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Abstract
Background: A typical microarray experiment has many sources of variation which can be
attributed to biological and technical causes. Identifying sources of variation and assessing their
magnitude, among other factors, are important for optimal experimental design. The objectives of
this study were: (1) to estimate relative magnitudes of different sources of variation and (2) to
evaluate agreement between biological and technical replicates.

Results: We performed a microarray experiment using a total of 24 Affymetrix GeneChip® arrays.
The study included 4th mammary gland samples from eight 21-day-old Sprague Dawley CD female
rats exposed to genistein (soy isoflavone). RNA samples from each rat were split to assess variation
arising at labeling and hybridization steps. A general linear model was used to estimate variance
components. Pearson correlations were computed to evaluate agreement between technical and
biological replicates.

Conclusion: The greatest source of variation was biological variation, followed by residual error,
and finally variation due to labeling when *.cel files were processed with dChip and RMA image
processing algorithms. When MAS 5.0 or GCRMA-EB were used, the greatest source of variation
was residual error, followed by biology and labeling. Correlations between technical replicates
were consistently higher than between biological replicates.

Background
Microarray chips are a powerful technology capable of
measuring expression levels of thousands of genes simul-
taneously. Expression profiling has led to dramatic
advances in the understanding of cellular processes at the
molecular level, which may lead to improvements in

molecular diagnostics and personalized medicine [1]. The
number of experiments involving microarrays grows
nearly exponentially each year [2]. Several platforms are
currently available, including the commonly used short
oligonucleotide-based Affymetrix GeneChip® arrays,
which utilize multiple probes for each gene and

Published: 29 August 2005

BMC Bioinformatics 2005, 6:214 doi:10.1186/1471-2105-6-214

Received: 19 April 2005
Accepted: 29 August 2005

This article is available from: http://www.biomedcentral.com/1471-2105/6/214

© 2005 Zakharkin et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/6/214
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16124883
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2005, 6:214 http://www.biomedcentral.com/1471-2105/6/214
automated control of the experimental process from
hybridization to quantification. Although microarrays
have tremendous potential, great effort and care is
required in planning and designing microarray experi-
ments, analyzing gene expression data, and interpreting
results [3-6].

A typical microarray experiment has many different
sources of variation which can be attributed to biological
and technical causes [4]. Biological variation results from
tissue heterogeneity, genetic polymorphism, and changes
in mRNA levels within cells and among individuals due to
sex, age, race, genotype-environment interactions and
other factors [7-10]. Biological variation reflects true vari-
ation among experimental units (i.e. individual mice, rats,
tissue samples, etc.) and is of interest to investigators.
However, preparation of samples, labeling, hybridization,
and other steps of microarray experiment can contribute
to technical variation, which can significantly impact the
quality of array data [11-16]. To ensure highly reproduci-
ble microarray data, technical variation should be mini-
mized by controlling the quality of the RNA samples, and
by efficient labeling and hybridization [17].

Identifying sources of experimental variation and assess-
ing their magnitude are important for optimal experimen-
tal design, as for example, in the planning of mRNA
pooling in microarray experiments [18]. Similarly, this
information is useful for estimating the optimal number

of required technical replicates because measurement
accuracy and reliability affect researchers' power to iden-
tify differentially expressed genes [19]. However, other
considerations, such as the goals of the study, the features
of a particular microarray platform, or the cost of arrays
and samples may influence experimental design [4-6].
Several studies have been conducted to examine the rela-
tive contributions of various factors in different experi-
mental settings [7-15]. Here, we estimated the relative
magnitudes of sources of variation in experiments involv-
ing Affymetrix GeneChip® arrays and evaluated agreement
between biological and technical replicates.

Results
Experimental design
The experiment was set up as described in Materials and
Methods (see Figure 1). Source *.cel data files from 24
GeneChip® arrays were subjected to image processing by
four popular methods for probe-level data implemented
in BioConductor [20]: DNA Chip Analyzer (dChip) [21],
MAS 5.0 [22], RMA [23], and GCRMA-EB [24].

