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Abstract
Background: A number of algorithms for steady state analysis of metabolic networks have been
developed over the years. Of these, Elementary Mode Analysis (EMA) has proven especially useful.
Despite its low user-friendliness, METATOOL as a reliable high-performance implementation of
the algorithm has been the instrument of choice up to now. As reported here, the analysis of
metabolic networks has been improved by an editor and analyzer of metabolic flux modes. Analysis
routines for expression levels and the most central, well connected metabolites and their metabolic
connections are of particular interest.

Results: YANA features a platform-independent, dedicated toolbox for metabolic networks with
a graphical user interface to calculate (integrating METATOOL), edit (including support for the
SBML format), visualize, centralize, and compare elementary flux modes. Further, YANA calculates
expected flux distributions for a given Elementary Mode (EM) activity pattern and vice versa.
Moreover, a dissection algorithm, a centralization algorithm, and an average diameter routine can
be used to simplify and analyze complex networks. Proteomics or gene expression data give a
rough indication of some individual enzyme activities, whereas the complete flux distribution in the
network is often not known. As such data are noisy, YANA features a fast evolutionary algorithm
(EA) for the prediction of EM activities with minimum error, including alerts for inconsistent
experimental data. We offer the possibility to include further known constraints (e.g. growth
constraints) in the EA calculation process. The redox metabolism around glutathione reductase
serves as an illustration example. All software and documentation are available for download at
http://yana.bioapps.biozentrum.uni-wuerzburg.de.

Conclusion: A graphical toolbox and an editor for METATOOL as well as a series of additional
routines for metabolic network analyses constitute a new user-friendly software for such efforts.
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Background
Elementary mode analysis (EMA) analyzes complex 
metabolic networks
Metabolic networks include many enzymes. These oper-
ate together in a complex way as metabolites of one reac-
tion may be processed (consumed or provided) by a
number of different enzymes. Whereas in biochemistry
textbooks such networks are often described as linear
pathways or simple, separate subnetworks, real metabolic
webs show an astonishing complexity regarding the
number of possible routes a metabolite can take through
the network.

EMA is an algorithm that systematically enumerates all
possibilities how enzymes can operate together without
violating the steady state condition of the system (see
below). Using EMA, complex networks can be analyzed in
terms of contained pathways, robustness, central
enzymes, medical targets, optimum yield and effector
compounds, such as signaling phospholipids, with inter-
esting applications in medicine and biotechnology [1].

EMA – algorithm and related approaches
To perform a holistic network analysis, the stoichiometric
and thermodynamic feasibility of all possible pathways
has to be tested. We therefore assume the system to be in
a steady-state, in which intermediate or internal metabo-
lites are balanced [2]. Their concentrations do not change
in the timescale of study as the amount of production of
these metabolites equals their consumption.

To find all pathways through a given network we look for
all vectors v of enzyme coefficients, the so called flux vec-
tors or flux distributions, which satisfy the steady-state
condition of

N*v = 0  (1)

for all internal metabolites (stoichiometric feasibility).
Here, N is the m × r stoichiometric matrix of the system
with m being the number of metabolites in the system and
r being the number of reactions (in eq. (4), upper case R
is used). To solve such systems under consideration of
additional irreversibility constraints imposed by the reac-
tions in the system (thermodynamic feasibility), the
mathematical theory of convex analysis [3] is used to
project the equation above and the irreversibility con-
straints into what is called a pointed convex polyhedral
cone. This approach is used by several algorithms to deter-
mine the possible pathways through the system, out of
which recent analyses have focused on two concepts [4]:
Extreme Pathways [5] and Elementary Mode Analysis
(EMA) [2].

Both algorithms return the edges of the calculated cone,
the convex basis, as pathways. In addition, EMA returns
all possible non-decomposable pathways through the net-
work, the so called Elementary Modes (EMs) or (Elemen-
tary) Flux Modes. Both methods yield a complete
description of the metabolic network in which every con-
crete "state" of the system can be described as a non-neg-
ative linear combination of the set of pathways or EMs
returned.

