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Abstract
Background: Determining the functions of uncharacterized proteins is one of the most pressing
problems in the post-genomic era. Large scale protein-protein interaction assays, global mRNA
expression analyses and systematic protein localization studies provide experimental information
that can be used for this purpose. The data from such experiments contain many false positives and
false negatives, but can be processed using computational methods to provide reliable information
about protein-protein relationships and protein function. An outstanding and important goal is to
predict detailed functional annotation for all uncharacterized proteins that is reliable enough to
effectively guide experiments.

Results: We present AVID, a computational method that uses a multi-stage learning framework
to integrate experimental results with sequence information, generating networks reflecting
functional similarities among proteins. We illustrate use of the networks by making predictions of
detailed Gene Ontology (GO) annotations in three categories: molecular function, biological
process, and cellular component. Applied to the yeast Saccharomyces cerevisiae, AVID provides
37,451 pair-wise functional linkages between 4,191 proteins. These relationships are ~65–78%
accurate, as assessed by cross-validation testing. Assignments of highly detailed functional
descriptors to proteins, based on the networks, are estimated to be ~67% accurate for GO
categories describing molecular function and cellular component and ~52% accurate for terms
describing biological process. The predictions cover 1,490 proteins with no previous annotation in
GO and also assign more detailed functions to many proteins annotated only with less descriptive
terms. Predictions made by AVID are largely distinct from those made by other methods. Out of
37,451 predicted pair-wise relationships, the greatest number shared in common with another
method is 3,413.

Conclusion: AVID provides three networks reflecting functional associations among proteins. We
use these networks to generate new, highly detailed functional predictions for roughly half of the
yeast proteome that are reliable enough to drive targeted experimental investigations. The
predictions suggest many specific, testable hypotheses. All of the data are available as downloadable
files as well as through an interactive website at http://web.mit.edu/biology/keating/AVID. Thus,
AVID will be a valuable resource for experimental biologists.
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Background
High-throughput technologies, including genome
sequencing, expression profiling, and large-scale interac-
tion and localization assays, have provided a wealth of
data about proteins and their properties, particularly for
the model organism Saccharomyces cerevisiae [1-5]. The
process of inferring functional information from these
data is not straightforward. The data are not of uniformly
high quality and must be weighted in an appropriate way
[6-8]. Computational methods such as machine learning
hold promise for this task, but they require a clear defini-
tion of "protein function". Gene Ontology (GO) has
emerged as a unifying framework that makes it possible to
carry out computational function annotation [9].

GO uses expert curation to systematically describe the role
of proteins in the cell. Three hierarchical ontologies are
used: molecular function (MF) describes the specific
molecular task performed by a protein, biological process
(BP) describes the broader biological activity a protein
participates in, and cellular component (CC) describes
the subcellular location or complex where a protein is
found. The deeper an annotation is in one of the GO hier-
archies, the more informative and specific it is. For exam-
ple, at a low level the yeast protein Mcm2 is annotated
with "catalytic activity" as a molecular function, but at the
most detailed level of the MF hierarchy its description is
"ATP-dependent DNA helicase activity". Similarly,
Mcm2's biological process of "cell growth and/or mainte-
nance" is refined to "DNA unwinding", and the general
descriptor "nucleus" is refined as "pre-replicative com-
plex" at the most descriptive level of the CC classification.
An important goal is to provide the most detailed possible
annotations for all proteins. Currently, however, only
~60% of the S. cerevisiae proteome has annotation at the
most descriptive level of at least one of the MF, BP or CC
classifications.

Many groups have explored computational analysis as a
way to expand functional assignments. For example, the
genomic context of a gene can reveal functional relation-
ships, especially in prokaryotes, as can patterns of co-evo-
lution [10-12]. Several methods have been proposed for
using experimental protein-protein interaction networks
to assign functional descriptors to unknown proteins on
the basis of their interaction partners [13-17]. Other
researchers have developed methods for combining mul-
tiple sources of data [11,12,18,19]. Troyanskaya et al. used
a Bayesian approach to increase the accuracy of functional
predictions of GO BP terms [20], and Jansen et al. pre-
dicted new members of protein complexes in this way
[21,22]. Tanay et al. (2004) integrated several sources of
experimental data to generate statistically significant pro-
tein "modules" and used the modules to assign GO BP
terms to 874 uncharacterized yeast proteins [23]. Most

recently, Lee et al. used a Bayesian framework to build net-
works reflecting functional relationships between 4,677
yeast proteins [24].

We present a method called AVID (Annotation Via Inte-
gration of Data) for predicting functional relationships
among proteins. AVID integrates the results of high-
throughput experiments, and incorporates sequence data,
to build unified, high-confidence networks in which pro-
teins are connected if they are likely to share a common
annotation. We illustrate one use of these networks by
treating functional annotation as a classification problem
and assigning GO terms to individual proteins based on
their neighbors in the networks. AVID is distinct from pre-
vious computational function prediction methods in sev-
eral ways that will make it a useful tool for experimental
biologists. First, AVID predicts functional annotation in
all three GO categories: MF, BP and CC. This provides a
more complete view of an uncharacterized protein's pos-
sible role in the cell than any single term alone. Second,
the functional terms predicted by AVID are very detailed.
We adopted only the most specific terms in GO as a list of
possible annotations and refer to these as AVID GO terms.
AVID GO terms have no functional subcategories. There
are 841 AVID GO terms for MF, 602 for BP and 192 for CC
that are used for yeast. Such terms are considerably more
useful than general ones, and they are also harder to pre-
dict. Third, by considering five different types of input
data, AVID achieves good coverage; we report here predic-
tions of new GO terms for about half of the yeast genome.
Fourth, AVID is reliable. The functional networks gener-
ated are 65–78% accurate and annotation of proteins is
52–67% accurate. The trade-off obtained between cover-
age and accuracy is superior to that obtained using a naïve
Bayesian framework. Finally, AVID predicts relationships
among proteins that are largely distinct from those that
have been suggested by other computational methods
[12,13,20,21,24-26].

