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Abstract
Background: Improvements in protein sequence annotation and an increase in the number of
annotated protein databases has fueled development of an increasing number of software tools to
predict secreted proteins. Six software programs capable of high throughput and employing a wide
range of prediction methods, SignalP 3.0, SignalP 2.0, TargetP 1.01, PrediSi, Phobius, and ProtComp
6.0, are evaluated.

Results: Prediction accuracies were evaluated using 372 unbiased, eukaryotic, SwissProt protein
sequences. TargetP, SignalP 3.0 maximum S-score and SignalP 3.0 D-score were the most accurate
single scores (90–91% accurate). The combination of a positive TargetP prediction, SignalP 2.0
maximum Y-score, and SignalP 3.0 maximum S-score increased accuracy by six percent.

Conclusion: Single predictive scores could be highly accurate, but almost all accuracies were
slightly less than those reported by program authors. Predictive accuracy could be substantially
improved by combining scores from multiple methods into a single composite prediction.

Background
Predicting secreted proteins from primary sequence is a
major component of automated protein annotation and
is critical to a wide range of studies. Embryology, tumor
maker detection, and agricultural animal performance are
investigated using eukaryotic secreted proteins and their
role in cell-to-cell communication, cellular differentia-
tion, morphological development, and cellular response
to disease. Many software tools have been developed for
ab initio cellular localization prediction, using machine
learning techniques such as neural networks, hidden
Markov models and support vector machines. Identifying
the program best suited for a researcher's needs requires
familiarity with several different programs. Prediction
accuracy depends on the methods employed by a program
and the integrity of the data used to develop the program.

Additionally, unbiased comparison using an independent
protein sequence set is needed to compare programs, as
system characteristics reported by program authors are
often inflated [1].

The ambiguity of terminology used to describe and label
secreted proteins often results in confusion on just what
type of protein is being predicted or discussed. To elimi-
nate this confusion, biologically concrete labels will be
used in lieu of the term "secreted protein" or "secretory
protein", here. Proteins possessing an N-terminal signal
sequence and entering the classical secretory pathway via
the endoplasmic reticulum, will be called CoTranslation-
ally Translocated (CTT) proteins. Proteins transported out
of the cell (regardless of mechanism) will be called extra-
cellular proteins, proteins exported through the CTT
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pathway will be called classical extracellular proteins, and
proteins exported by other mechanisms will be called
non-classical extracellular proteins.

Most prediction programs predict CTT (not extracellular)
proteins by identifying an N-terminal signal sequence, a
signal sequence cleavage site, or a combination of both
features, in a target sequence. New programs try to
improve this approach through refinements in the
sequence data used for program development and the
application of new decision making algorithms to the
problem. Novel methods, including predictions based on
base composition across the entire protein sequence,
identifying localization specific protein domains, homol-
ogy to annotated protein databases, and mining partial
protein annotations for key words, are also being used.
Though programs that predict signal sequences often also
predict signal sequence cleavage sites, we here focus on
the former, since the latter has been recently reviewed [2].
We also focus on prediction of eukaryotic signals; the
prokaryotic signal pathway has been recently reviewed
[3].

Here, six programs, selected for their applicability for high
throughput analysis, are described, and their ability to
predict CTT proteins in eukaryotic proteins, are evaluated:
SignalP 3.0 [4], SignalP 2.0 [5], TargetP 1.01 [6], PrediSi
[7], Phobius [8], and ProtComp 6.0 [9]. SignalP 3.0, Pho-
bius, PrediSi, and ProtComp 6.0 are recently released and
have not been extensively reviewed nor independently
compared. TargetP 1.01 and SignalP 2.0 are older pro-
grams, previously demonstrated to have high accuracy;
they provide a basis for comparing our results with other
studies [1,10-12].