Elementary Mode Analysis has been successfully applied
to numerous biochemical systems [6-8] and its capability
to determine maximum conversion yields [9] and mini-
mal cut sets [10] of biochemical systems makes it an
important tool to predict the effect of enzyme inactiva-
tions, pharmacological effects, growth calculations and
biotechnological applications [11]. We previously devel-
oped the software METATOOL [12] as an implementation
of the Elementary Mode Analysis and enhanced EMA fur-
ther by developing new techniques to cope with complex
networks. These include the dissection of the network at
metabolites with especially high connectivity [13] and an
approach to reduce the complexity of the network by sys-
tematic variation of the internal and external status of the
involved metabolites, thus reducing the number of EMs
returned [14].

Development and advantages of YANA
METATOOL represents an efficient implementation of the
EMA algorithm and has been integrated as an analysis
option in large software packages such as GEPASI [15].
However, as a command line driven program, it lacks the
comfort and usability of a graphical user interface (GUI)
as well as the ability to perform further analyses out of the
box. Alternatively, phpMetatool [16] provides some pre-
defined biochemical networks but offers no further anal-
ysis options or processing of the METATOOL results. The
program FluxAnalyzer [17] provides a graphical interface
and some processing of elementary modes, for example,
computation of minimal cut sets [10]. For dissection of
complex networks, other tools such as SEPARATOR [13]
have to be installed and import and export data using the
METATOOL text file format. This gives rise to several com-
mon data-exchange and formatting problems.

YANA offers now an integrated modeling environment
with standardized data exchange capabilities. It is a plat-
form for integrating future analysis modules and includes
strategies to address one of the most important issues in
current metabolic modeling, the combinatorial explosion
of EMs in complex networks. Further, it allows the con-
venient modification editing of metabolic networks with
a comfortable user interface and the possibility of per-
forming EMA analyses using the established METATOOL
algorithm. It additionally incorporates strategies to reduce
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network complexity by using threshold operations on the
metabolites and brings a variety of visualization options
for concrete flux distributions of a network. It calculates
for a user-defined EM activity pattern the resulting flux
distribution, and is further able to predict a valid EM activ-
ity pattern from a given flux distribution even when only
few or inaccurate enzyme activity data are available from
experiments.

Implementation
Elementary Mode Analysis
To perform pathway analysis on the network under study,
YANA acts as a front-end to METATOOL and computes
the Elementary Modes of a network if the following infor-
mation is provided:

• Metabolites used in the system, including information
whether they are treated as internal or external

• Enzymes / reactions involved in the network, including
their substrates and products and irreversibility
constraints

Parsing the output from METATOOL, YANA shows a tab-
ular overview of the calculated EMs and is able to display
detailed information for each of the EMs obtained,
including partaking reactions, their reaction equations, as
well as the overall net reactions of the Elementary Modes.

Additionally the average diameter (path length) of the
EMs is displayed, an information of importance for the
dissection of larger networks.

Reducing network complexity
To prevent combinatorial explosion of the number of EMs
in well connected networks, YANA offers and implements
two strategies to reduce network complexity. Both change
systematically the internal / external status of the metabo-
lites using their connectivity values as the basic criterion.

In the first strategy [13], the network is divided by auto-
matically setting metabolites with a connectivity value
above a certain user-defined threshold as "external". This
results in a split of the metabolic network into sub-net-
works, which are convenient to analyze. Individual sub-
networks can be obtained using the program SEPERATOR
[13], and the new routine from YANA directly gives the
resulting complete but simplified network.

Alternatively, YANA offers the option to set all metabo-
lites with a connectivity value below the threshold as
external. In this way, only connections between the core
nodes of a metabolic system are included, neglecting
those on the outskirts. The resulting pathway set still

holds the most important EMs, shortened and focused on
the central hub metabolites [18].

To get an estimate on the average size of the metabolic
network before and after dissection the average diameter
(path length) for the modes can be used.

Translating EM activities into flux distributions
As described in the background section, convex analysis
returns the spanning vectors of the cone that describes the
solution to the steady-state equation system and thus
every actual flux distribution (vector v in equation 1) is a
linear combination of the obtained EMs.

By assigning an activity value in percent to each EM,
except for a scalar factor, every flux distribution possible
for the system can be reached. These valid flux distribu-
tions, or flux vectors v, hold an integer value for each
enzyme in the system. Those values, which are responsi-
ble for sustaining the steady state in the system (v satisfies
equation 1 for all internal metabolites) represent the rela-
tive flux through the respective enzyme and thus must be
a combination of both the reaction velocity of the enzyme
(real enzyme kinetics) and the amount of protein
available.