Here, we describe three stages used in AVID to construct
functional correlation networks and a fourth stage that is
used to assign specific functions to individual proteins.
We report the estimated accuracy of AVID at different
stages using known data. Then we describe the results of
applying AVID to the entire yeast proteome to generate
new GO annotations.

Results and discussion
Description and performance of the four stages of AVID
Figure 1 outlines the multi-stage method and its applica-
tion to predicting the MF of unannotated protein
YOL137W. AVID can be regarded as a filtering process.
Initially, all proteins are considered as potentially func-
tionally related. Stages 2 and 3 remove lower confidence
associations. The links remaining after stage 3 form
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networks that contain a wealth of information about
functional similarity. These networks are the primary out-
put of AVID, and in stage 4 they are used to assign specific
functional terms to individual proteins.

In stage 1, diverse features, such as the presence or absence
of sequence similarity, or the observation of a protein-
protein interaction, are considered as potential indicators
of whether two proteins share an AVID GO term (Table 1

Overview of AVID, using prediction of the molecular function of YOL137W as an exampleFigure 1
Overview of AVID, using prediction of the molecular function of YOL137W as an example. Initially, YOL137W is 
treated as potentially functionally related to 6,448 other yeast proteins (not shown). Stage 2 prunes this to 30 putatively similar 
proteins, and the stage 3 decision tree further reduces this list to eight high-confidence neighbors. See additional file 2 for a 
description of the decision tree. In stage 4, five of the eight neighbors of YOL137W have existing AVID GO annotation 
(boxed) and "vote" to assign the GO term GO:0005355. After stage 4, proteins with known annotation in the figure are boxed, 
those with novel predictions are shown in diamonds and the function of YGR224W, in a hexagon, is a refined prediction. The 
estimated accuracy of predicted functional similarities (in stages 2 and 3) and annotations (in stage 4) are given in italics (see 
Methods). MF: molecular function; BP: biological process; CC: cellular component. Rosette figures generated using Graphviz 
[46].

STAGE 1
COMPUTE CORRELATIONS BETWEEN fi and GOj

GENOMIC DATA FEATURES, fi GOj,ANNOTATIONS FOR {MF, BP, CC}

STAGE 2
FILTER LOW CONFIDENCE PAIRSWITH PRODUCT MODEL

accuracyMF 67% BP 46% CC 69%

STAGE 3
IDENTIFY HIGH-CONFIDENCE PAIRS USING DECISION TREE

accuracyMF 77% BP 65% CC 78%

STAGE 4
ASSIGN FUNCTIONS USING MAJORITY RULE

accuracyMF 67% BP 52% CC 66%
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and additional file 1). For each type of evidence, i, and
each GO category, j = {MF, BP, CC}, we define a
correlation coefficient Pij

AVID1 to describe how well the
evidence predicts functional similarity. For all three ontol-
ogies, MF, BP and CC, there is a weak positive correlation
between the experimental observation of an interaction
(by yeast 2-hybrid or by co-purification) and similarity of
annotation. Sequence similarity is correlated with MF and
BP, but less so with CC, consistent with the expectation
that evolutionarily related proteins frequently have
related functions but act in diverse parts of the cell. The
cellular localization data of Huh et al. [1] correlate posi-
tively but very weakly with CC. This is because GO cellular
components, at the most detailed level, are protein com-
plexes that are much more descriptive than this experi-
mental localization data. AVID GO terms in the CC
classification should often, in fact, be regarded as descrip-
tions of protein interaction rather than cellular localiza-
tion. Thus it is not surprising that, e.g., two proteins
sharing the location "nucleus" have a low probability of
participating in the same complex (and thus sharing an
AVID GO CC term). Gene co-expression profiles correlate
with all three GO functional types; the higher the Pearson
correlation between two expression profiles is, the more
likely the two proteins share a GO term of any kind. Most
of the correlations between data and function are very
weak; none of the correlation coefficients are greater than
35%. Nevertheless, differences between the (+) and (-)
data sets (see Table 1) make these sources valuable for
inferring functional similarity.

Stage 2 is a filter that combines data sources and removes
protein pairs that lack sufficient evidence of functional
relatedness. For each pair of proteins, a Pj

AVID2 value is

defined as the product of the normalized conditional
probabilities Pij

AVID1 from all sources of evidence in stage
1. Tests using known proteins show that pairs with a
Pj

AVID2 value greater than 12.8 have more than 66.8%,
45.8% or 69.3% probability of MF, BP or CC relatedness
(Figure 2A). Pairs with Pj

AVID2 < 12.8 are not considered
further. Good coverage is preserved using this cutoff:
60.8%, 74.0% or 79.0% of proteins in test sets with exist-
ing MF, BP or CC annotation are retained by the filter.

