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Abstract
Background: Many protein families have undergone functional divergence after gene duplications
such that current subgroups of the family carry out overlapping but distinct biological roles. For the
protein families with known functional subtypes (a functional split), we developed the software,
SplitTester, to identify potential regions that are responsible for the observed distinct functional
subtypes within the same protein family.

Results: Our software, SplitTester, takes a multiple protein sequences alignment as input,
generated from protein members of two subgroups with known functional divergence. SplitTester
was designed to construct the neighbor joining tree (a split cluster) from variable-sized sliding
windows across the alignment in a process called split-clustering. SplitTester identifies the regions,
whose split cluster is consistent with the functional split, but may be inconsistent with the
phylogeny of the protein family. We hypothesize that at least some number of these identified
regions, which are not following a random mutation process, are responsible for the observed
functional split. To test our method, we used reverse transcriptase from a group of Pseudoviridae
retrotransposons: to identify residues specific for diverged primer recognition. Candidate regions
were then mapped onto the three dimensional structures of reverse transcriptase. The locations
of these amino acids within the enzyme are consistent with their biological roles.

Conclusion: SplitTester aims to identify specific domain sequences responsible for functional
divergence of subgroups within a protein family. From the analysis of retroelements reverse
transcriptase family, we successfully identified the regions splitting this family according to the
primer specificity, implying their functions in the specific primer selection.

Background
Eukaryotic genomes have many genes that fall within
well-defined gene or super-gene families [1]. Both ortho-
loguous and paraloguous genes within the same gene
family may vary in functions at levels from subtle changes

in regulation or catalytic efficiency to substantial evolu-
tion of new function. While functional divergence within
a protein family is usually determined by changes in a few
amino acid residues or domains. Identification of these
has traditionally required considerable experimental
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effort. Developing computational tools for predicting
these crucial residues or regions has become important in
the field of current functional genomics. Many methods
have been proposed, such as ancestral sequence inference
[2], positive selection [3], and site-specific rate shifts [4,5].
The new software SplitTester reported here is focused on a
special type of functional divergence that functionally
associated amino acids do not have the same evolutionary
relationship as the protein family. The software is
designed to identify domains responsible for functional
divergence by iteratively comparing split cluster to the
functional classification. Identified inconsistence between
the functional divergence and the phylogenetic relation-
ship may provide valuable information for gene function
prediction.

For illustration, we applied SplitTester to the reverse tran-
scriptase family from a group of retrotransposons, Pseudo-
viridae. There are two subgroups of reverse transcriptase,
according to the primer utilizations at the initial step of
reverse transcription process. One subgroup binds full
length tRNA molecule and another one binds tRNA frag-
ment respectively as primer to initiate cDNA synthesis
(reviewed in [6] also see [7-9]). Such difference in primer
specificity can not be reflected from the inferred phyloge-
netic relationship of this protein family, that is, they are
not monophyletic because of the parallel evolution for
functional-related changes during the expansion of this
protein family [10]. Thus, one may design a tree-based
(clustering) algorithm that can define domains relevant to
diverged function in a protein family with known func-
tional subtypes. The software SplitTester we developed is
to look for the local sequence alignments that display the
clustering topology in agreement to a known functional
split, using the evolutionary relationship of the gene fam-
ily as the reference, which can be reconstructed by the con-
ventional methods.

Implementation
The algorithm implemented in the software SplitTester
begins with a multiple sequence alignment of a protein
family with known functional diversity (functional sub-
groups), defined here as a 'functional split'. Usually, a
functional split is based on a few but unknown diagnostic
amino acid residues or regions that are expected to be in
accordance with the functional split. If the functional sub-
groups are not consistent with the phylogenetic tree of the
gene family, we may, in retrospect, identify the sequence
region that may include amino acid residues crucial for
the sought-after function, if the clustering analysis of this
region shows the expected functional grouping. In the fol-
lowing we call this idea the split-clustering for simplicity.

Figure 1 illustrates the example for identifying reverse
transcriptase amino acid sequences responsible for prim-

ing with full or half-tRNAs. Different reverse transcriptases
are known to recognize either full length tRNA or tRNA
fragment (half-tRNA) as primers, which forms the basis of
the known functional split. However, the exact sequence
region that is responsible for the primer choice remains
unknown yet. The newly-developed method may be help-
ful to resolve this problem, using the split-clustering
approach. That is, by identifying windows of amino acid
residues that cluster reverse transcriptases to match the
known functional split, one may identify candidate
regions that are responsible for primer recognition
diversity.

