' of the other prediction.

In Table S1 we give the distribution of the IAs according
to their relative position (see Figure 4). We observe that
while SGP2 produces approximately the same proportion
of external and intronic orphan IAs, TWINSCAN produces
many more intronic ones.

Finally, IAs were further classified according to whether
they are complete, i.e., they represent a complete ATG-to-
STOP prediction in at least one set (Figure 4). Table S2
presents the number of complete IAs from each set.
TWINSCAN predictions produced more complete novel
genes within introns than SGP2, whereas SGP2 predicts
more complete novel genes that extend the genomic span
of other genes. Furthermore, more than 70% of the com-
plete intergenic orphan IAs from all programs have either
two or three exons. Finally, analysing the triple intersec-
tion of the prediction sets we find 10,650 IAs that are
common to the three sets from which 8,837 (83%) are
complete. In contrast to the complete IAs predicted by
only one program, 55% of those predicted by all pro-
grams have more than 3 exons.

Comparison to chicken expression data
We compared the prediction sets against 13,880 chicken
cDNAs annotated as coding for protein and 4,154 cDNAs
annotated as non-coding [12,25]. We used Exonerate in
ungapped mode to directly compare the nucleotide
sequence of the gene predictions against the cDNA set. We
considered a cDNA to be 'found' if there was an alignment
with more than 90% identity over more than 60 bp. The
results showed that Ensembl and SGP2 included 79% and
TWINSCAN included 77% of the coding cDNAs, whereas
they included a 17%, 20% and 30% of non-coding
Page 9 of 12
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cDNAs, respectively. Additionally, we found that 8,126
(28%) SGP2 genes, 7,037 (40%) Ensembl genes and
7,728 (27%) TWINSCAN genes aligned against the coding
cDNAs; whereas 838 (3%) SGP2 genes, 1,186 (7%)
Ensembl genes and 722 (2.5%) TWINSCAN genes aligned
against the cDNAs labelled as non-coding. The three pre-
diction sets together found a total of 12,009 (86.5%) of
coding cDNAs, with a common set of 9,597 (69%) coding
cDNAs found by all three.

Primer design
Primers used in the PCR reactions were designed using
primer3 and filtered using ePCR. For each IA in each
tested set, two exons were selected for primer placement.
This selection was made ensuring that the exons selected

for primer placement were of adequate length to generate
likely primers, and that there was a sufficient amount of
coding sequence to give an amplicon length in the desired
range. Additional checks were performed in cases where
one prediction method included a coding exon not sug-
gested by the other two prediction methods in the same
transcript. In those cases, the length of the tentative exons
was accounted for by what exons were selected for primer
placement, helping reduce failure due to primers being
placed too far apart in the actual transcript to get success-
ful amplification. All designed primers and primer pairs
were filtered for mispriming using the entire chicken
genome to find potential priming locations. Primers
returning priming locations not overlapping coordinates
of the target gene were rejected. From all passing primer

Classification of intron assembliesFigure 4
Classification of intron assemblies. We classified the intron assemblies that were novel with respect to a reference set 
according to their position relative to the other set against which we do the comparison. A novel IA can (a) fall between the 
genomic extent of two predictions (intergenic), (b1) bridge across two predictions (bridge), (c1) overlap the 5' or the 3' end of 
one prediction (external), and (d1) fall within one or more introns of another prediction (intronic). Additionally, novel IAs are 
labelled as complete when they are a complete ATG-to-STOP prediction: (b2), (c2) and (d2).
Page 10 of 12
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pairs for a given IA, the pair giving the longest expected
product in the requested range was selected for
amplification. The selection of targets appearing on each
plate was done completely randomly among all targets
returning at least one designed primer pair passing all cri-
teria. The primer selection parameters used for the design
of Plate 1 were consistent with primer3 defaults, except:
Tm range was set to (63, 65), product length range was set
to (300, 600), and primer length range was set to (23, 28)
with 24 being optimal. The primer selection parameters
used for the design of Plates 2–5 were also consistent with
primer3 defaults, except: GC content range was set to (30,
70) with 50 being optimal, Tm range was set to (59, 62),
product length range was set to (150, 500), and primer
length range was set to (17, 27) with 20 being optimal.

Experimental verification of predictions by RT-
PCR
cDNA preparation
Multiple organs (brain, liver, heart, spleen, lung, kidney,
muscle, tongue, trachea, crop, proventriculus, gizzard, gall
bladder, small-intestine, pancreas, caeca, mesentery,
ovary, oviduct and testis) of an adult male and two egg-
laying females of the "Bleue de Hollande" strain were col-
lected soon after sacrifice. Total RNA was prepared from
frozen tissues using TRIzol Reagent (Invitrogen) accord-
ing to manufacturers' instructions. The quality of all RNA
samples was checked using an Agilent 2100 Bioanalyzer
(Agilent Technologies) and by PCR using pairs of oligos
designed in four CNGs (Conserved Non-Genic
Sequences) conserved between GGA1 and HSA21 [29,30],
as indicators of possible genomic DNA contamination.
Total RNA was converted to cDNA using Superscript II
(Invitrogen) primed with random primers. For each tissue
in the study, 5 µg of total RNA was converted to cDNA.

Experimental verification
Predictions of chicken genes were assayed experimentally
by RT-PCR as previously described and modified
[9,16,31]. Similar amounts of 12 Gallus gallus cDNAs
(brain, liver, heart, spleen, lung, kidney, muscle, proven-
triculus, small intestine, caeca, ovary and testis, final dilu-
tion 1000x) were mixed with JumpStart REDTaq
ReadyMix (Sigma) and 4 ng/ul primers (Sigma-Genosys)
with a BioMek 2000 robot (Beckman). The ten first cycles
of PCR amplification were performed with a touchdown
annealing temperatures decreasing from 60 to 50°C;
annealing temperature of the next 30 cycles was carried
out at 50°C. Amplimers were separated on "Ready to
Run" precast gels (Pharmacia) and sequenced. This proce-
dure was used to experimentally assay 456 exon-exon
junctions of chicken predictions. The later are representa-
tive of each subsets of predictions found in the Venn dia-
gram of the three sets of predictions studied, i.e., the
Ensembl, TWINSCAN and SGP2 set (see Table S3, and

Table S4 for the transcripts used as internal controls). The
sequences of the amplified exon-exon junctions can be
obtained from the web site http://genome.imim.es/
~eeyras/Chicken/GeneFinding/.
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