Prediction programs
SignalP versions 2.0 and 3.0 both use Neural Networks
(NN) and Hidden Markov Models (HMM) to predict CTT
proteins, through the analysis of protein sequence N-ter-
mini. These programs are among the most accurate meth-
ods for CTT protein prediction [1,10,11] and the
programs' HMMs have an uncommon ability to discrimi-
nate N-terminal signal peptides from N-terminal signal
anchors. SignalP 2.0 neural networks were trained using
N-terminal subsequences containing CTT signal peptides
and subsequent 30 residue of the mature peptides of 1137
eukaryotic CTT proteins and 70 residue N-terminal subse-
quences of 1451 eukaryotic non-CTT proteins, abstracted
from SwissProt 35.0. SignalP 2.0 outputs four predictors
computed by independent neural networks and two pre-
dictors computed by the Hidden Markov Models. NN out-
puts include the position and probability of the residue
most likely to belong to a signal peptide (S-score max),
the average probability all residue analyzed belong to a
signal peptide (S-score mean), the position and probabil-

ity of the residue most likely to be the first N-terminal res-
idue of the mature peptide (C-score max), and a geometric
average of the C-score and smoothed derivative of the S-
score (Y-score). For each predictor a Boolean flag denot-
ing CTT or non-CTT protein is returned, along with a com-
posite neural network prediction which identifies CTT
proteins in sequences which possess a high average S-
score from the first N-terminal residue to the residue with
the maximum Y-score, followed by a predicted cleavage
site.

SignalP uses two HMM's, one that models the CTT signal
peptide and a second that models a signal anchor. An N-
terminal signal peptide is a short polypeptide (average
length 20–25 residues), has no strongly conserved
sequence motifs, but has three distinct sequential regions,
the n (N-terminal)-region, the h (hydrophobic)-region,
and the c (C-terminal)-region [13,14]. The signal peptide
model contains submodels that describe each of these
three regions. The signal anchor model contains two sub-
models that represent its n-region and h-region. In the sig-
nal peptide model, the h-region is limited to between six
and twenty residues, the n-region must have at least one
residue (and start with a methionine), and the c-region
must have at least three residues. The n-region and c-
region contain self-cyclic states with exponentially decay-
ing transitions. This type of transition state allows the
model to fit signal peptides possessing n-regions and c-
regions with variable lengths, while still constraining the
system, preventing unusually long region lengths, and
thereby encapsulating the known properties of these
regions. In the signal anchor module, the architecture of
the n-region is the same, but the h-region also possesses a
self-cyclic, exponentially decaying, transition state. The
HMM outputs the position and score of the residue with
the maximum C-score and a mean S-score for the entire
sequence analyzed. In addition, Boolean flags for both
predictors and a composite predictor characterizing the
analyzed sequence as CTT, signal anchor, or other, are also
output [5,15].

SignalP 3.0 possesses updated neural network architec-
ture, new selection criteria for training sequences, and a
composite score for signal peptide prediction. The neural
networks were modified to include input nodes for
sequence composition characteristics. Also, a symmetric
sliding window of size 27 for signal peptide prediction
and an asymmetric window of size 24 for cleavage site
prediction were implemented after an exhaustive analysis
of 27,000 neural networks determined these non-uniform
window sizes provided the best performance. The net-
works were retrained using protein sequences from Swiss-
Prot 40.0, which were filtered to remove sequences likely
to be mis-annotated. The new filtering process limited
eukaryotic training data to sequences containing an
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alanine, cysteine, glycine, leucine, proline, glutamine, ser-
ine, or threonine at the first position upstream of the
annotated cleavage site [4]. Additionally, ProP [16] pre-
dictions were used to identify and remove ten sequences
likely to contain mis-annotated signal peptide cleavage
sites. Finally, the D-score, computed from the mean S-
score and the maximum Y-score, was added, thereby
incorporating data from cleavage site predictions into the
signal peptide predictions and improving their accuracy
[4].