We have developed a software package called SplitTester
(Fig. 2). The input file is the protein sequence alignments,
as generated by some conventional methods (e.g. Clus-
talX) [11]. The users should predefine the functional sub-
types, usually based on functional differences of proteins
that have been verified by the experimentation. In the cur-
rent version, the partitioning of sequences is limited to
two groups. In the case of multiple functional subtypes,
one may start with crude partitions and progressively
refining pairs of groups, or by comparing two groups pair-
wisely. The program uses the neighbor-joining (NJ)
method for phylogeny inference or split-clustering [12].
The user can select one of several amino acid substitution
distance matrices, including the mutation distance matrix,
the hydrophobic distance matrix, PAM10-500 and BLO-
SUM 30–100 [13,14]. Then, the split-clustering algorithm
implemented in SplitTester will generate tree-like topolo-
gies for each sliding windows along the aligned
sequences. The procedure is iterative and starts with very
small windows (i.e. three amino acid residues), which
slide along the length of the alignment. Window size grad-
ually increases until it reaches the full length of the
aligned proteins. All the examined windows are displayed
in an plot as part of the output interface. The horizontal
axis shows the position of sliding windows in the protein
alignment and the vertical axis indicates the length of slid-
ing windows. The tree-topology generated by the split-
clustering from each window is compared to the prede-
fined functional split. If it matches, this window is marked
as a line on the output plot at the corresponding position
and length.

The distance method (e.g. NJ, UPGMA) implemented in
most phylogenetic software normally uses the greedy
algorithm for efficiency and simplicity, but only tracks a
single locally best tree. Consequently, ignoring the alter-
native solutions can be misleading for phylogeny infer-
ence particularly when the sequence length is short
[15,16]. To improve the reliability of distance method,
there are some efforts to track multiple partial solutions as
it progresses [16]. Since split-clustering usually deals with
the short sequence length, we modified the conventional
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The algorithm for the tree-based method to identify protein functional domainsFigure 1
The algorithm for the tree-based method to identify protein functional domains. Multiple amino acid sequences 
alignment is used as an input file. Phylogenetic trees from different windows of the alignment are generated by the neighbor-
joining method. For each window, the program determines whether the tree from the local sequence (split cluster) matches a 
predefined functional split. If the split cluster is consistent with their functional split, the sequence window is a candidate for 
carrying out that function. The program is iterative and starts with very small windows (i.e. three amino acids), which gradually 
increase until the window size equals the length of the protein alignment.
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algorithm by tracking all possible topologies equally best
fitting the data. That is, at each step, the split-clustering
searches for the minimal distance pair, creating a list of
pairs with equally minimal distance, and then performs
the neighbor joining on each pair in order following a
depth-first search. Only the resulted unique topology trees
are saved for subsequent analyses. In the following we call
them NJ-equivalent tree topologies if it is inferred by the
NJ algorithm.

If the split-clustering analysis for a given window yields at
least one (NJ-equivalent) tree whose topology matches

the predefined functional split, we consider the window
containing a potential functional signal. In the case of
multiple NJ-equivalent trees, as explained above, the
strength of the functional signal, or the degree of confi-
dence, is measured by the percentage of NJ-equivalent
trees that support the functional split. We used different
colors to indicate the signal strength of the window: red
means that all (100%) these trees derived from this win-
dow split the genes according to the specified function;
yellow, green and blue indicate that 75%, 50% and 25%
of the trees match the functional split, respectively. A

A snapshot of the Split-Tester softwareFigure 2
A snapshot of the Split-Tester software. A distance matrix was selected to compute phylogenetic relationships of the 
aligned input sequence data. The regions of the alignment that support the functional split are then plotted in the top window. 
The X-axis represents the length of the aligned sequences; the Y-axis represents increasing window size. After the computa-
tion is complete, the user can select a specific window for analysis by clicking on the left end of colored horizontal bars. The 
colors indicate the degree of confidence that a given window supports the predefined functional split (red = 100%; yellow = 
75%; green = 50%; blue = 25%). The two panels on the lower right show all NJ equivalent trees generated from the selected 
window. The lower left window shows the actual sequences that support the predefined phylogenetic relationship within the 
selected window.
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color gradient is used to represent degrees of confidence
between the above intervals.