To improve accuracy while still making predictions for a
large number of proteins, a machine learning scheme (a
decision tree) is employed in stage 3 [27]. The tree takes
the stage 1 conditional probabilities as input, and returns
a binary decision about whether two proteins are likely to
share a function. The entire process used to predict the
similarity of three pairs of proteins is illustrated in detail
in additional file 2, which includes diagrams of the deci-
sion trees for MF, BP and CC.

Stages 1, 2 and 3 result in the construction of a reliable
protein correlation network for each of the GO functional
types. The three networks relate proteins likely to share a
similar function or be part of the same protein complex.
Ten-fold cross-validation testing using proteins with exist-
ing GO annotation showed that 77% of MF, 65% of BP
and 78% of CC pair-wise relations predicted in stage 3
were correct. Furthermore, 1,432 proteins (55.4%), 1,122
proteins (48.6%) and 974 proteins (72.3%) for MF, BP
and CC, respectively, were retained in pairs judged to have
functional similarity after stage 3. Alternative machine-
learning strategies were tested but did not show any
improvement in performance. All of the stages employed
to construct the networks are important. In particular, a

Table 1: Correlation between experimental or sequence-based measures of protein relatedness and GO annotation similarity.

Dataa MFb BPb CCb

UCSF localization (+) 0.031 0.029 0.058
UCSF localization (-) 0.007 0.007 0.004
yeast 2-hybrid (+) 0.120 0.167 0.254
yeast 2-hybrid (-) 0.010 0.010 0.010
MIPS complex (+) 0.122 0.116 0.263
MIPS complex (-) 0.007 0.008 0.002
sequence similarity (+) 0.187 0.344 0.078
sequence similarity (-) 0.009 0.007 0.010
Microarrayc

-1 < R ≤ -0.9 0.008 0.003 0.006
0.9 < R ≤ 1.0 0.086 0.118 0.125

aExcept for the microarray data, each data source is divided into two sets: one contains protein pairs observed to share the feature described by 
the data (+), the other contains protein pairs that lack the feature or are not reported (-). bThe normalized conditional probabilities Pij>

AVID1 are 
defined in the Methods; they are the probability of sharing a common GO term given observation of a particular data feature. A perfect correlation 
would give a value of 1.0. cR is the Pearson correlation coefficient for pairs of mRNA expression profiles, which were binned into 19 intervals. Only 
two intervals are shown here. See additional file 1 for further details.
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decision tree applied to unfiltered data was not as effec-
tive, resulting in 4–21% reduced coverage and 2–3%
reduced accuracy for BP and CC, and ~10% reduced accu-
racy for MF, compared to the full 3-stage process.

In stage 4, a "majority rule" algorithm is used to annotate
uncharacterized proteins based on the correlation net-
works. AVID often predicts several GO terms for a protein.
The average number of functions predicted (compared to

the number of existing annotations in GO, in parenthe-
ses) is 2.19 (1.45) for MF, 1.95 (1.07) for BP, and 1.87
(1.14) for CC. In testing, if any of the AVID predictions
were identical to an existing GO annotation the predic-
tion was counted as correct. If one term was correctly pre-
dicted, all terms were correctly predicted 85% of the time
for MF, 74% of the time for BP and 83% of the time for
CC.

Figure 2B shows that the success rates for predicting AVID
GO terms in stage 4 depend on the fraction of proteins
treated as unknown in the networks during testing. If only
10% of proteins have known function, the success rate for
the remaining 90% (the test set) is only 30–50%. How-
ever, if functions are known for 90%, the remaining 10%
of proteins can be annotated with 65–75% accuracy.
Whereas the assessment data in Figure 2B are based on ref-
erence sets of annotated proteins, divided into training
and testing sets, the actual fraction of yeast proteins cur-
rently unannotated at the AVID GO level is 56.4%, 56.5%
and 70.3% for MF, BP and CC, respectively. Thus we can
use Figure 2B to estimate that MF, BP and CC prediction
success, when applied to the entire proteome, will be
~67%, ~52% and ~66%, respectively. As more proteins
are annotated, predictive accuracy for unknown proteins
will improve further.

As mentioned above, AVID predicts 1.5 to 1.8 times as
many AVID GO terms per protein as already exist in GO.
This is expected, because current annotation is incom-
plete. In tests on annotated proteins, the percentage of
functional terms predicted by AVID that are already
included in GO is 46%, 33% and 47% for MF, BP and CC,
respectively. We recover 63% (MF), 44% (BP) and 60%
(CC) of previously annotated AVID GO terms.

New networks including unannotated S. cerevisiae 
proteins
We applied AVID to the entire yeast proteome, generating
three new networks that include proteins for which
detailed AVID GO annotation is not yet available. These
predicted networks have similar connectivity to the net-
works generated from existing GO data for testing. The
average numbers of edges per node in the testing networks
were 10.2, 8.2, and 17.2 for MF, BP and CC, respectively,
whereas in the prediction networks these averages were
13.4, 8.7 and 12.5. The distribution of connectivities in
the different networks are provided in additional file 3.
Using the predicted networks, we made two types of func-
tional predictions. All predictions are available in addi-
tional files 4 and 5.