YANA offers the possibility to compute flux distributions
both in absolute (ignoring reaction directions) and rela-
tive values. This is done by iterating over all calculated
modes, and summing the absolute (eq. 2) or relative (eq.
3) flux coefficients of each enzyme multiplied with the
activity of the EM.

The resulting flux distribution is visualized and presented
to the user either in form of graphical bar and pie charts
(Figure 2) or in tabular form (Table 4).

Calculating flux distributions from a given theoretical set
of EM activities is important e.g. to estimate the relevance
of an enzyme in a metabolic network [19], but it would be
a desirable goal if one could somehow measure flux dis-
tributions in living cells and map them onto the EM activ-
ities [20]. It would then be possible to take an
experimental snapshot of the system and from it derive
actual pathway activities.
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Translating (partially) known flux distributions into EM 
activities
To obtain flux distributions of a living cell, one could
either measure metabolite fluxes directly or estimate
fluxes from protein quantification and enzyme turnover
rates. Protein amounts will, in practice, be measured
either by proteomics or gene expression. For the latter, an
estimate from a comprehensive RNA and protein expres-
sion analysis in yeast indicates that for each mRNA copy
on average there are 4000 molecules of synthesized pro-
tein found [21], with individual variation depending on

mRNA stability, translatory regulation and promotor
activities. To measure all these different factors involved
in expression levels and, further, the enzyme activity itself
is a non-trivial undertaking. There is a complex interplay
between mRNA expression level, protein expression level,
enzyme activity level and resulting metabolite fluxes to get
optimal responses to different environmental conditions.
The user should take into account that any of these expres-
sion levels are only crude estimates for the other levels
and their effects. However, for most practical purposes it
is sufficient if the user knows roughly the order of activity

Screenshot of the GR (glutathione reductase) system in YANAFigure 1
Screenshot of the GR (glutathione reductase) system in YANA. The YANA main screen showing the GR redox net-
work involving 75 metabolites (left side view) and 58 enzymes (right side view), resulting in 134 flux modes (not shown here).
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differences between the modeled enzymes, and which
important regulatory signals influencing expression levels
have to be considered (e.g. an unstable protein or unsta-
ble mRNA for a given enzyme should not be neglected).
Taking these variables into account, flux distributions can
be estimated.

To find the resulting EM activities from the estimated or
observed flux distributions, there are, in general, many
solutions possible. One could first choose a certain pre-
ferred flux mode, adjust its activity, and try to fit the
observed flux distribution as accurately as possible. Next,
select the next mode and so on. As the modes can be given

Screenshot of the simulated enzyme activities diagramFigure 2
Screenshot of the simulated enzyme activities diagram. Diagram of simulated spot intensities on a gel, after activation 
of GR containing elementary modes. Obviously glutathione reductase is indeed most active whereas other enzymes not 
involved in the core GR part of the system are downregulated.
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by different preference schemes, it is absolutely possible
that several schemes will fit the distribution equally well.

To find a rational and compact criterion for mode selec-
tion, here, we have chosen to first select the modes which
are the shortest. It has already been shown in an earlier
work [22] that these are the modes which contribute most
to gene expression, at least in the central metabolism of E.
coli (these are actually preferred to be kept by the well con-
nected metabolite choosing routine above). In addition,
metabolic webs have been shown to grow selectively
around central "hub" metabolites to favor short metabolic
paths [18,23].

For calculating EM activities from observed or estimated
flux distributions, there are analytical treatments possible
based on criteria other than pathway length [20]. How-
ever, all experimental measurements have errors. In par-
ticular, this applies to gene expression data where
detection problems, background and standardization are
routine challenges. Similarly, proteome data are selective,
and protein levels measured are influenced by factors such
as gel resolution, multi-spot detection and similar techni-
calities. As protein quantifications can only be measured
with certain error margins and asinformations about
enzyme turnover rates are not always accurate, we do not
demand an exact solution to a flux distribution found
experimentally (see e.g. Ref [20] for recent advances in
this area). We focus on minimizing the difference to the
target flux distribution instead. The error function uses the
sum of squared differences between calculated enzyme
activities (EC) and target enzyme activities (ET) which is to
be minimized and, with R being the number of reactions
in the system:

To achieve a fast and robust convergent solution for this
error criterion, an evolutionary algorithm (EA) was suc-
cessfully applied here. The algorithm starts to calculate
flux distributions, even if only one enzyme activity or very
few are known. A Pareto-optimal solution [24] for such
limited experimental data is also found by the evolution-
ary strategy implemented in YANA.