SignalP 2.0 and SignalP 3.0 were evaluated and compared
by the program authors using five-fold cross-validation.
Overall, version 3.0 outperformed version 2.0 in cleavage
site predictions and signal peptide presence predictions.
Internal testing showed SignalP 3.0 NN and HMM differ-
entiated CTT proteins from non-CTT proteins with 98%
and 94% accuracy, respectively, and SignalP 2.0 NN and
HMM differentiated these proteins with 97% and 94%
accuracy, respectively. Accuracy was assessed for the anal-
ysis of the first 70 N-terminal residues of target proteins
and accuracy may decrease if more residues are analyzed.

TargetP differs from the SignalP software by predicting
CTT (SP) and mitochondrial (mTP) or chloroplastic (cTP)
proteins through the analysis of N-terminal sequence
data. The program has a two-layer architecture; the first
layer uses independently-trained networks to predict SP,
mTP, or cTP localization, and the second layer integrates
first layer outputs into a final prediction. Non-redundant,
equal size, sequence sets from SwissProt release 36 (for
plants) and release 37 (for non-plants) were used to train
the networks. cTP cleavage site predictions are performed
using the methods implemented in ChloroP [17], SP
cleavage site predictions are performed using the methods
implemented in SignalP [15], and mTP cleavage site pre-
dictions are made with a motif identifying matrix. Both
the overall prediction and individual numeric scores from
each network are output. TargetP also assigns a reliability
class (RC) to each prediction based on the difference
between the highest scoring prediction and the second
highest scoring prediction. TargetP was tested using cross-
validation and shown to correctly predict CTT localization
with 92% accuracy, 92% specificity and 95% sensitivity,
in non-plant sequences. When compared to PSORT
[18,19], MitoProt [20,21], ChloroP and SignalP, TargetP
CTT predictions in non-plants had a higher specificity
than PSORT and a higher sensitivity than SignalP [6].

PrediSi predicts CTT proteins through the analysis of N-
terminal sequence data by positional weighted matrices.
Matrices were developed for the n-region, h-region, and c-
region of the signal peptide using 2,783 eukaryotic, 557
Gram-negative, and 236 Gram-positive CTT proteins and
5,547 eukaryotic, 2,013 Gram-negative, and 1,077 Gram-

positive control sequences (cytoplasmic and nuclear),
obtained from SwissProt 42.9. The resulting amino acid
frequency values were corrected to account for baseline
proteome levels. PrediSi outputs a single numeric score,
predicted cleavage site and Boolean flag denoting CTT sig-
nal peptide presence or absence. Self-consistency testing
correctly identified 72.66% of eukaryotic CTT proteins
and correctly excluded 98.31% of control proteins. Pre-
diSi was outperformed by SignalP-NN and SignalP-HMM
in eukaryotic and Gram-negative predictions, but dis-
played improved performance in Gram-positive predic-
tions. PrediSi is designed for extremely fast analysis and is
well suited for high throughput processing. These valua-
ble characteristics were achieved at the cost of slightly
reduced accuracy [7].

Phobius predicts CTT proteins using Hidden Markov
Models to analyze full-length protein sequences. The pro-
gram also predicts transmembrane domains and is
designed to differentiate N-terminal transmembrane
domains from CTT signal peptides. The HMMs were
trained using 146 sequences from the TMHMM dataset
[22], 140 sequences from TMPDB [23], 2 sequences from
the Moller dataset [24], and 4 TM sequences from SWISS-
PROT. These sequences were divided into TM-only and
TM-and-SP sequence sets. Additionally, SP-only and not-
TM-not-SP sequence sets were created using SWISS-PROT
41.0 proteins. Phobius outputs a Boolean flag denoting
the presence or absence of a CTT signal peptide, the
number of transmembrane domains predicted and a posi-
tion labeled protein orientation schematic. In ten-fold
cross-validation testing, Phobius correctly predicted
91.1% of TM-and-SP sequences, 63.6% of TM-only
sequences, 96.1% of SP-only sequences and 98.2% of not-
TM-not-SP sequences. In comparisons to other programs,
Phobius out performed TMHMM, HMMTOP, TMHMM –
SignalP combination, and HMMTOP-SignalP combina-
tion predicting TM-and-SP sequences, while being outper-
formed by HMMTOP and TMHMM predicting TM-only
sequences. None of the software's options which allow
users to constrain predictions based using known infor-
mation about the presence of CTT signal peptides and TM
domains or use a homology modeling component to per-
form BLAST comparisons against NCBI's nr database,
were used for the testing described here [8].