In the output plot, all the lines representing the candidate
windows can be selected to display the sequences within
this window and the corresponding phylogenetic trees in
two separate panels. The panels are updated in real time
with the progress of each window tested. While in theory
our algorithm could be quite time consuming to run
because of the potentially large number of individual NJ
operations (time increases quadratically with the length
of the alignment), in practice the calculation is very rea-
sonable, because the sequence length is typically small.
Our dataset (eight sequences each of 540 amino acid res-
idues) required approximately six minutes for analysis of
all possible windows using a Pentium 3 ~ 930 Mhz proc-
essor with 512MB RAM and the Microsoft Windows 2000
operating system. In practice, most domains will be iden-
tified when window sizes are smaller than 150 amino
acids. Therefore, 2–3 minutes of running time is expected
to be sufficient for most computers.

SplitTester is available as precompiled binary in a distribu-
tion package for Microsoft Windows from the following
URL: http://www.public.iastate.edu/~voytas/SplitTester,
and http://xgu.zool.iastate.edu/. Both a zip file of the
installation files and a self-extracting installer are availa-
ble. Documentation and example files are included in the
distribution packages.

Results and discussion
We applied SplitTester to understand functional diversity
among retroelement proteins for primer utilization by ret-
roelement reverse transcriptases. Reverse transcriptases of
retroviruses (Retroviridae), Metaviruses (Metaviridae) as
well as retrotransposons in the genus Pseudovirus (mem-
ber of Pseudoviridae family) use the 3' acceptor stem of the
host tRNA as a primer for DNA synthesis. This region pairs
with the retroelement RNA template to start DNA synthe-
sis from 3'-OH of the tRNA. Retrotransposons of the genus
Hemiviruses (member of Pseudoviridae family) use a half-
tRNA primer, and cDNA synthesis initiates from 3'-OH of
nucleotide 40, which resides within the anticodon stem-
loop. It is likely that the primer template complexes for
the two groups of elements have different structural con-
formations or properties, and that reverse transcriptases
from the different groups have evolved the ability to rec-
ognize these differences. The split-clustering imple-
mented by SplitTester could explore candidate domains of
reverse transcriptase related to primer selection. These
identified candidates provide testable hypotheses that
could be verified or falsified by the follow-up molecular
genetic experimentation.

We focused on members of the Pseudoviridae, which
include both half-tRNA priming elements (namely the
Hemiviruses: Ty5 (U19263), Osser (X69552), 1731
(X07656) and copia (M11240)) and elements that use full
length tRNAs (namely the Pseudoviruses: Ty1 (M18706),
Opie-2 (U68408), Tnt1 (X13777) and SIRE-1
(AF053008)) [17,18]. The NJ phylogenetic tree from full
length sequence alignment did not reflect the divergence
of the two functional subtypes (Fig. 4A) [10]. For exam-
ple, Osser and Tnt1 are the only two members of one clus-
ter and the bootstrap value is 74. The genes seem to be
clustered according to their hosts, e.g., 1731 and copia
from Drosophila, Ty5 and Ty1 from Saccharomyces
cerevisiae, as well as Osser, Tnt1, SIRE-1 and Opie-2 from
plants.

Two signal regions were identified by SplitTester when the
mutation distance matrix was used to compute the cost of
amino acid substitution and when gaps were considered
as potentially informative characters. In the aligned
amino acid sequence, the maximum windows showing
functional split in each non-overlapping region cover
positions 144–239 (region 1) and 269–314 (region 2)
(Fig. 3A). Using the hydrophobicity matrix, SplitTester also
identified these regions, as well as an extra region at the N-
terminus (amino acids 1–29, region 3). Each of signal
regions above is derived from the multiple overlapping
signal windows with gradually increased window length.
We chose 50 aa window (166–215) in region 1 and 32 aa
window (280–311) in region 2. Both windows are close
to the median window length with demonstrating high
bootstrapping values (Fig. 4C). In general, one may use
the median sized window for representing, because small
windows are statistically unstable while a too broad win-
dow will demolish the functional signal of the window.