Variance components estimation
For each probe set, expression levels were modeled as fol-

lows: yg = µg + Bg + L(B)g + εg, where Bg ~ N(0, ) is the
effect of biological variation among experimental units;

L(B)g ~ N(0, ) is the effect of labeling nested within

Experimental designFigure 1
Experimental design. The scheme of hierarchical unbalanced design used in our experiment is shown. A total of 8 rats and 
24 chips were used.
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biological replications; and, εg ~ N(0, ) is the residual
error. It should be noted that in our case biological varia-
tion could be confounded by technical variation arising
during tissue isolation and preparation of mRNA samples.
Dobbin et al., 2005, found that variation at this stage of
microarray processing was small compared to variation at
the hybridization step [25]. The model was fit separately
on the gene expression measurements of each of dChip,
MAS 5.0, RMA and GCRMA-EB probe set summaries.
Both the effects of biological replication and the labeling
effect nested within biological cases were treated as ran-
dom. We estimated variance components and applied
shrinkage variance estimators to them. These shrunken
estimators borrow information across genes and have
been shown to improve statistical tests [26]. Figure 2
shows the density plots of the distributions of relative
magnitudes of different sources of variation. The results
indicated that for most of the genes, the biggest source of
variation was biological when using dChip and RMA,
whereas the biggest source of variation was residual error
when using GCRMA-EB or MAS 5.0. For all algorithms, a
significant number of probe sets had biological and labe-
ling variance components estimates equal or very close to
zero. The findings are summarized in Table 1.

Assessment of reproducibility
We investigated agreement between technical replicates
and biological replicates using Pearson correlations
between chips. The correlations for the following three
groups were compared: (1) Correlations between two
technical replicates at the hybridization stage within a
biological replicate (i.e., chips i_2A vs. i_2B; total of 8 cor-
relations); (2) Correlations between two technical repli-
cates at the labeling stage within a biological replicate (i.e.
chips i_1 vs. i_2A and i_1 vs. i_2B; total of 16 correla-
tions); (3) Correlations between different biological repli-
cates (all possible pairwise comparisons; total of 252
correlations). Results indicated that technical replicates at
the hybridization step agree more closely (i.e. have con-
sistently higher correlations) either than technical repli-
cates at the labeling stage or than different biological
replicates (Figure 3). This finding can be illustrated using
scatter plots: regardless of the image processing method,
technical replicates of the same biological replicate (Fig-
ure 4) show less dispersion than data from different ani-
mals (Figure 5).

The reproducibility at the hybridization stage was assessed
by testing the significance of the differences between
expression levels of technical replicates at the hybridiza-
tion step using a paired t-test analysis as described in
Material and Methods. Briefly, for each probe set we tested
the hypothesis that a difference in expression levels
between two technical replicates (i.e., between i_2A and
i_2B chips) is equal to zero. A total of 15,923 paired t-tests

were conducted and 15,923 p-values obtained for each
image processing algorithm. The distribution of p-values
was modeled using a mixture model approach [27].
Under a global null hypothesis, there are no differentially
expressed genes and distribution of p-values is expected to
be uniform on [0, 1]. If some genes are truly differentially
expressed, we expect an increased number of small p-val-
ues (near 0). Distributions of p-values for the data
obtained by four image processing methods are presented
on Figure 5. By fitting the mixture of two beta distribu-
tions, one can estimate proportion of differentially
expressed genes. We obtained the following estimates:
dChip – 10.8%; MAS 5.0 – 4.8%; RMA – 2.3%, and
GCRMA-EB – 13.6%. Thus, at the nominal α-level 0.05,
the number of differentially expressed genes was smaller
than expected by chance when data were processed with
MAS 5.0 or RMA, but above the nominal α-level when
data was processed with dChip or GCRMA-EB.

Discussion
Using Affymetrix GeneArray® chips, we examined the rela-
tive magnitudes of different sources of variation in micro-
array experiment. Analysis of variance using mixed-effects
linear models is a common way to account for and test the
significance of various factors contributing to overall var-
iation [3]. Due to limitations of our hierarchical unbal-
anced experimental design and relatively small number of
degrees of freedom, we did not include factors that can
potentially contribute to variation such as day of process-
ing, scanning order, mRNA preparation, etc. We assume
that such factors were not significant. However, to for-
mally test this assumption, another experiment is needed.

