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Abstract
Background: Biological Mass Spectrometry is used to analyse peptides and proteins. A mass
spectrum generates a list of measured mass to charge ratios and intensities of ionised peptides,
which is called a peak-list. In order to classify the underlying amino acid sequence, the acquired
spectra are usually compared with synthetic ones. Development of suitable methods of direct peak-
list comparison may be advantageous for many applications.

Results: The pairwise peak-list comparison is a multistage process composed of matching of peaks
embedded in two peak-lists, normalisation, scaling of peak intensities and dissimilarity measures. In
our analysis, we focused on binary and intensity based measures. We have modified the measures
in order to comprise the mass spectrometry specific properties of mass measurement accuracy and
non-matching peaks. We compared the labelling of peak-list pairs, obtained using different factors
of the pairwise peak-list comparison, as being the same or different to those determined by
sequence database searches. In order to elucidate how these factors influence the peak-list
comparison we adopted an analysis of variance type method with the partial area under the ROC
curve as a dependent variable.

Conclusion: The analysis of variance provides insight into the relevance of various factors
influencing the outcome of the pairwise peak-list comparison. For large MS/MS and PMF data sets
the outcome of ANOVA analysis was consistent, providing a strong indication that the results
presented here might be valid for many various types of peptide mass measurements.
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Background
In recent years, mass spectrometry (MS) has emerged as a
powerful technique to identify proteins in biological sam-
ples [1-4]. For their identification, proteins are usually
cleaved into peptides by a protease of known and
restricted cleavage specificity, e.g. trypsin. The resulting
cleavage products can then be analysed by Peptide Mass
Fingerprinting (PMF) [5] or subjected to MS/MS fragment
ion analysis [6,7]. A PMF is a highly specific set of peptide
molecular masses derived from one isolated protein.
PMFs are employed to identify the analysed protein in
large protein sequence databases by matching the deter-
mined peptide molecular masses to values calculated
from the amino acid sequences in the database. Similarly,
MS/MS spectra serve for protein identification by compar-
ing the determined peptide fragment ion masses against
predicted ones from amino acid sequence data and frag-
mentation characteristics of the employed MS instrumen-
tation [8].

Before performing database searches, the MS spectra are
processed and the most informative features, namely the
monoisotopic peaks are extracted. The procedure consists
of several steps and includes smoothing, baseline subtrac-
tion, peak-extraction and monoisotopic peak determina-
tion [9,10]. A spectrum pre-processing usually requires
proprietary software provided by the instrument vendors.
It generates a list of mass over charge (m/z) values of the
monoisotopic peaks and either the area under or the
height of those peaks are obtained. The set of m/z and
intensity value pairs is called a peak-list. In case of PMF
datasets, the peak-lists have on average 36 peak/intensity
pairs compared to e.g. 100,000 data points of the unproc-
essed spectra.

The sensitivity and specificity of the peptide identification
using database searches might be increased by several
methods. These usually include calibration [11-13], iden-
tification of non-peptide peaks [12,14,15], identification
and removal of low-quality spectra [16,17] or validation
of the search results using machine-learning algorithms
[18,19].

The subtractive analysis technique
The sensitivity and specificity of peptide and protein iden-
tification can further be increased by the pairwise compar-
ison of the peak-lists [11,20-22]. Yates et al. [20] applied,
as a measure of peak-list similarity, the cross-correlation
score normalised by the auto-correlation of the spectra.
They demonstrated that when using this measure, the MS
spectra could be correctly classified according to their pep-
tide content even if acquired on two different instruments,
namely a Triple-Quadrupole Tandem (TSQ) or Quadru-
pole Ion Trap (LCQ) mass spectrometers.

They suggested, as part of a "subtractive analysis tech-
nique", using pairwise spectra comparisons to search MS
spectra against a library of identified spectra before data-
base searching. Tandem mass spectra (unique to an exper-
iment) could be targeted for database searches or de novo
interpretation.

A significant portion of identical peptides is analysed and
identified many times even when the instrument control
software attempts to prevent the repeated isolation and
fragmentation of particular peptides in order to increase
the diversity of acquired spectra. Gentzel et al. [11] used
the cross-correlation measure for MS/MS spectra compar-
ison. They computed the similarity score for two parts of
the spectra. If these parts exhibited a satisfying similarity
score, the spectra were assumed to be identical. Tabb et al.
[22] explored the performance of the normalised dot-
product (spectral angle) algorithm to identify duplicated
samples. The advantage of the dot-product measure over
the cross-correlation algorithm lies in its computational
speed. Based on this measure, Tabb et al. [22] and Beer et
al. [21] developed software to identify the duplicated MS/
MS spectra. The analysis time saved by subtractive analysis
can be used instead to perform more extensive searches in
other databases, i.e. expressed sequence tag (EST) data-
bases, or to apply computationally demanding, mutation-
tolerant search algorithms [23], which depend on partial
spectra interpretation [24-26].