We located the two windows identified by both matrices
within the HIV reverse transcriptase sequence, based on
the published protein sequence alignments of the reverse
transcriptase family by Xiong and Eickbush [19], and
mapped onto the crystal structure 1RTD [20] (Fig. 3B).
HIV reverse transcriptase p66 has a 'right hand' structure.
The 50 aa window (166–215) in region 1 from the align-
ment correspond to the "palm" of the protein (residues
167–210 in HIV reverse transcriptase) that encompasses
the polymerase active site wherein nucleotides are added
to the 3' end of the primer. The 32 aa window (280–311)
in region 2 corresponds to one α-helix in the 'thumb'
region of HIV reverse transcriptase (residues 267–297),
which directly contact the primer/template complex, as
determined by cross-linking experiments [21,22].

The region of β-sheets between the two identified
domains (240–268 in the retroelement reverse tran-
scriptase alignment) is called the primer grip and cross-
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Functional divergence in reverse transcriptaseFigure 3
Functional divergence in reverse transcriptase. (A) The SplitTester output for the reverse transcriptase dataset. Win-
dows supporting the functional split are shown as colored lines in the plot. The X-axis represents the length of the aligned 
sequences; the Y-axis represents increasing window size (see legend to Fig. 2 for additional detail). (B) The X-ray structure of 
the HIV reverse transcriptase/primer/template complex (1RTD). The reverse transcriptase protein is represented by the yel-
low strand. The two green regions are domains identified by SplitTester. All residue numbers correspond to HIV sequence posi-
tions in 1RTD. Residues 166–215 and 280–311 in the aligned retrotransposon sequences correspond to 167–210 and 267–297 
in the HIV 1RTD sequence, respectively.
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links to the 3'-OH group of the HIV primer, tRNAlys

[23,24]. We would speculate that primer grip is related to
the primer binding. However, this region is not identified
as determinant of primer specificity, indicating that the
ability of the primer grip to interact with the 3'-OH of the
primer will be a common feature of both full-and half-
tRNA priming retroelements. The two regions identified
by SplitTester surrounding the primer grip may play a role
in distinguishing primer conformation or length. The
results of SplitTester, therefore, can be well explained from
the reverse transcriptase crystal structure and supported by

experimental data. To further validate our findings, we
randomly partitioned the gene members into two groups
and reran the program. The candidate functional regions
were not identified using any of the partitions (data not
shown). We therefore conclude that the identified resi-
dues may separate the functional subtypes specifically.

The strength of functional signal vs. the evolutionary
background on the multiple windows of different length
(from 8–200) in the signal region 1 can be well illustrated
by the bootstrapping values (Fig. 4C). The right splitting

Phylogenetic relationship from the full length multiple sequence alignment and the predicted regionFigure 4
Phylogenetic relationship from the full length multiple sequence alignment and the predicted region. (A) NJ 
phylogeny (MEGA3.0 [32]) from the reverse transcriptase full length sequence alignments clusters the genes from the same 
host: Osser, Tnt1, SIRE-1 and Opie-2 are from plant host, while Copia and 1731 are from Drosophila. Ty1 and Ty5 are from Sac-
charomyces cerevisiae. (B) Split cluster from the window length of 50 aa (position 166–215) in the predicted region 1 supports 
the functional subtype split. (C) Functional signal (measured by the bootstrap of node β in panel B), as well as the evolutionary 
background (measured by the bootstrap of node α in panel A), plotted against the window size. In the window length less than 
90, the split-clustering supports the functional subtypes split and the bootstrap value reach the peak in window with length 
around 50 aa. A mixed topology is detected when window length is longer than 90 aa, measured by the bootstrap (γ) between 
two major subtrees. When more amino acid sites are included, the bootstrapping value converges to the node α in panel A.
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of the two functional groups in this region (29-90aa), as
predicted by SplitTester, showing a (local) maxima at the
window length of 50 residues. Interestingly, when the
window size is greater than 90, the topology by the split-
clustering is a random mixture between functional split
and evolutionary background; the bootstrapping value is
for the deepest two subtrees. Rather, with the increase of
the window length toward the window of full length
sequence, the topology converges to the evolutionary tree
as shown in Fig. 4A. Therefore, the region identified by
SplitTester is intuitively valid even though although the
bootstrapping (re-sampling) value is not very high. We
also observed the very similar pattern for region 2; the
highest bootstrap value in window with size of 32 aa
around the median length within the range of 8 to 46.

Because the SplitTester employs a heuristic algorithm to
decipher weak functional signal from the high level of
evolutionary background, its power would be limited by
several factors. If there are only a few amino acid residues
related to a given functional split, or these residues are
located in a broad sequence region, the statistical power
for detection is low, as we expected. One improvement for
SplitTester is to divide the proteins into several small
regions, for instance, based on the protein structure, or
motifs. Then one can implement some algorithms to inte-
grate weak signals from these non-overlapping small
regions, which otherwise are indistinguishable from the
background.