We used a general linear model to partition variance for
each probe set into three components. The first source was
biological (i.e. animal-to-animal) variation. The biologi-
cal variation may be confounded by technical variation at
the mRNA preparation step, but this variation is probably
relatively small compared to variation at the hybridiza-
tion step [25]. Thus, we assume that most of the variation
for this effect was due to true biological differences among
animals. The second source of variation was the effect of
labeling. Although our experiments were carried out by
the same person, using the same equipment, under the
same experimental conditions as much as realistically
possible, there is always some variation caused by minor
environmental differences in temperature, duration,
pipetting etc., which influences labeling efficiency. The
third source of variation other than animal-to-animal var-
iation and labeling-effect variation was residual error
caused by differences in hybridization, scanning and
other factors. To compare the relative magnitudes of dif-
ferent sources of variation, we estimated variance compo-
nents and applied shrunken variance estimators that
borrow information across genes. We constructed these
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Density plots of different sources of variationFigure 2
Density plots of different sources of variation. Density plots of relative magnitudes of different sources of variation are 
shown for data analyzed with four image processing algorithms. The proportions of different variance components are shown 
on x-axis and frequencies of probe sets are shown on y-axis.
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shrunken variance estimators by shrinking a group of
individual variance estimators toward their common cor-
rected geometric mean [26]. The amount of shrinkage
depends on the variation on the individual variance com-
ponents estimators. These estimators were shown to be

robust in respect to variance heterogeneity in gene expres-
sion data among groups [26].

We found that our results depend on the image processing
algorithm used: biological variation was the largest source

Table 1: Proportions of different sources of variation

Source dChip MAS 5.0 RMA GCRMA-EB
Mean SD Mean SD Mean SD Mean SD

Biological variation 0.431 0.304 0.292 0.300 0.393 0.306 0.310 0.292
Labeling variation 0.206 0.230 0.136 0.198 0.221 0.224 0.147 0.192
Residual error 0.363 0.274 0.572 0.311 0.386 0.272 0.543 0.298

Boxplots of pairwise correlations between chipsFigure 3
Boxplots of pairwise correlations between chips. Box plots of Pearson correlations between technical replicates at the 
hybridization step (Hybr; i_2A vs. i_2B chips, where i is biological replicate), labeling step (Label; i_1 vs. i_2A and i_1 vs i_2B 
chips), and between different biological replicates (Bio; all pairwise combinations) are shown for four image processing algo-
rithms (dChip, MAS 5.0, RMA, GCRMA-EB). Technical replicates have consistently higher correlations than different biological 
replicates.
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when dChip or RMA were used, but when *.cel files were
processed with GCRMA-EB or MAS 5.0, the largest source
was residual error. Bakay et al., 2002, found that
biological variation presumably caused by tissue hetero-

geneity and genetic polymorphism was a major source of
variation while technical variation was minor [12]. Han et
al., 2004, found that biological variation was about of the
same size as other sources combined [14]. Whitney et al.,

Comparison of two technical replicates of the same biological replicate using different image processing techniquesFigure 4
Comparison of two technical replicates of the same biological replicate using different image processing tech-
niques. Expression levels detected on the 1_2A chip (x-axis) are plotted against levels detected on the 1_2B chip (y-axis). 
Results obtained with different image processing algorithms are shown. dChip and MAS 5.0 are shown on the log scale for 
compatibility with RMA and GCRMA-EB. Good agreement between two chips will result in data grouped along the identity 
line, while lack of agreement will lead to dispersion.
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2003, found that inter-individual variation in gene expres-
sion profiles was correlated with gender, age, and the time
of day at which the sample was taken. These intrinsic dif-

ferences in expression patterns were likely caused by dif-
ferences in genotype, although they might also reflect
epigenetic or environmental factors [9]. Oleksiak et al.,

Comparison of two different biological replicates using different image processing techniquesFigure 5
Comparison of two different biological replicates using different image processing techniques. Expression levels 
detected on the 1_2A chip (x-axis) are plotted against levels detected on the 6_1 chip (B) (y-axis). Results obtained with differ-
ent image processing algorithms are shown. dChip and MAS 5.0 are shown on the log scale for compatibility with RMA and 
GCRMA-EB. Good agreement between two chips will result in data grouped along the identity line, while lack of agreement 
will lead to dispersion.
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2002, in their studies of teleost fish have observed signifi-
cant differences in gene expression levels between individ-
uals from the same population and between different
populations. These differences could be caused by genetic
variation as well as other factors, including maternal
effects and genotype-environment interactions [10]. On
the contrary, Dumur et al., 2004, found that day-to day
variation was the main source of variation [17]. Woo et
al., 2004, in studies of inbred mice strains, detected that
most of the genes had small biological variance, but about
10% of genes showed large variation between individuals
[28].