Refined predictions
First, we predicted a more detailed function or location for
proteins previously characterized only at less descriptive

Evaluation of stages 2 and 4 using known proteinsFigure 2
Evaluation of stages 2 and 4 using known proteins. 
(A) To evaluate the performance of a simple product model 
in stage 2, Pj

AVID2 was calculated for each pair of proteins in 
an annotated reference set. The plot shows the fraction of 
protein pairs at different Pj

AVID2 cutoffs that share an AVID 
GO term. Pairs with Pj

AVID2 < 12.8 were not considered in 
stages 3 or 4. (B) A varying percentage of reference proteins 
was omitted from the entire training procedure and used as a 
test set. Functions for these proteins were predicted in stage 
4, and the plot shows the success rate for correctly predict-
ing at least one existing GO term at the highest level of anno-
tation. The arrows indicate the expected performance for 
predicting new functions based on the current status of 
annotation of the yeast genome. Error bars show the stand-
ard deviation from 100 random cross-validation trials. MF 
(diamonds), BP (squares) and CC (triangles).
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levels in GO, we refer to these as refined predictions. We
evaluated whether refined predictions are consistent with
existing coarser annotations at GO levels 2, 3 and 4 for
MF, BP and CC, respectively. An AVID GO prediction was
judged consistent with a coarser one if the less descriptive
term is its ancestor in the GO hierarchy. There are 17 func-
tional categories in MF level 2, 24 functional categories in
BP level 3 and 40 functional categories in the CC level 4,
so this comparison is a non-trivial test. Because the defini-
tion of "level" can be ambiguous, the categories used are
listed in additional file 6.

Table 2 summarizes the results; refined predictions are 75
– 87% consistent with existing coarser annotations. Note
that these coarser annotations were not used by AVID in
any way when predicting specific terms. This indicates
that new AVID GO terms, when traced back to MF level 2,
BP level 3 or CC level 4, are 75–87% accurate. This esti-
mate is higher than the accuracy for predicting AVID GO
terms themselves because it is easier to assign more gen-
eral functions correctly. For cases in which a refined AVID
prediction is not a subcategory of existing GO annotation,
we identified many cases where the prediction is, never-
theless, biologically relevant. In a trivial example, AVID
assigns YOR244W (Esa1) a MF of "chromatin binding".
Our formal accounting treated this as incorrect in testing
because "chromatin binding" is not a sub-category of the
existing GO term for Esa1, "histone acetyltransferase activ-
ity". However, Esa1 catalyzes acetylation of chromatin
substrates [28], so the disagreement in this test is merely
an artefact of the structure of GO. This suggests that
refined AVID GO predictions are more consistent with
existing biological knowledge than the estimate of 75–
87%.

Novel predictions
In a second type of prediction, we assigned one or more
AVID GO terms to proteins without any existing annota-
tion in GO at any level, we refer to these as novel predic-
tions. Note that these are novel in the sense that they
annotate proteins not previously included in GO. Other
sources of evidence regarding function may exist, e.g. in

the literature or at the Saccharomyces Genome Database
(SGD) [29]. We made novel MF predictions for 950 pro-
teins, novel BP predictions for 504 proteins and novel CC
predictions for 907 proteins (Table 2). The refined and
novel predictions for MF, BP and CC together cover 51%
of the yeast proteome and, when combined with existing
annotations, provide AVID GO descriptors for ~80% of
yeast proteins. Cross-validation testing indicated that
these predictions are ~52–67% accurate (previous sec-
tion). The accuracy of specific novel predictions is hard to
evaluate systematically, but we assessed the plausibility of
a subset of both our refined and novel predictions using
the experimental data of Hazbun et al. [30] (Figure 3),
which were not included in the version of GO used to
develop our method. In this work, 100 uncharacterized
open reading frames were labelled with a tandem affinity
purification tag. Mass spectrometry was used to identify
proteins that form a complex with the gene product of
interest. Overlap with the high-throughput affinity
purification data used as input to AVID was very low
(7%). For each novel annotation predicted by AVID for a
protein localized to a complex by Hazbun et al., we classi-
fied it as GO-consistent if another member of the complex
had the same annotation in GO, and as AVID-consistent if
another member of the complex had the same annotation
predicted by AVID. We found that ~46% of MF, ~16% of
BP and ~27% of CC predictions were GO-consistent;
~73% (43 out of 59) of MF, 63% (27 out of 44) of BP and
71% (45 out of 62) of CC predictions were GO- or AVID-
consistent. Among the annotations not formally classified
as GO- or AVID-consistent some are nevertheless clearly
relevant. For example, AVID assigns "mitotic chromo-
some segregation" to YNL313C. In the Hazbun experi-
ments, YNL313C co-purified with Tub3p, and Tub3p is
annotated in GO with the very similar term "homologous
chromosome segregation". Thus, AVID predicted the
functional similarity of YNL313C and Tub3, and this was
supported later by the co-purification of these proteins.
Notably, the AVID prediction of similarity of YNL313C
and Tub3 did not come directly from experimental evi-
dence; there is no direct edge between these two proteins
in any of the AVID networks.

Table 2: Summary of AVID prediction performance.