ProtComp 6.0, from Softberry, Inc., predicts protein local-
ization, including extracellular proteins, using a combina-
tion of neural networks and sequence homology.
Sequences are assigned localization through homology to
experimentally and theoretically annotated databases,
neural network predictions and pentamer distribution
comparisons to the homology databases. Softberry
reports 86% correct prediction of extracellular proteins as
tested with approximately 200 extracellular proteins. In
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this study, only ProtComp neural network predictions
were evaluated [9].

Results
Individual predictions
CTT signal peptide predictive accuracies for individual
predictive scores are shown in Table 1. Based on Mat-
thew's Correlation Coefficient (MCC) [25,26], SignalP 3.0
D-score was the most accurate predictor, closely followed
by the SignalP 3.0 maximum S-score and the TargetP pre-
diction. The most sensitive predictors were the SignalP 2.0
neural network Mean S-score and Hidden Markov Model
S-probability score. The maximum prediction specificity
was obtained using the SignalP 2.0 HMM maximum C-
score predictor.

Combined predictions
The combinatorial analysis examined 14,892 unique pre-
dictor combinations; for each combination, all program
performance measures were calculated. A maximum MCC
value of 97% was obtained in 58 different score combina-
tions. The t-score for the highest MCC value associated
with the combinatorial prediction method (0.97) is ts =
76.8, corresponding to a significance level well below
0.05%. The Fisher's Z-transformation testing the signifi-
cance between the combinatorial correlation (0.97) and
the best correlation arising from a single prediction score
(0.91) returned a p ≤ 1.72 e-14. These results support the
significance of the reported finding.

The minimum number of predictors needed to obtain the
0.97 MCC value was four and occurred in five different
combinations. In each of these combinations, the TargetP

prediction, the SignalP 2.0 maximum Y-score and the Sig-
nalP 3.0 maximum S-score were included. The fourth pre-
dictor was the SignalP 2.0 mean S-score, SignalP 2.0
Hidden Markov Model S-probability, the SignalP 3.0
mean S-score, the SignalP 3.0 D-score, or the SignalP 3.0
Hidden Markov Model S-probability. The most accurate
pairs of predictors had MCC values of 95%: all included
TargetP combined with either the SignalP 2.0 maximum
Y-score, the SignalP 2.0 mean S-score, the SignalP 3.0
maximum S-score or the SignalP 3.0 D-score.

A prediction specificity of 98% was reached by 43 score
combinations. The minimum number of scores required
to reach this level of specificity was four and occurred in
five different combinations. These five combinations all
included the SignalP 2.0 maximum Y-score and SignalP
3.0 maximum C-score. The highest sensitivity obtained
during the combinatorial analysis corresponded to the
individual predictive scores with the highest sensitivity
(combination set size 1), SignalP 2.0 NN mean S-score
and SignalP 2.0 Hidden Markov Model S-probability.

Sequences can be analyzed using TargetP, SignalP 2.0 and
SignalP 3.0 on the Vertebrate Secretome and CTT-ome
Database [27]. Two sets of criteria can use used: positive
TargetP prediction, SignalP 2.0 maximum Y-score and Sig-
nalP 3.0 maximum S-score (sensitivity 0.96, specificity
0.96, MCC 0.96), or positive prediction using TargetP or
SignalP 3.0 D-Score (sensitivity 0.96, specificity 0.87,
MCC 0.90).