We found that technical replicates within a biological rep-
licate had higher and more consistent correlations with
each other than with other biological replicates. Gener-
ally, our correlations were higher than those observed by
Dobbin et al., 2005, for interlaboratory correlations
between tumor samples [25] and were compatible with
values for in-lab correlations obtained in another study
[29].

The consistency of the hybridization step was evaluated
using paired t-tests following by modeling of distribution
of resulting p-values. The significance depends on the
image processing algorithm used: the hybridization effect
was not significant for MAS 5.0 (4.8% of genes were dif-
ferentially expressed between two technical replicates)
and RMA (2.3% of genes), but the proportion of differen-
tially expressed genes was higher than expected by chance
for dChip (10.8% of genes) and GCRMA-EB (13.6% of
genes).

The low-level data were analyzed using four popular
methods implemented in the BioConductor [20] package:
dChip [21], MAS 5.0 [22], RMA [23], and GCRMA-EB
[24]. We found that different low-level data processing
algorithms produced different results. We provide com-
parisons mainly to illustrate the compatibility of several
algorithms. Evaluation of the strengths and weaknesses of
different image processing algorithms may require other
experimental settings, such as spike-in data. Shedden et
al., 2005, performed a comprehensive comparison of
seven image processing methods for Affymetrix arrays and
demonstrated that the choice of image processing algo-
rithm has a major impact on the results of microarray data
analysis [30]. The authors found that the dChip method
operates consistently well, while MAS 5.0 and GCRMA-EB
consistently performed poorly. GCRMA-EB had a particu-
lar disagreement with other methods when a t-test was
used for group comparison, presumably because it might
be more sensitive to the underlying statistical
assumptions of a test (e.g. independence of genes). Simi-
larly, we observed that estimates of the proportion of dif-
ferentially expressed genes between two technical

replicates at the hybridization stage were different than
those for data processed with GCRMA-EB compared to
other methods, which is consistent with finding of Shed-
den et al. [30].

The results presented here are specific for the systems
being studied, and other experimental conditions may
yield different estimates. For example, we used an outbred
strain of rats, which had greater inherent biological varia-
tion than inbred strains. In cell cultures of inbred mice
strains under otherwise equal conditions, the relative
magnitude of biological variation presumably would be
smaller. Different steps in microarray data analysis, such
as normalization, transformation, and gene filtering, may
affect results as well [31-35]. A microarray platform and
microarray facility can also have a significant impact, as
was demonstrated in several recent studies [25,36-38].
Testing the influence of these various factors could be an
interesting topic of future research.

Conclusion
Identification of sources of variation and their relative
magnitudes, among other factors, is important for opti-
mal experimental design and the development of quality
control procedures. In this study, we evaluated the relative
magnitudes of different sources of variation in Affymetrix
microarray experiments. Different image processing algo-
rithms gave different variance components estimates: the
greatest source was animal-to-animal (i.e. biological) var-
iation when dChip and RMA were used, and residual error
when MAS 5.0 or GCRMA-EB were used. We observed that
correlations between technical replicates within one bio-
logical replicate were consistently higher than between
different biological replicates. It should be noted that
estimates obtained here were specific for our experimental
system, and results would probably change if we used
another organism or tissue, or another microarray
platform.

Methods
Samples and microarrays
This study included samples taken from eight 21-day-old
Sprague Dawley CD female rats exposed to genistein (a soy
isoflavone) via their mother's milk. The mothers were fed
AIN-76A diet supplemented with 200 mg genistein / kg
chow. Young rats were sacrificed at day 21 and the 4th

mammary glands extracted and flash-frozen in liquid
nitrogen within 3 minutes of ex-sanguination. Samples
were frozen at -70°C for approximately 90 days, at which
point the extraneous fat was dissected off and samples
processed in Trizol RNA extraction buffer. Total RNA was
generated using Affymetrix RNA extraction and labeling
kits according to manufacturer's protocols, and each of
the RNA samples was split in half. The first half was
labeled and run on a RAE 230A Affymetrix GeneChip®,
Page 8 of 11
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and the other half was labeled, split, and run across two
RAE 230A chips (see Figure 1). Affymetrix arrays were run
in the Genomics Core facility of the Heflin Center for
Human Genetics at the University of Alabama at Birming-
ham. Images were scanned on a HP 2500 scanner.