Pairwise spectra comparison can also be put to use "as an
informative marker to identify organisms or some other
feature of an organism" [20]. For example, Svetnik and
Liaw [27] used pairwise spectra comparison to detect
novel outliers in large-scale cosmid screening experiments
[28]. They used the Pearson and Spearman correlation
measures, as well as the Euclidean distance to compute
the distances of the spectra, followed by sequential clus-
tering. Serum protein and peptide fingerprints were used
in diagnostic medicine to distinguish healthy individuals
from those with cancer [29-32].

The pairwise peak-list comparison process
Previously, only the performance of the dot-product
measure has been compared to the similarity index using
MS/MS spectra of structural isomers [33]. Therefore, in
our work we have reviewed a large group of dissimilarity
measures and examined how these can be extended to
include the mass spectrometry specific property of mass
measurement accuracy. A new parameter weight of non-
matching peaks (θ) was introduced into the computation
of distance measures. We have studied the Euclidean and
the Manhattan distance, the covariance, the sum of agree-
ing intensities and the spectral angle. We have also exam-
ined the impact of the intensity scaling on the outcome of
intensity based measures [34,35]. In addition, we have
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performed a systematic study of various intensity transfor-
mations [22] in order to determine the best variance sta-
bilising transformation. Furthermore, we investigated
quantitative measures, i.e. Huberts Γ or the relative
mutual information measure [36]. The combination of
these factors resulted in 96 choices of the comparison
process for the binary measures and 2688 approaches for
the intensity based measures. The first aim of the work
presented here was to determine the pairwise peak-list
comparison approach with highest sensitivity and specifi-
city for the grouping of spectra. The second goal was to
determine which factors studied had the highest effect on
the outcome of the clustering, in order to foster the under-
standing of the pairwise peak-list comparison process.
While the first goal could be easily achieved by ranking
the various peak-list comparison approaches, the second
goal was approached by analysis of variance (ANOVA)
techniques. The partial area under the receiver operator
characteristic (ROC) curve, determined for high sensitiv-
ity and specificity values was used as the dependent varia-
ble, while the various choices for the comparison process
were the factors in the ANOVA.

Evaluation framework
PMF and MS/MS data represent mass spectrometric pep-
tide peak-lists. While the PMF measurement is character-
ised by high-mass resolution, large mass range and the
production of relatively few peaks, the MS/MS spectra

have a lower-mass resolution, a smaller mass range and a
higher number of peaks. Figure 1 presents examples of
peak-lists for fragment ion MS/MS and PMF, respectively.
We have analysed the pairwise comparison process using
both datasets in order to determine if the differences of
the data require different configuration of the pairwise
comparison.

In order to determine the sensitivity and specificity of the
measures used for classification, the grouping induced by
the measures must be compared with the true cluster
membership of the spectra. However, we did not have a
dataset with a large number of groups of spectra and with
identities known a-priori.

Therefore, in our study we used PMF and MS/MS spectra
resulting from studies of different proteomes. The identi-
ties of the spectra were determined by database searches
(cf. Methods). We assumed that the database searches
resulted in true identification of the peptides and proteins.

In the PMF dataset, only 176 proteins out of 668 were
identified by a single spectrum, while the remaining 492
protein identifications resulted from 2160 database
searches. The amount of duplicated samples in the two
datasets (Table 1) was significant and recognising them
could for example, significantly reduce the number of
searches necessary to identify all proteins.

According to the protein database identifier (ID), in case
of the PMF data or the peptide sequence and the same par-
ent ion charge z = 2 for MS/MS data, we defined a peak-
lists pair (X, Y) to be within a cluster if it was assigned to
the same protein ID or peptide sequence. Similarly, two
peak-lists were defined to lie between the clusters if their
database IDs differed. This assignment of the peak-lists
pairs as within and between was recognised as the true con-
dition status. The assignment induced by the pairwise com-
parison approach for a given thresholds of the
discriminatory variable was compared with this true condi-
tion status and the sensitivities and specificities were com-
puted.