MF BP CC

total predicted proteins 1852 1458 2304
proteins with novel predictions (no existing GO annotation) 950 540 907
proteins with refined predictions (existing GO annotation is less detailed) 902 918 1397
accuracy of stage 3 pair-wise similarities, from 10-fold cross validation 77% 65% 78%
frequency of unannotated proteins in the correlation networks 56.4% 56.5% 70.3%
estimated success rate for AVID GO term assignment ~67% ~52% ~66%
consistency of refined predictions with existing annotation 74.7% 80.3% 86.9%
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AVID predictions of MF, BP and CC were made using dif-
ferent weighting of the input data, different functional cat-
egories and different stage 3 correlation networks. For 85
proteins, AVID provided novel predictions in all three of
these categories. In many examples, the three novel pre-
dictions are related and consistent (additional file 7).
Here we list several examples from these 85 proteins
where experimental data, or descriptions in SGD, support
our predictions. First, YOR179C (Syc1) was assigned by
AVID a BP of "mRNA polyadenylation", a MF of "cleav-
age/polyadenylation specificity factor activity" and CCs of
"mRNA cleavage factor complex" and "cleavage and poly-
adenylation specificity factor complex". GO annotation
added after our predictions were completed assigned
YOR179C "mRNA cleavage and polyadenylation specifi-
city factor complex" as a cellular component, based on the
experiments of Nedea et al. [31]. In another example,
AVID assigned "tRNA-intron endonuclease activity" (MF),
"tRNA splicing" (BP), and "tRNA-intron endonuclease
complex" (CC), to YLR375W (see additional file 2). SGD
lists the description "involved in pre-tRNA splicing and in
uptake of branched-chain amino acids" for YLR375W,
although this information is not included in GO or sup-
ported by literature references at SGD [29]. In a third
example, AVID assigned YEL018W (Eaf5), YER092W
(Ies5) and YDL002C (Nhp10) to "histone acetylation"
(BP), "chromatin binding" (MF), and "nucleosome
remodelling complex" (CC); SGD reports for Eaf5 the
description "subunit of the NuA4 acetyltransferase com-
plex", and for Ies5 "protein that associates with the INO80
chromatin remodelling complex under low-salt condi-
tions". The involvement of Nhp10 in chromatin remodel-
ling is also supported by Shen et al. [32]. Similar
consistency among MF, BP and CC predictions supports
the annotation of YBR043C, YIL121W (Qdr2) and
YOL137W (Bsc6) as plasma membrane-associated pro-
teins involved in glucose transport and/or galactose
metabolism and the assignment of YER084W, YGR017W,
YLR154C (Rnh203) and YPL014W as being related to
(possibly regulating) protein kinase CK2 activity. Many
other suggestive examples are available in additional file
7.

We have constructed an interactive web server that allows
users to individually trace the data that contributed to any
prediction [33]. For example, to understand the origins of
the MF prediction made for YOL137W, shown in Figure 1,
a user can look up the identities and functions of all
neighbors of this protein in the stage 3 networks. For each
neighbor, we provide information about what experimen-
tal or sequence data was used to establish the relationship,
as well as the stage 1 weight assigned to that data source,
and an additional measure of confidence from the deci-
sion tree processing (see Methods). We also give its status
as "known", "refined" or "novel". This makes it possible

to establish, for example, that YOL137W was assigned GO
term 0005355 ("glucose transporter activity") because the
majority rule vote by neighbors of known function was
won by YOL156W and YDL138W, which share GO term
0005355. The association of these proteins with
YOL137W was determined primarily from sequence sim-
ilarity and mRNA co-expression. Users can also see, how-
ever, that YOL137W is predicted to share functional
similarity with other proteins, e.g. YOL103W
(GO:0005365, "myo-inositol transporter activity"), also
on the basis of sequence similarity and mRNA co-expres-
sion. This demonstrates how examining AVID network
relationships can provide a broader picture than the stage
4-assigned terms alone.

Comparison to other methods
A variety of methods have been proposed in the literature
for the computational annotation of protein function, but
these are difficult to compare given the lack of adequate
"gold standard" data sets for universal testing. There are
further obstacles to rigorous comparison. First, groups for-
mulate the function prediction problem differently. For
example, our use of highly specific GO terms is distinct
from the generally broad (and widely varying) functional
classifications used by others. Second, methods use differ-
ent sources of evidence and training sets. Finally, various
methods provide different forms of output, ranging from
sets of pair-wise relationships between proteins to func-
tional modules to specific functional annotations.

Bayesian frameworks are popular for data integration
problems, and have been applied to the prediction of pro-
tein functional similarity and protein-protein interactions
[20,21,24]. To compare the AVID framework rigorously
with a naïve Bayesian net, we implemented the method of
Jansen et al. [21] and applied it to our set of reference pro-
teins. As shown in Figure 4, AVID stages 1 and 2 perform
comparably to this formalism for MF and BP, although
they out-perform it for CC. With the addition of the deci-
sion tree in stage 4, however, the trade-off between accu-
racy and coverage improves significantly for AVID.
Whereas both methods are good at making high-confi-
dence predictions at low coverage, the AVID framework
maintains much better true positive to false positive ratios
than the naïve Bayes net at higher coverage.