The algorithm uses a randomly initialized population of
100 individuals with a per feature mutation probability
M. This depends on the number of features F taken into
account and the number of iterations I already run
through, thus introducing a cool-down factor to the muta-
tion probability scaling logarithmically with the number
of time steps.

Furthermore, recombination between individuals is
achieved by uniform crossover, randomly selecting one of
the individuals as a parent for the feature in question.
Selection pressure is induced by calculating a rank-based
fitness from the square deviation of each individual to the
target distribution thus giving each individual a probabil-
ity R to take part in the recombination process that
depends upon its rank r in the population and the popu-
lation size P.

The evolutionary algorithm routine allows the inclusion
of further fitness parameters and helps to fit enzyme activ-
ities including these additional constraints. For example,
these could be (i) correlations between enzyme expres-
sion levels (or just ratios) according to gene-chip experi-
mental results or (ii) constraints based on biochemical
data and knowledge on enzyme activities; (iii) metabolite
constraints, for instance production of certain amino
acids has to be above a certain threshold (given by growth
demands or again experimental data), (iv) genetic con-
straints (certain enzyme genes are known to have modi-
fied expression or enzymatic activities), (v) necessary
activity or certain levels for specific enzyme pools (e.g. all
enzymes connected to redox protection). The fitness func-
tion is implemented in such a way, that further positive or
negative functions can easily be added with desired
weights to the total fitness by the user. Also in that case,
the evolutionary algorithm searches for the best possible
solution describing the enzyme fluxes with minimum
error according to observed enzyme expression data,
while including these additional constraints.

In each refinement step, the flux mode fitting routine
implemented in YANA selects the shortest modes. If two
modes are equal, it picks the better connected inside the
network, counting all metabolites according to the reac-
tion they participate in.

For an overview of EA performance, see Results section c).

Implementation details
For the development of the YANA software package Bor-
land JBuilder 2005 was used in combination with EJ-tech-
nologies real-time profiling suite JProfiler. The profiling
of the software and the evolutionary algorithm in particu-
lar was carried out on a dual Intel Xeon 3.06 GHz CPU
with Hyper Threading and 8 GB of RAM. For development
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and testing, a standard PC with a single 1.7 GHz Pentium
4 processor was used.

The YANA program flow includes the initial editing of a
metabolic network in terms of enzymes and their respec-
tive substrates and products or, alternatively, loading net-
works from files in the METATOOL or SBML format.

Subsequently, elementary mode analysis is performed by
YANA using the provided precompiled METATOOL bina-
ries. It then parses the resulting output file and presents
the arising elementary modes to the user, giving the pos-
sibility to retrieve detailed information about a specific
elementary mode including partaking enzymes, net reac-
tions, and the stoichiometry involved.

Once the analysis is performed, flux distributions can be
visualized in several presentation formats simulating
either a virtual spot intensity on a gel, or displaying com-
parative enzyme copy numbers in a virtual cell. From
there on, the user can enter a target flux distribution and
YANA tries to adjust the elementary mode activities to
approximate the entered flux distribution using the EA.

In any part of the program, diagrams and tables can be
printed and exported to graphic files in the portable net-
work graphics (PNG) format or into text files using
comma separated values (CSV) for easy import in e.g.
Microsoft Excel.

To gain the advantage of platform independence, YANA
was implemented using the Java SDK 1.5 and we provide,
with our download precompiled METATOOL, binaries for
both Windows and UNIX systems. The graphical user
interface is based on the SWING Java framework, making
strict use of the model-view-controller (MVC) paradigm.

To further add to the usability of the program, support for
the Systems Biology Markup Language [25] (SBML Level 2
[26]) was integrated, an XML-based file format which
enjoys increasing popularity in current bioinformatics
and chemical applications. The software is also able to
import and export data in the traditional METATOOL file
format.

Results
a1) YANA program package
Required Inputs
(i) YANA analyses metabolic networks using EMA:

The required input for YANA (and the integrated META-
TOOL software) to perform an EMA is the set of enzymes
and metabolites in the network under study. Their specific
reactions and reversibility can be obtained from textbooks
and databases. Metabolites must be defined as internal or

external according to available biochemical knowledge.
Kinetic data, RNA or protein expression data are not
required for this part of the analysis.