The spectra in the large group of unidentified peak-lists
could not be used in this study. This is because we could
not infer that all these spectra were derived from the same
peptide/protein. Secondly, we could not assume that an
un-identified spectrum was not obtained in a measure-
ment of the same peptide as any of the spectra assigned to
a database identifier or peptide sequence. The identifica-
tion of a protein/peptide often fails because of a signal to
noise ratio that is too small. If we would treat this group
likewise the clusters formed by identified spectra we
would then introduce an error during the determination
of false positive/false negative rates.

Example of a peak-list stick spectrum for fragment ion MS/MS (top panel) and PMF(bottom panel)Figure 1
Example of a peak-list stick spectrum for fragment ion MS/MS 
(top panel) and PMF(bottom panel). X-axis – mass of the 
peaks, Y-axis – area under the peak.

mass

ar
ea

1000 2000 3000

10^3.5

10^4.0

10^4.5

10^5.0

10^5.5

10^6.0

PMF
10^3.5

10^4.0

10^4.5

10^5.0

10^5.5

10^6.0

MSMS
Page 3 of 21
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:285 http://www.biomedcentral.com/1471-2105/6/285
Using the data, where the identities of samples were deter-
mined by database search algorithms we were able to
examine whether the pairwise peak-list comparison made
equal or different assignments to a group, in relation to
the database search algorithm. We were not able to dis-
close if any of these measures had higher sensitivities and
specificities than the database search algorithms used.
However, these data were sufficient to expose relative dif-
ferences between pairwise peak-list comparison
approaches, as well as the degree by which the various fac-
tors of the comparison process influenced the outcome.

The computation of the pairwise peak-list distances was
performed using the in-house developed R [37] package
msbase, which is available from the BioConductor Project
[38] web page [39].

Results and Discussion
The factors of the pairwise peak-list comparison
Table 2 summarises the factors, which can influence the
outcome of a pairwise peak-list comparison. The first step
in the comparison of the peak-lists is to determine match-
ing and non-matching peaks with given mass measure-
ment accuracy. If one peak is ambiguously assigned to
several peaks in the second peak-list (cf. Methods – Figure
6), the non-crossing matching can be computed. The next
element to be considered is whether the mass measure-
ment accuracy should be modelled [45,46] using Equa-
tion 2. Modelling of the mass differences between
matching masses did not affect the non-matching peaks.
The influence of non-matching peaks on the pairwise

peak-list comparison was modulated by increasing or
decreasing their weight by two-fold (using the parameter
θ in the dissimilarity equations (cf. Methods)).

The length of the aligned peak-lists either equals the sum
of the peaks in both peak-lists minus the number of peaks
matching or is user-defined. In Equation 3, we set N = 250
for the PMF dataset and N = 400 for the MS/MS dataset,
which in both cases was approximately twice the length of
the longest peak-list. In case of the intensity based meas-
ures the missing peak pairs were augmented by peaks of
zero intensity. Further elements which affected only the
intensity-based measures included the transformation
and scaling of peak intensities. The distance measures (cf.
Methods) were the last of the examined factors. Section
'Features of the pairwise peak-list comparison and their
properties' in the Appendix section provides a descriptive
analysis of the features of the pairwise peak-list compari-
son in order to introduce the data and to motivate the use
of various factors of the peak-list comparison approach.

The intensity-based measures contained 2688 sets of fac-
tors while the binary measures covered 96 sets. To deter-
mine which of these factors were important and how they
influenced the scores, we applied analysis of variance
techniques (ANOVA). We first performed the ANOVA on
the PMF dataset. Afterwards, we examined if the obtained
linear model could be used to explain the properties of the
pairwise peak-list comparison process computed on the
MS/MS dataset.

The evaluation scores

In order to evaluate the capability of pairwise comparison
approaches to identify peak-list pairs as being within or
between cluster we used the partial area of interest under
the Receiver Operating Characteristic (ROC) curve (PAUC)
[44]. The ROC curve was generated by drawing the

, where TP – are true positives, FN –

false negatives, against the

, where FP – false posi-

tives, TN – true negatives, for the same value of the dis-
criminatory variable, i.e. the number of matching peaks as
shown in Figure 2. For 4 matches we determined a specif-
icity of 99% and sensitivity of 95%.