Table 1: System performance measures. Performance was measured based on the program's ability to correctly discriminate CTT 
proteins from non-CTT proteins. MCC = Mathews' Correlation Coefficient [1].

Program TP FP TN FN Sensitivity Specificity MCC

TargetP 55 8 307 2 96% 87% 90%
SignalP3 NN – Cmax 52 48 267 5 91% 52% 62%
SignalP3 NN – Ymax 55 9 306 2 96% 86% 89%
SignalP3 NN – Smax 56 9 306 1 98% 86% 90%
SignalP3 NN – Smean 55 17 298 2 96% 76% 83%
SignalP3 NN – D 55 7 308 2 96% 89% 91%
SignalP3 HMM Cmax 46 9 306 11 81% 84% 79%
SignalP3 HMM Sprob 56 17 298 1 98% 77% 84%
SignalP2 NN – Ymax 56 14 301 1 98% 80% 86%
SignalP2 NN – Cmax 54 28 287 3 95% 66% 75%
SignalP2 NN – Smean 57 13 302 0 100% 81% 88%
SignalP2 NN – Smax 56 21 294 1 98% 73% 81%
SignalP2 HMM Sprob 57 21 294 0 100% 73% 83%
SignalP2 HMM Cmax 36 3 312 21 63% 92% 73%
Phobius 55 13 302 2 96% 81% 86%
PrediSi 52 12 303 5 91% 81% 83%
ProtComp NN 46 32 283 11 81% 59% 62%
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Discussion
The single most accurate predictors for discriminating CTT
proteins from other proteins were the TargetP prediction,
the SignalP 3.0 maximum S-score and the SignalP 3.0 D-
score. The high accuracy of the SignalP 3.0 D-score is not
a surprise, as it was designed to increase the overall predic-
tion accuracy of CTT signal peptides, is itself a composite
score of the neural network mean S-score and maximum
Y-score, and incorporates cleavage site prediction infor-
mation. Likewise, we expect the SignalP 3.0 maximum S-
score to perform well, as this is obtained from networks
trained on very current sequence data and the score is
designed to specifically quantify CTT signal peptide pres-
ence. It is surprising the TargetP predictor performed so
strongly, as it was expected predictors from older software,
trained on older and generally smaller numbers of pro-
teins, would be outperformed by the more recent pro-
grams. The TargetP accuracy can be attributed to its high
specificity and ability to minimize false positive predic-
tions; this is likely a result of TargetP's capacity to differen-
tiate mitochondrial proteins from CTT proteins.

The CTT protein prediction sensitivity almost unilaterally
decreased for common predictive scores shared by SignalP
2.0 and SignalP 3.0; the exceptions being the neural net-
work maximum S-score and the Hidden Markov Model
maximum C-score. Changes in specificity and accuracy
were more variable, with the values of some predictors
increasing and others decreasing for both performance
measures. Exactly why the predictive sensitivity dropped
between SignalP versions is not known, but it could be a
by-product of the new screening protocols used to select
positive CTT proteins for the version 3.0 training set. This
protocol was particularly sensitive to the inclusion of pro-
tein sequences containing rare amino acids in the -1 and -
3 residue locations relative to the CTT signal peptide
cleavage site. While excluding these should improve the
accuracy of cleavage site location prediction, it may have
also caused the drop in CTT protein prediction sensitivity.

The PrediSi and Phobius predictions were 5% to 8% less
accurate than the best predictors from TargetP and Sig-
nalP. While these programs fall short in predicting CTT
proteins, they both possess characteristics that address
niche analyses. The program developers state that the
value of PrediSi is its computational speed. In our analysis
this claim was validated; PrediSi was clearly the fastest
program evaluated and did not restrict the size of
sequence set analyzed. Therefore, if users are working with
extremely large datasets, PrediSi can be used for rapid ini-
tial screens. However, for more accurate results, PrediSi's
analyses should be combined with more rigorous, com-
putationally expensive, methods.