(ii) For the calculation of flux distributions, the user has
to choose as input the activities of the different EMs. If
there is no information on this available, YANA assumes
all EMs to be equally active. For accurate predictions of
enzyme activities experimental data on flux ratios is
helpful.

(iii) To analyze how the predicted elementary modes
from step 1 fit expression data, some experimental data on
protein or gene expression are required. For most accurate
predictions in this step, kinetic data on enzyme activities,
on translation speed, protein stability and transcription
are required. However, YANA needs, as minimum infor-
mation for predictions, only the estimated activity levels
of some of the enzymes involved. Nevertheless, it calcu-
lates an optimal solution, mapping the information on
enzyme activity available to a predicted EM activity
pattern.

Program usage and outputs
Output
(i) All pathways in the network are calculated, a list of EMs
is given, both as enzyme cascades as well as the overall
reactions of the elementary modes with educts and
products.

(ii) Calculation of specific flux distributions and visuali-
zation in form of pie and bar charts and in tabular form.

(iii) A specific EM activity pattern best fitting the user
given flux distribution with preferably high activities on
short EMs.

Usage
The YANA main screen is divided into two parts. On the
left hand side, the user is able to enter the metabolites
involved in the network with information about whether
they are considered internal or external. On the right hand
side, the enzymes are defined using the metabolites
entered earlier. User actions are usually invoked using the
toolbar at the top of the YANA main window. By clicking
the analysis button, elementary mode analysis is per-
formed, showing the results in a new frame in a tabular
form. YANA gives the user detailed information about the
elementary flux modes, their irreversibility constraints,
partaking enzymes and so on. The user has the possibility
to adjust the activity of each elementary mode on a per-
cent scale using the slider incorporated into the table. By
clicking the diagram button, YANA calculates the enzyme
activity pattern using the activity vector entered before
and displays the results either in a diagram or table for-
Page 7 of 12
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mat. The flux calculation button brings up a new screen
on which the user can enter the target flux distribution for
use with the evolutionary algorithm. All table data in
YANA can be exported into text files using comma sepa-
rated values; for convenience the target flux vector can be
imported the same way. For further and more detailed
information see the readme file that comes with the soft-
ware package and which is also available via online help.

a2) Visualization and analysis of METATOOL output by YANA
To demonstrate the YANA package we use a running
example (Figure 1) of the human redox metabolism (75
metabolites (46 internal, 29 external) and 58 enzymes),
around the central enzyme glutathione reductase [see
Additional file 1]; see also Ref [14]; extended from Ref
[27]).

Under stationary conditions, this system yields a total of
134 EMs. From these, 46 include glutathione reductase,
117 involve energy consumption (ATP), whereas 128
involve redox reactions. The complete listing of these
modes is given in supplementary material [see Additional
file 1].

b1) YANA dissects and analyzes a metabolic web according to well 
connected metabolites
To illustrate the complexity reduction power of the YANA
strategies we performed a series of EMAs with rising
threshold values using both threshold types.

Dissection (Table 1)
Using a threshold of 7 (metabolites participating in more
than seven reactions are considered external), only mem-
brane phosphorylation is placed in a separate sub-net-
work. A threshold of 5 splits the system into seven sub-
networks with instructive specific biochemical functions
and flux modes: (i) a well connected sub-network
includes salvage pathway, pentose phosphate cycle, NOS,
SOD and redox protection by uric acid and GSH; other
sub-networks are (ii) GSH synthesis, (iii) GSH degrada-
tion and GSH protection of protein groups, (iv) mem-
brane phosphorylation (as with threshold 7), (vi) lower
glycolysis (trioses), (vii) adenylate kinase. Threshold 3
splits these sub-networks further into a total of 18
components, e.g. the well connected sub-network (i) is
now put into its single pathways as named above.