Image processing
Each of the low-level *.cel data files was processed using
four popular image analysis algorithms: DNA Chip Ana-
lyzer (dChip) [21], MAS 5.0 [22], RMA [23], and GCRMA-
EB [24]. The processing was done in R 1.8.1 / R 1.9.1 [39].
The default settings for all normalization procedures were
used as implemented in the BioConductor [20]; in partic-
ular, the scale normalization for MAS 5.0; the quantile-

Distributions of p-values for the paired t-test for hybridization effectFigure 6
Distributions of p-values for the paired t-test for hybridization effect. Histograms of p-values for four image process-
ing algorithms. If the global null hypothesis is true, the distribution of p-values would be uniform from 0 to 1 (dotted line). If dif-
ferentially expressed genes are present, the number of small p-values will be increased.
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quantile normalization for RMA; the invariant-set nor-
malization for dChip; and the quantile-quantile normali-
zation for GCRMA-EB (see [35] for the details of the
different normalization methods). The default implemen-
tation of dChip, RMA, and GCRMA-EB used only the PM
(perfect match) intensity matrix, while MAS 5.0 by default
used both PM and MM (mismatch) matrices.

Evaluation of relative magnitudes of different sources of 
variation
The relative magnitudes of different sources of variation
were estimated using a general linear model in PROC
VARCOMP procedure of SAS 9.1 (SAS Institute Inc., Cary,
NC) using REML option. The expression levels of each
probe set, yg, were modeled as follows: yg = µg + Bg + L(B)g

+ εg, where Bg ~ N(0, ) is the effect of biological varia-

tion among experimental units; L(B)g ~ N(0, ) is the
effect of labeling variation nested within biological repli-

cations; and εg ~ N(0, ) is the residual error, i.e. techni-
cal variation caused by factors other than labeling.
Biological effect could be confounded by technical varia-
tion arising during mRNA sample preparation. For each
probe set, variance components were estimated. We
applied shrinkage variance estimators that borrow infor-
mation across probe sets and improve individual variance
estimators by shrinking them toward their corrected geo-
metric mean [26]. The total variance was assumed to be
the sum of three components: VARTot = VARBio + VARLabel +
VARResidual, where VARBio is the shrunken estimate of bio-
logical variance; VARLabel is the shrunken estimate of vari-
ance due to labeling; and VARResidual is the shrunken
variance estimate of residual error. The relative proportion
of each source of variation was calculated as a ratio of the
shrunken variance estimate to the sum of all three

shrunken variance estimates:, i.e.  calcu-

lates the proportion of biological variation,

 calculates the proportion of variation

due to labeling within biological replicates, and

 calculates the proportion of varia-

tion due to unaccounted technical variation (residual
error).

Assessment of reproducibility across different replicates
Pearson correlations between chips were calculated for the
following three groups: (1) Correlations between two
technical replicates at the hybridization step (i.e., chips
i_2A vs. i_2B; total of 8 correlations); (2) Correlations

between two technical replicates at the labeling step (i.e.
chips i_1 vs. i_2A and i_1 vs. i_2B; total of 16 correla-
tions); (3) Correlations between different biological repli-
cates (all possible pairwise comparisons; total of 252
correlations).

To evaluate the significance of variation introduced at the
hybridization step, paired t-tests were performed on 16
chips (i_2A and i_2B chips from each of 8 separate rats).
For each probe set, the null hypothesis was that the differ-
ence between the expression levels of two replicates was
equal to zero. A total of 15,923 t-tests were performed and
15,923 p-values were generated for each image processing
algorithm. The distribution of resulting p-values was
modeled using a mixture of two beta distributions [24]. If
the global null hypothesis is true, there are no differen-
tially expressed genes and the distribution of p-values is
expected to be uniform [0, 1]. We expect an increased
number of p-values close to 0 if some genes are truly dif-
ferentially expressed. By fitting the mixture of two beta
distributions, one can estimate a proportion of differen-
tially expressed genes. At the nominal α-level 0.05, one
expects 5% of genes to be differentially expressed just by
chance. Thus, the differences between replicates were
considered significant only if the proportion of differen-
tially expressed genes was > 5%.
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