The results obtained for Phobius are not surprising, as this
program was not developed to specifically differentiate
CTT proteins from non-CTT proteins, but to differentiate
CTT signal peptides from N-terminal transmembrane
domains. Since proteins with N-terminal transmembrane
domains were intentionally not included in the test set,
we could not assess this function. Phobius, like PrediSi, is
not as accurate as TargetP and SignalP for CTT protein pre-
diction. However, Phobius could add value to an analysis
pipeline processing protein sequences containing N-ter-
minal transmembrane domains.

ProtComp 6.0 returned the most disappointing results,
despite the possibility of inflated results due to duplica-
tion between the test set and neural network training set.
This program is not designed to strictly identify CTT pro-
teins, but predicts localization to multiple cellular com-
partments. As such, quantifying CTT proteins required
combining multiple prediction categories output by the
program, which may have added to the poor perform-
ance. ProtComp is the only program tested which differ-
entiates extracellular proteins from other CTT proteins.
However, it is unclear if this program predicts non-classi-
cal extracellular proteins. ProtComp is more suitable for
general localization screening than for specific locale pre-
dictions, as discussed here.

Combinatorial analysis is a systematic method for identi-
fying the complementary CTT protein predictors best
suited for incorporation into an analysis pipeline. A max-
imum combination of six scores was chosen to limit the
exponential explosion of combinations evaluated, while
still allowing for a single predictive score from each
program to be included in the optimal combination.
Fifty-eight different combinations provided a CTT signal
peptide prediction accuracy of 97%, which exceeded the
highest single score accuracy by 6%. A minimum of four
predictive scores was necessary to obtain this accuracy and
occurred in five different combinations. Interestingly, the
TargetP prediction, the SignalP 2.0 maximum Y-score and
the SignalP 3.0 maximum S-score, but not the SignalP 3.0
D-score (one of the highest individual scores), were
included in all five. The fourth predictor in these five com-
binations varied. Accuracy was only slightly reduced
(decreased by less than 1%) when the fourth predictor
was eliminated.

It is possible the combinatorial predictors identified in
this study may prove to be non-optimal in large applica-
tions, since the optimal 4-predictor combinations may
have been over-fit to the data. The combination of the Tar-
getP prediction, the SignalP 2.0 maximum Y-score and the
SignalP 3.0 maximum S-score, the three predictors com-
mon to all five of the most accurate predictor combina-
tions, may be best used in an analysis pipeline, to avoid
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the over-fitting while still generating high accuracy predic-
tions. These are the three used for multiple predictor
sequence analysis on the Vertebrate Secretome and CTT-
ome Database [27].

It has been suggested that program authors overstate the
predictive accuracy of their programs [1]. Almost all of the
predictive accuracies reported here were lower than those
reported in the original publications. TargetP was
reported to correctly predict localization with 92% MCC
accuracy, slightly higher than the 90% we calculated. For
the SignalP 2.0 Hidden Markov Model the highest predic-
tive score had an accuracy of 83% MCC, 11% lower than
the published accuracy. The program's neural network
accuracies, however, were comparable, with a published
accuracy of 87% and an accuracy of 86% found in our test-
ing. The published accuracy of the SignalP 3.0 neural net-
work predictions was 7% higher and that of the Hidden
Markov Model predictions was 10% higher than the accu-
racies obtained in our testing. Phobius predictions were
reported to be 96.1%, 10% higher then the accuracy
found in this study. PrediSi is one of the only programs to
report a lower accuracy that what was found in this test-
ing; reporting 73% accuracy compared to the 83% in this
evaluation. ProtComp 6.0 website reports correctly pre-
dicting extracellular sequences 86% of the time, 14%
higher than the accuracy found in our testing. It is impor-
tant to independently assess predictive performance.