Hub metabolites (Table 2)
The complex system of 134 elementary modes is first
reduced to a 87-mode system (GR modes and pathways
which are more central than other redox enzyme paths
remain, if the threshold is set to 5 reactions). Only 24
modes remain if the threshold is set to the best connected
metabolite, the currency metabolite ATP. The very short
diameter obtained shows that this analysis zooms in on
hub metabolites [18] and well connected next-neighbor
reactions, showing the quickly equilibrated central parts
of the system which one could consider more (high

Table 1: Simplification of the GR system by dissection at highly connected metabolites (cutting)

Threshold No. of elem. modes GR involved ATP involved Redox reactions Diameter

>11 134 46 (34%) 117 (87%) 128 (95%) 22.35
7 215 68 (31%) 131 (60%) 199 (92%) 22.26
5 35 4 (11%) 18 (52%) 16 (47%) 6.17
3 10 0 (0%) 5 (50%) 2 (20%) 3.0

Table 2: Simplification of the GR system by concentration on highly connected metabolites (centralization)

Threshold No. of elem. modes GR involved ATP involved Redox reactions Diameter

0 134 46 (34%) 117 (87%) 128 (95%) 22.35
5 87 22 (25%) 45 (52%) 32 (37%) 2.75
10 24 0 (0%) 24 (100%) 0 (0%) 2.38

Table 3: EA performance for three levels of complexity

No. of elementary modes Average time to convergence

134 1147.3 sec
48 81.7 sec
24 13.2 sec
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threshold) or less (low threshold) as external and well
buffered central pools, the most pronounced being the
reactions with the central currency metabolite ATP.

b2) YANA translates EM activities into specific flux distributions
Table 4 shows the calculated flux distribution for the sys-
tem under study if all EMs are considered equally active
(100% activity).

In the example, GR as a central enzyme of the network has
an activity of 399. Besides this, the most active enzymes
are: GAPDH (598), PGM (598), LDH (598), PGK (560),
PK (598) and EN (598), as a parts of glycolysis, and the
enzymes G6PD (576); PGLase (576) and GL6PDH (576),
as components of the oxidative part of the pentose phos-
phate pathway. For the obtained flux distribution, we
notice a tight connection between glycolysis and the glu-
tathione reductase metabolism. The main pathways of
glycolysis and PPP supply energy and reduction equiva-
lents for strong redox protection provided by the glutath-
ione reductase network. In contrast, several other enzymes
are downregulated, in particular, those which use uric acid
as an antioxidant as well as catalase.

The program also quickly calculates and visualizes flux
distributions for any other chosen EM activities as given in
Table 4. Thus, one notices that selective activation of EMs
related to the pentose phosphate pathway leads to similar
results as above. Setting only HGPRT-containing modes at
a maximum activity (and all others to 0%) gives a more
selective response with several enzymes completely deac-

tivated. Finally, when all modes containing glutathione
reductase are active, the graph shows the central position
of GR in the network by a peak, and underlines even more
the importance of critical energy providing pathways for
redox protection (Figure 2).

c) Out of (partially) known flux distributions, YANA predicts and 
identifies EM activities with minimal error
Using our illustration example, we give

a) the results for the situation where only the enzyme
fluxes for glycolytic enzymes are all set to 100 (equal activ-
ity, for convenience assumed to represent international
enzyme units [micromol/minute]) and all others are
known to be at zero.

b) The same as before, but all other fluxes are unknown or
simply have not been measured (the enzyme activity is
then set to -1 in order to indicate lack of knowledge).

Situation a) reveals a flux distribution in which, after
upregulation of glycolytic enzymes, the three enzymes
forming the oxidative part of PPP are also highly active. In
addition, glutathione reductase (GR), NO synthase
(NOS) and TrxRI (thioredoxin reductase) are upregulated
as well, showing that a major part of the metabolite flux
uses the path from glycolysis via oxidative PPP to redox
protection enzymes. Not connected to glycolysis at all,
and thus set to zero activity, are again the use of uric acid
as an antioxidant and catalase.

Table 4: Individual enzyme activities summed over all elementary modes Calculation of individual enzyme activities according to a 
given flux distribution: The 134 modes obtained from the input system [see Additional file 1] are all assumed to be active with 
standard (1 flux unit) activity. Alternatively, fractions of full activity of individual modes (given in percentages) can be set by the user 
and included in the calculation. For the standard flux vector, the total enzyme activities are calculated by YANA as follows (arbitrary 
units, only relative fluxes are calculated):

Name Act. (a.u.) Name Act. (a.u.) Name Act. (a.u.) Name Act. (a.u.)