There are several other factors that may affect the perform-
ance of SplitTester. The first one is the choice of substitu-
tion matrices of proteins. We have provided several
options for the matrices. The user can select one of them
based on their purpose. In general, BLUSOM matrices
reflect the overall evolution history and hydrophobicity
matrix can reflect more on chemistry properties of amino
acids. Second, the inference power of this method might
increase with the difference between the functional split-
ting and phylogenetic tree because the signals are more
likely being distinguished from the background. Thus,
increasing the sample size, for instance, sequencing more
genes from different species is certainly helpful. Neverthe-
less, the example of reverse transcriptases we presented
here has indicated that one may obtain valuable func-
tional information even the difference between functional
splitting and phylogenetic tree is weak as indicated by the
bootstrap value.

There have been many methods developed to analyze
sequences involved in functional divergence between pro-
tein subtypes (e.g., [25,26,4]). Most of them are focused
on identifying specific residues contributing to the func-
tional differences of subtypes along the phylogeny.
Hence, the prediction accuracy may rely on the quality of

multi-alignments, the accuracy of phylogenetic inference,
or the sufficient number of sequences. Since the SplitTester
focus on a particular sequence region that supports the
subtype functional split, the predicted results seem not to
be strongly affected if a few positions are misaligned. We
validated this claim by deleting the position 166 in the
multiple sequence alignment, which contain conserved F
in Pseudovirus subfamily and A, V, E, T in each gene of
Hemevirus subfamily respectively. This position was
selected because it can be easily identified manually as
one of three "seeds" of the growing signal region (Fig. 3A).
Fortunately, SplitTester still identified the almost identical
region 1 as before only in overlapped shorter windows
(145–221) and (167–238) (data not shown). Similar
results were obtained when we deleted each of other two
"seeds" at position 184 (conserved K only in Pseudovirus
subfamily) and 207 (conserved A only in Hemivirus
subfamily).

Conclusion
SplitTester can explore regions potentially responsible for
functional divergence of proteins. The best scope of this
software is to study the dataset with different functional
clustering and phylogenetic tree. As shown by the case of
reverse transcriptase, function-related signals may emerge
when the functional split is inconsistent with the phyloge-
netic relationship of the protein family. Even if the func-
tional clustering is consistent with its phylogeny,
SplitTester may also provide some useful information for
amino acid residues important for functional divergence,
e.g., the conserved Myb gene family. In spite that the phy-
logeny is the same as the known functional split of Myb
genes, SplitTester still successfully identified 11 candidate
residues that differentiate the two-and three-repeat Myb
proteins, the major functional split of Myb gene family
[27], because the sequence window including these resi-
dues shows a stronger functional signal. Indeed, these
identified candidate residues are well supported by their
locations on the NMR structure of the mouse c-Myb DNA
binding domain 1MSF [28]. Moreover, these residues are
called by type-II functional divergence by [29], which can
also be predicted by the "Evolution Trace" method [30].
See additional files 1 and 2 for the detail. Finally, we men-
tion that, after combining SplitTester with other comple-
mentary methods, such as the method of [25], "Evolution
Trace" method [30], "Phylogenetic Inference" by Sjolan-
der [31], Diverge [5], we can develop a powerful analysis
pipeline for predicting functional divergence from
sequence domains to amino acid residues.

In summary, we developed SplitTester – a tool for explor-
ing the functional domains in protein family. SplitTester
focus on a specific type of functional divergence: the func-
tional split is different from the evolutionary relationship.
Using the split-clustering algorithm, SplitTester scans all
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the possible local regions of protein sequence alignment
to identify the domain that provide the same clustering
topology as the functional split. In the analysis of retroe-
lements reverse transcriptase family, we identified the
regions splitting this family according to the primer spe-
cificity, implying function in the primer selection. The
functional role can be well explained after we map the
identified domain onto the structure of the reverse tran-
scriptase protein.

Availability and requirements
• project name: SplitTester

• Project home page:http://www.public.iastate.edu/~voy
tas/SplitTester/

http://xgu.zool.iastate.edu/software.html

• Operating system(s): windows 2000 and XP

• Programming language: C
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