Conclusion
This study of eukaryotic CTT protein prediction software
evaluates six programs. Each offers a different analysis
method, which in many cases is designed for a particular
type of analysis. Understanding the differences between
prediction programs is critical. The independent assess-
ment of the predictive accuracy described here can pro-
vide a good basis for selecting software. TargetP, SignalP
maximum S-score and the SignalP 3.0 D-score were
shown to be the most accurate individual scores for CTT
prediction. Prediction accuracy is significantly improved
through use of multiple analysis methods and combining

multiple predictive scores into a single composite predic-
tion. Older predictive programs retain value; both SignalP
2.0 and TargetP contained predictive scores that were
among the top predictive scores in both single and com-
posite prediction analysis.

Methods
Protein test set
Full-length test proteins were abstracted from the Swiss-
Prot database. To eliminate bias caused by redundancy
between the training and testing sequence sets only
sequences modified or entered during 2004 (version
43.0+) were used for testing. Homo sapiens, Mus musculus,
Sus scrofa, Rattus norvegicus, and Bos taurus proteins were
identified using the SwissProt Sequence Retrieval System.
For each organism the FASTA sequence and full SwissProt
record were downloaded for proteins annotated as
"Date=20040101:20041220 AND Comment Type=Sub-
cellular Location". Sequences were categorized by the
SwissProt record Subcellular Localization Comment entry
and sequences annotated as "Putative", "Possible", "by
Similarity", and, in one case, "by Similatity" were elimi-
nated. Secreted, Mitochondrial, Nuclear, and Cytoplasmic
proteins were selected from the remaining sequences and
manually reviewed for ambiguous annotation. The final
test set consisted of 372 full-length proteins; breakdown
by cellular localization and organism is given in Table 2,
the sequences themselves are in Additional file 1.

CTT protein prediction
All CTT protein predictions were carried out using each
program's web-servers. TargetP, SignalP 2.0 and SignalP
3.0 analyzed 125-residue, N-terminal subsequences of the
372 test proteins. TargetP was configured with non-plant
settings, prediction of cleavage site enabled and default
thresholds for assigning classifications. SignalP 3.0 was
configured with settings for "Eukaryotic" sequence data,
"Both" analysis methods, "No graphics" output, "Short"
output and sequence truncation set to 70 residues. SignalP
2.0 was configured to analyze eukaryotic sequence data,
output "no graphics", and otherwise use default parame-

Table 2: Summary of the protein test set. 372 protein sequences from five vertebrate organisms and four localizations taken from the 
SwissProt database. The sequences themselves are in Additional file 1.

Organism Secreted Mitochondrial Nuclear Cytoplasmic Total

Human 22 19 106 57 204
Mouse 19 10 37 35 101
Rat 7 2 14 21 44
Pig 4 0 3 4 11
Cow 5 3 1 3 12

Total 57 34 161 120 372
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ters. PrediSi, Phobius and ProtComp analyzed the full-
length test proteins. PrediSi was run using the eukaryotic
organism group and a text based output. Phobius was run
in normal prediction mode with short output. ProtComp
predictions were executed on the animal and fungi Prot-
Comp 6.0 server and positive CTT predictions assigned
when the neural network predictions were extracellular,
Golgi, endoplasmic reticulum or lysosome. Output files
from all analyses were parsed, and program performance
measures calculated, using custom Perl scripts.

Program performance measures
To assess predictive accuracy, program sensitivity, pro-
gram specificity (also known as positive predictive value),
and program accuracy using MCC, were calculated. MCC
value significance was validated using a standard t-test
and Fisher's z-transformation [28]. For programs report-
ing multiple predictive scores, system characteristics were
calculated for each score independently. Performance
characteristics were also calculated for multiple combina-
tions of predictors. An exhaustive analysis of two to six
score combinations was performed. A protein was pre-
dicted to be secreted in a combinatorial analysis only
when all predictive scores included in the combination
independently predicted the protein to be secreted. The
combinatorial analysis did not attempt to integrate or
algorithmically combine the numeric scores values associ-
ated with each individual predictive score.
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