Although implementing and comparing a large number
of other approaches for the same data is beyond the scope
of this work, we can compare overall results obtained by
different groups. This turns out to be interesting and sur-
prising. For six published methods that generate pair-wise
relationships among yeast proteins, we compare the cov-
erage and overlap of the predicted associations in Table 3.
We compare methods at roughly comparable levels of
accuracy to that of AVID (~70%), using estimates of the
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original authors. AVID predicts 37,451 relationships
among 4,191 proteins. Lee et al. [24], referred to here and
in Table 3 as "MARCOTTE") also obtain very high cover-
age: 33,919 high-confidence associations among 4,677
proteins. STRING further predicts 23,345 functionally
related pairs. However, the largest overlap between any
two methods in Table 3 is only 9,873 pair-wise associa-
tions predicted by both MARCOTTE and STRING [12,26].
Both of these methods use genomic context as an impor-
tant predictive element. AVID does not consider genomic
context and shares only 3,413 predictions with STRING.
These make up 9% of the total AVID predictions, and no
other method shows greater overlap. Out of 37,451 high-
confidence associations predicted by AVID and 33,919 by
MARCOTTE, only 3,020 of these are in common. In light
of the fact that all methods show incomplete coverage and
imperfect accuracy, the distinct predictions made by dif-
ferent methods are a significant advantage because they
provide alternatives that can profitably be considered by
experimentalists.

Conclusion
Computational annotation of the proteome has a critical
role to play in post-genomic analysis. Although hypothe-
ses about function can often be reached by carefully read-
ing the literature and critically examining high-
throughput data, computation can speed and assist this
process. Further, computational methods can help dis-
criminate reliable data amidst false positives and nega-
tives. As a tool for this purpose, AVID notably provides
functional descriptors at a high level of detail. The strategy
of predicting MF, BP and CC terms also provides a more
comprehensive description of protein function than many
alternative approaches. Finally, AVID performs better
than simple naïve Bayesian integration, and the predic-
tions of AVID are largely distinct from those that have
been made by other methods.

The stage 3 networks generated by AVID are very accurate
(65–78%) and are useful in the absence of stage 4. The
specific predictions made in stage 4 are accurate enough to
be of practical utility, but they do have limitations. The
imperfect majority rule algorithm will sometimes select
one function over others that may be equally relevant.
Further, because we consider only the most detailed GO
categories in training and prediction, some predictions
will be incorrect because they are overly specific, even
when they correctly reflect the general cellular role of a
protein. For these reasons, consideration of the entire
stage 3 functional networks is likely to be most useful to
experimental biologists. Other algorithms for assigning
function based on the AVID networks may give better per-
formance. This is an active area of research [13-16].

Comparison of AVID with a naïve Bayesian networkFigure 4
Comparison of AVID with a naïve Bayesian network. 
The performance of a naïve Bayesian net, as described by 
Jansen et al. [21], is compared to that of AVID, using the 
same input data and same measures of performance. The 
plots show the ratio of true positives to false positives (TP/
FP) vs. coverage (TP/P). The Bayesian net results are in open 
triangles, AVID stages 1 and 2 in open circles and AVID 
stages 1, 2 and 3 in closed circles. The performance of AVID 
is notably superior at higher coverage. At low coverage, all 
methods can achieve high accuracy.
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AVID can be used to assign new proteins to existing GO
functional categories. The catalogue provided by GO is
incomplete, however. Accurate descriptors have not yet
been defined for all possible functions, processes and
compartments. Because of this, proteins with new func-
tions will not be successfully assigned by AVID. Within
the limitations imposed by GO, however, performance on
novel proteins may be better than estimated by our test-
ing. When assessing the performance of stage 4, we treated
known proteins as unknown. This reduced the size of the
training set for stage 3 to less than half of that available
when making new predictions; this decreases predictive
accuracy. Furthermore, most proteins have more than one
function, and many are found in more than one cellular
compartment or complex. When assessing AVID stage 3,
predicted functional similarities among test proteins that
are not yet annotated in GO are counted as wrong and
thus reduce the estimated success rate, even though many
are likely to be correct.

Algorithmic function prediction can be approached from
different perspectives, and it will be important for compu-
tational biologists to explore various formulations of the
problem as well as solutions to it. Ultimately, the value of
any approach will be justified through the cumulative suc-
cess of experiments that it inspires. Our functional net-
works provide numerous candidate proteins for
involvement in important biological processes. Biologists
who consult AVID as part of their work are likely to find
new predictions of function for their genes of interest that
are accurate enough to guide experimental
characterization. Thus, AVID is sure to provide a useful
resource for the yeast community.

Methods
Data sources
To establish sequence similarity, 6,449 protein sequences
from the yeast proteome were downloaded from MIPS
[34]. Each sequence in turn was used as a PSI-BLAST query

against the entire yeast proteome. Proteins with an E-
value less than 0.001 after three iterations of PSI-BLAST
were defined as similar to the query sequence [35]. A total
of 66,833 similar pairs involving 3,631 proteins were
identified in this manner.

A list of high-throughput yeast two-hybrid interactions
was obtained from MIPS (file PPI_120803.tab) that
included 6,620 pairs among 3,579 proteins (not
including 214 self interactions) detected by the high-
throughput yeast two-hybrid assays of Uetz and Ito
[4,5,36]. Small-scale yeast two-hybrid experiments were
not included.

Protein complex file complex052102.tab was down-
loaded from MIPS. Among these proteins, 67,569 pair-
wise relationships were defined between 2,696 proteins
reported to occur in the same complex [2,3]. Within a
complex, every protein was assigned an interaction with
all others.

We used the cellular localization data of Huh et al. [1,37].
A link was assigned to two proteins if they were reported
in the same cellular compartment, without considering
~270 proteins with ambiguous localization. This led to
the construction of 975,891 pairs among 3,883 proteins.
In Table 1 this data set is called "UCSF localization".