ALD 203.0 ApK 111.0 DPGM 38.0 EN 598.0
GAPDH 598.0 GpoI 209.0 Gr 399.0 HYPXLeak 74.0
LACex 598.0 PGI 203.0 PGK 560.0 PGLase 576.0
PGM 598.0 Pmr 201.0 PNPase 111.0 PRM 111.0
PRPPsyn 111.0 R5PI 192.0 TA 192.0 TKI 192.0
TKII 192.0 TPI 203.0 TrxRI 589.0 Xu5PE 384.0
ADA 37.0 AdPRT 74.0 AK 38.0 AMPase 75.0
AMPDA 37.0 Cat 6.0 Cca 37.0 CgdI 37.0
CgdII 75.0 CytI 38.0 DPGase 38.0 G6PD 576.0
Gcl 112.0 GL6PDH 576.0 GLCim 395.0 Gls 112.0
GtfI 37.0 GtfII 37.0 GtfIII 38.0 Gtr 37.0
Har 7.0 HGPRT 37.0 HK 395.0 IMPase 74.0
LDH 598.0 MemPhos 38.0 Nos 196.0 Opr 38.0
Pdo 99.0 PFK 203.0 PK 598.0 Sod 196.0
Tdi 196.0 Xen 196.0
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Situation b) – a scenario where the measured data are sim-
ilar but more incomplete – gives similar results, underlin-
ing that glycolysis or its side-products are important for
many reactions in this network. For this case, uric acid as
anti-oxidant and catalase are predicted not to be used.
Detailed results for both situations are given in supple-
mentary material. [see Additional file 1].

For comparison, experimental data on the activity of glu-
tathione reductase and the connected redox network have
been reported by Krauth-Siegel et al. (1996) [28] and oth-
ers. The concentration of glutathione reductase is approx.
0.2 µM in human red blood cells and in the cytosol of var-
ious eukaryotic cells [28,29]. In erythrocytes, this corre-
sponds to a maximal enzyme activity of 2 U/ml at 25°C.
Assuming that the concentration of the substrate glutath-
ione disulfide is 1 to 10 µM under physiological condi-
tions, the turnover of substrate can be estimated to be 30
µM/min to 270 µM/min (30 mU/ml to 270 mU/ml).

Transcriptome analyses have been reported for antioxi-
dant proteins of the malaria parasite Plasmodium falci-
parum in its various developmental stages [30]. The other
side of the coin, the proteomics of oxidatively modified
proteins has been reviewed by Ghezzi and Bonetto (2003)
[31].

The still sparse and incomplete data support the scenarios
discussed here, in particular regarding the high activity of
glutathione reductase modes as well as the importance of
energy providing reactions. However, a detailed kinetic
and experimental metabolic flux analysis of the whole sys-
tem has not yet been achieved.

The convergence criterion for the EA was to achieve a sum-
of-squares error of less then 5% of the best evolved flux
distribution to the target flux distribution. Regarding
measurement or experimental errors and constraints, the
user is alerted in case measurements are incompatible
with the calculated theoretical flux distribution but also
about which data are responsible for maximizing the dif-
ference between observed and calculated flux
distribution.

In Table 3 EA convergence is tested using randomly gener-
ated flux distributions as test datasets, working on our
example system with 134, 48 and 24 modes.

Using the example network above, with a threshold of 8,
more than 50% convergence could be reached after 100
iterations (22 seconds).

Discussion
After its conceptual description [2], Elementary Mode
Analysis has continuously been improved including new

algorithms [12,19,32], visualization (php-Metatool [33])
and dissection algorithms [13,14]. Computation of ele-
mentary modes and visualization of these is also feasible
by the program FluxAnalyzer [17]. Furthermore, alterna-
tive approaches also allow enumerating feasible routes in
complex metabolic networks, for instance extreme path-
way analysis [4] and hierarchical decomposition [34]. All
these further implementations and algorithmic develop-
ments have specific advantages, but also limitations.

The current software package allows user-friendly post-
processing of the METATOOL output. In particular visual-
ization of the modes, editing metabolites and reactions,
and graphical comparisons of enzymes and their involve-
ment in reactions of the metabolic network are available
for the user. YANA is a stand-alone visualization tool with
its focus on user intervention, the quick comparison of
results and thorough data exchange capabilities. In con-
trast, there are a number of more complex and integrated
packages available such as GEPASI [15,35] which have
less visualization options and offer other calculation
possibilities.