The data GDS124 was downloaded from NCBI Gene
Expression Omnibus [38]. We used cdc15 block-release
time course mRNA expression from the yeast cell cycle.
These data consist of 24 time points taken during the
course of almost three full cell cycles. We computed the
Pearson correlation for each of 19,734,903 pairs among
6,283 proteins.

Yeast protein annotations and hierarchical terms for bio-
logical processes, molecular functions and cellular com-
ponents were downloaded from GO [39]. We only

Table 3: Overlap of pair-wise predictions of functional (or localization) similarity by different methods.

METHODS AVID MARCOTTE STRING PIP_600a LIANG MAGICb MAGICc SCHLITT

AVID 37451 3020 3413 785 2570 2740 49 9
MARCOTTE 33919 9873 3528 2454 1971 66 26

STRING 23245 3614 1740 1819 32 21
PIP_600a 9897 425 260 8 1
LIANG 7963 1647 41 6
MAGICb 7922 397 7
MAGICc 397 1

SCHLITT 526

a. This study was intended to predict pairs of proteins that co-localize to the same complex.
b. MAGIC pairs with p ≥ 0.5
c. MAGIC pairs with p ≥ 0.7
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considered annotation categories that do not have any
sub-categories. We call these AVID GO terms. A pairing
link is assigned to two proteins if they share an AVID GO
term.

Data from small-scale experiments were not used. We
found that small-scale experiments are already largely cap-
tured by existing GO annotation. Furthermore, as imple-
mented, the results we obtain with AVID reflect what is
likely to be possible in other organisms, where high-
throughput data sets will soon far outnumber small-scale
experiments.

Stages of AVID
The following stages were carried out separately for MF,
BP and CC.

AVID stage 1 – correlation analysis
We considered five features, fi, that characterize pairs of
proteins. Four of these features are either present (fi

+) or
absent (fi

-) for a protein pair: co-localization, two-hybrid
interaction, co-occurrence in a complex and sequence
similarity. A fifth feature, mRNA expression profile corre-
lation, was described by the Pearson correlation coeffi-
cient R. R values were binned into 19 intervals. We
considered three GO categories, GOj (one of MF, BP, CC).
Conditional probabilities were defined using only the set
of proteins, sij, that had records for both fi and GOj. GOij

+

is the set of all protein pairs among sij that share an AVID
GOj term. For each feature, i, and GO category, j, we com-
puted the conditional probability that a pair of proteins
that share feature fi also share some AVID GOj annotation
term: Pij

AVID1= P(common GO term|common data fea-
ture) = (pairs in GOij

+ with fi)/(pairs with fi). Because pro-
tein pairs lacking a relationship (e.g. an interaction) are
frequently not reported, the number of such negative pairs
was defined as {(possible pairs among p) – (pairs
observed to have the corresponding positive feature)}.
The correlation coefficients Pij 

AVID1 were normalized by a
factor α = 0.01/ [(pairs in sij and in GOij

+)/(pairs among
sij)] to account for the different sizes and compositional
biases of the sets sij. The value 0.01 is a reference constant
used in place of Pij

AVID1 for protein pairs without records
in fi; it is approximately the probability that two randomly
chosen proteins will share an AVID GO term. The analysis
is insensitive to the value chosen for this constant.

AVID stage 2 – combining data to build a network of correlations
Each pair of proteins in the positive and negative reference
sets was described by a set of five Pij

AVID1 terms for each of
MF, BP and CC; the reference value 0.01 was used when
feature data was missing (see above). In stage 2 we com-
puted Pj

AVID2 = Πi100•Pij
AVID1. Pairs of proteins with

Pj
AVID2 < 12.8 for MF, BP and CC were not considered fur-

ther. This cutoff was chosen to achieve a good compro-

mise between accuracy and coverage, which can not be
simultaneously optimized. Coincidentally, the 12.8 value
was reasonable for all three GO categories.

AVID stage 3 – decision tree
In stage 3, the Pij

AVID1 values from stage 1 for protein pairs
that passed the stage 2 filter were used as the input to a
decision tree that retuned a binary decision about the
presence or absence of functional similarity [27]. Decision
trees provide a supervised machine learning scheme for
classification and can analyze hierarchical complex rela-
tionships. The idea is to recursively subdivide a training
set of examples into homogeneous groups, using discrim-
inating attributes. The attribute selection criteria are based
on a measure of informational entropy. At each decision
point, an attribute is chosen so as to result in the best dis-
crimination of the data into classes. After training, a set of
complex rules is represented as a tree structure where non-
terminal nodes represent tests on one or more attributes
and terminal nodes reflect decision outcomes. We
adopted java source code from Weka [40] for the imple-
mentation of the decision tree. J48 is an extension to the
C4.5 algorithm by Quinlan [41]. It uses a recursive "divide
and conquer" strategy to generate a decision tree from the
training data. The input training data consist of a list of
examples with attribute values and a class label (in our
case it is YES or NO to represent correlation or not). Fol-
lowing Zhang et al. [19], we computed a measure of con-
fidence in different paths through the final trees used for
making new predictions. This measure is the probability
that the decisions made to reach a particular terminal
node correctly classified reference data; it is defined for
each terminal node and is assigned to each protein pair
partitioned to that node. These values are available at the
AVID web site.

AVID stage 4 – assigning functions based on correlations
Pairs predicted to be functionally related by the decision
tree in stage 3 comprise three correlation networks (one
each for MF, BP and CC). In stage 4 these networks are
used to classify unknown proteins based on their relation-
ships to categorized neighbors. We assigned functions to
unclassified proteins on the basis of the most common
function(s) present among their annotated neighbors (the
"majority rule" approach) [17]. Wherever possible, func-
tions were assigned based only on GO-annotated pro-
teins. When this was impossible (e.g. no neighbors had
known functions), subsequent rounds of majority rule
were used to assign functions on the basis of predicted
annotations for neighbors. We also tested several iterative
methods, such as those discussed by Vazquez et al. [14],
but did not find any improvement in performance.
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Cross-validation testing
The performance of the AVID framework was evaluated
using cross-validation testing by splitting the data into
training and test sets prior to the stage 1 correlation anal-
ysis. We defined test sets in which increasing percentages
(n) of the reference proteins were treated as unknown.
The remaining 100-n% of proteins constituted the train-
ing set and were used in stages 1, 2 and 3 to generate a pre-
dictive model. This model was applied to the entire
reference set to generate functional correlation networks.
In these networks, the n% of proteins making up the test
set remained unannotated. One or more functions were
assigned to them using majority rule, and these predic-
tions were compared to original terms assigned by GO. If
at least one AVID GO term matched, the annotation of

that protein was counted as correct. Accuracy was defined
as the number of proteins with ≥ 1 correctly predicted
AVID GO term divided by the number of proteins treated
as unannotated. For each value of n, ranging from 10 to
90%, 100 random test sets were analyzed (for each of MF,
BP and CC). The results reported are the average of all tri-
als, with error bars in Figure 2b showing the standard
deviations.

Comparison with other methods
We compared AVID with a naïve Bayesian network
approach used by Jansen et al. [21], which is described in
detail in the supplementary materials of that reference. In
this formalism, the probability of two proteins sharing
functional annotation, given evidence sources f1...fn, is
proportional to the likelihood ratio L: L(f1...fn) =
P(f1...fn|functional similarity)/P(f1...fn|no functional sim-
ilarity). Data features f1...fn are defined above in the sec-
tion describing AVID stage 1. L can be computed from
contingency tables relating these data features with pairs
of reference proteins that are and are not functionally
related. These tables are given in additional file 8. Figure 4
compares the performance of AVID stages 1 and 2, AVID
stages 1–3 and the naïve Bayes approach by plotting the
ratio of true positives to false positives (TP/FP) as a func-
tion of sensitivity (defined as TP/P) for reference data. We
generated data at various values of TP/FP and TP/P by var-
ying the values of L and the cutoff for Pj

AVID2.

In Table 3 we compare data from other studies with the
content of the AVID functional correlation networks. The
following datasets were downloaded from the indicated
sources. The cutoff applied (if any) was chosen based on
the original reference to generate "high-confidence"
protein pairs. Where possible, as detailed below, the cut-
off was chosen to result in roughly 70–80% accuracy, to
match the estimated accuracy of the AVID pairs. The
numbers reported for AVID include edges predicted for all
three networks (MF, BP and CC); no protein pair was
counted more than once.

1. MARCOTTE. "ConfidentNet", file 1099511s1_5.zip,
from the supplementary materials of Lee et al. [24]; the
top 34,000 pairs were used. These data are estimated by
the authors to be as accurate as small-scale experiments;
possibly greater than 70% accurate.

2. STRING. From the STRING database at [42], the file
links_high_confidence_v5_1.txt [12,26]. This data set is
reported to be ≥ 75% accurate.

3. PIP_600. From the work of Jansen et al. [21], file
L_cut_PIP_600.tar from [43]. These predictions are theo-
retically estimated to be ~50% accurate.

GO and AVID annotations of proteins localized to an experi-mentally identified complexFigure 3
GO and AVID annotations of proteins localized to an 
experimentally identified complex. The complex shown 
at left was identified using co-purification/mass spectrometry 
by Hazbun et al. [30]. On the right, proteins with known 
AVID GO terms are shown as circles; proteins with refined 
AVID predictions are shown as triangles, proteins with novel 
AVID predictions are shown as squares. Colors represent 
AVID GO terms as follows: light blue – small nucleolar ribo-
nucleoprotein complex; grey – processing of 20S pre-rRNA; 
dark blue – 35S primary transcript processing; dark green – 
ER to Golgi transport; light green – snoRNA binding; red – 
ATP dependent RNA helicase activity. This complex is pre-
dicted to have a role in RNA transcript processing. The 
refined and novel functional predictions agree with previous 
annotations and with each other, increasing confidence that 
these are meaningful assignments.
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4. LIANG. From the work of Samanta and Liang [13], all
pairs with p < 10-8 from [44]. These data are reported as
~70–75% accurate for predicting similarity in broad
categories.

5. MAGIC From the data of Troyanskaya et al. [20], predic-
tions.txt from [45]. We used two data sets, one with a
probability of being functionally related of ≥ 50%, the
other with ≥70%.

6. SCHLITT. File Schlitt-11114_supp_3.txt, with p ≤ 0.01,
from the supplementary material of [25]. This p-value cut-
off was used in the paper, but what accuracy it corre-
sponds to isn't established.
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