For addressing the major problem of combinatorial
explosion of the number of EMs in complex networks,
YANA implements a decomposition method proposed
earlier [13]. In this method, all highly connected metabo-
lites are set to external status. Moreover, a new simplifica-
tion strategy is offered to reduce complex metabolic
networks. Earlier studies on metabolite databases show
that the well connected "hub" metabolites dominate the
overall architecture of a metabolic web and represent its
core [18]. Here we offer the option to consider only those
reactions where well connected metabolites are involved
– the threshold can be chosen by the user. In fact, the
results here show that such a procedure reduces a meta-
bolic web considerably. This is particularly useful to dis-
sect and put apart those larger parts of the metabolic web
which are not well connected, so that they do not add to
the central part of this metabolic map.

Metabolic fluxes are difficult to measure. YANA offers a
specific approach to correlate metabolic fluxes with EM
activities. Alternative algorithms for such an effort have
been proposed [20,22]. The YANA routine offers several
advantages. Firstly, most experimental data on protein or
gene expression are always prone to errors and noisy. To
account for this, in YANA no exact EM activity solution for
the corresponding flux distribution is sought. Instead, the
experimental input is critically examined in regard to
whether it is realistic and can be satisfied by any combina-
tion of EMs. Next, the error between the observed values
of enzyme fluxes and the theoretical calculated flux distri-
bution is minimized. Accordingly, YANA also accepts
rather incomplete measurements, for instance, when only
Page 10 of 12
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two enzyme flux values are known. Furthermore, the evo-
lutionary strategy allows incorporating any further user-
desired multiple constraints into the fitness function.

The calculated EM activity pattern should additionally sat-
isfy metabolite restrictions, as well as growth or genetic
considerations on the enzyme or metabolite profile. Fur-
ther constraints, which might be considered, are, for
example, expression constraints dependent on promoter
structure, RNA stability or protein stability. In spite of this
flexibility, the evolutionary strategy converges swiftly to a
solution. The great advantage of this is that we have both
robust optimization and already take into account that
there is noise, and that no perfect solution is possible. If
desired, more criteria could be added with ease to the EA.

Conclusion
YANA adds a compact, user-friendly software package to
the analysis of metabolic webs, offering several new
implementations for typical challenges in such analyses
including modeling of expression data. The results illus-
trate the application for a central redox network around
glutathione reductase. Further developments will con-
sider additional regulatory constraints profiting from the
evolutionary strategy applied as well as a graphical editor
for the metabolic networks including dedicated algo-
rithms for the automatic layout of the graphs.

Availability and Requirements
All software and documentation are available for down-
load at http://yana.bioapps.biozentrum.uni-wuerz
burg.de.

The package requires at least Java Runtime Environment
(JRE) Version 1.5.0 and the following libraries, which are
included in the download bundle and can be found in the
/lib subdirectory:

• GenJava-CSV (© 2003, Henri Yandell)

• Jakarta Common Collections 3.1 (© 2004, The Apache
Software Foundation)

• JFreeChart 0.9.21 (© 2004, Object Refinery Limited and
Contributors)

• JigCell Modelbuilder (© 2004, Virginia Polytechnic Insti-
tute and State University)

• JMat 5.0 (© 2004, Yann Richet)

• Mosfet Liquid L&F (© 2004, Miroslav Lazarevic)

• Noia KDE 1.00 (© Carles Carbonell Bernado)

All libraries are licensed under either GNU General Public
License (GPL) [36], Lesser GNU General Public License
(LGPL) [37], BSD OpenSource License [38], DARPA Bio-
Comp OpenSource License, or other proprietary open
source licenses that allow the use, redistribution, and
modification of the application or parts of it. The copy-
right stays with the corresponding authors.

A 1.4 GHz CPU and 256 MB RAM are recommended for
running the YANA software package. Installation requires
at least 30 MB of hard disk space. YANA is supposed to run
on any 32-bit Windows or Linux platform.

List of abbreviations
• EMA – Elementary Mode Analysis

• EM – Elementary Mode, also known as Elementary Flux
Mode or Flux Mode

• EA – Evolutionary Algorithm
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Metabolic network around GR reductase and flux distribution examples 
(Microsoft Excel 2003): The file contains the complete metabolic network 
used for elementary mode analysis including the metabolites, reactions / 
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upregulated glycolysis are given in the file, as discussed in the main section 
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