We were particularly interested in the sensitivity of the
pairwise peak-list comparison only for small values of the
FP-rate. Therefore, we computed the Partial Area under the
ROC curve (PAUC) for 1 - specificity ∈ [0, 0.1] (red-dashed
region Figure 2), denoted by sensitivity-PAUC. Moreover,
we were also interested in the specificities when high sen-

sensitivity
TP

TP FN
=

+

1− = =
+

specificity FP
FP

FP TNrate

Table 1: Number of clusters of given cluster size N. The columns 
2 and 3 describe the cluster size in the PMF- and the MS/MS 
datasets. Number of spectra – number of peak-lists submitted 
for database search, identified spectra – spectra assigned to a 
database ID with an either significant probability based Mowse 
score (PMF-data) or to a peptide sequence with Xcorr > 2, and an 
ion coverage > 20% (MS/MS-data) given a parent peptide charge 
z = 2. Identified proteins/peptides – the number of uniquely 
identified proteins or peptides. A – approximate number of 
spectra derived from ion fragments of peptides with charge z = 2. 
B – The number of spectra with charge z = 2 of the parent ion (≈ 
53% of all identified spectra).

Dataset

PMF MS/MS

number of spectra 4532 ≈ 200000A

number of identified spectra 2336 26507B

N = 1 176 5718
N ∈ (1,5] 392 1965

N ∈ (5, 10] 66 388
N ∈ (10, 25] 31 354
N ∈ (25, 50] 2 111

N > 50 1 43
Identified: proteins (PMF)|peptides (MS/MS) 668 8579
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sitivities are required (sensitivity ∈ [0.9, 1]), further abbre-
viated specificity-PAUC. Hence, we computed the PAUC
for the area indicated in Figure (2) by the green-dashed
region. Both sensitivity-PAUC and specificity-PAUC were
utilised as the dependent variable in the analysis of vari-
ance.

ANOVA of the pairwise peak-list comparison approaches
The aim of the statistical analysis was to evaluate different
strategies of the pairwise peak-list comparison with
respect to the sensitivity and specificity partial area under
the ROC curve (PAUC). A possible strategy to decide
which pairwise comparison approach performs best
would have been to choose the one with the largest partial
area under the curve. However, we were also interested in
determining the influence of and the dependence
between the factors of the pairwise peak-list comparison
on the outcome of the classification.

Each strategy of the pairwise peak-list comparison was
defined by the combination of seven factors as given in
Table 2. The whole set of pairwise peak-list comparison
strategies shows a completely balanced factorial structure
analogous to those used in analysis of variance (ANOVA)
[42] with PAUCs as dependent variables and the specific
strategies of pairwise peak-list comparison as combina-
tions of factor levels. However, due to multi-modality our
data could not be transformed to approximate normality.
Thus, we could not calculate F-ratios and related statistical
tests of significance. To assess the significance of the fac-
tors, we therefore used the relative sum of squares (%SSQ)
and the relative mean sum of squares (%MSQ), defined as
the ratio of the SSQ or MSQ with respect to the total SSQ

or MSQ. We did not calculate F-ratios or P-values for fac-
tors and interactions, due to the mentioned deviation
from normality. A large value of the relative sums of
squares (%SSQ) for a factor in Tables 3 and 4 indicates its
importance for the correct classification of peak-lists.

The ANOVA results
The high value of the %SSQ or %MSQ value in Table 3
and 4 reflect the change (variance) of the response varia-
ble PAUC caused by a factor or combination of factors. In
case of the intensity based measures, the high value of the
relative mean sum of squares (%MSQ) (Table 4, top
panel) for the factor 'scale' (intensity scaling procedure)
and 'measure' (dissimilarity measure) indicates that these
factors were crucial for the correct classification of peak-
lists. The small values of the %MSQ for the factors 'weight
of match accuracy' (weight) and 'computing the non-
crossing matching' (noncross) shows that these factors
had a negligible impact on the result of pairwise peak-list
comparison.

A large value of %MSQ or %SSQ of an interaction term
(denoted by × in Table 3 and 4, bottom panel) demon-
strates that some combinations of factors were more use-
ful than others. The high value of %SSQ for the
interaction measure × scale reflects that, for example, the
measure sum of agreeing intensities performed better in
combination with the vector length scaling (N) or root-
mean-square scaling (S), than with the total ion count
scaling (T) or with the z-score scaling (Z). We concluded
that the crucial factors of the pairwise peak-list compari-
son were the measure and peak intensity scaling, followed

Table 2: Factors considered in the comparison process and their levels. Column 1 – Factors: identification of factors, Column 2 – 
Levels: short summary of the levels (For more details please refer to the Methods section). Column 3 – Number: number of levels. Int. 
– comparisons considering the intensities; Bin. – binary measures.

Factors Levels Number

Int. Bin

1 non crossing 
matching

yes no 2

2 weighting match 
accuracy

yes no 2

3 weight of non-
matching peaks

0.5 1 2 3

4 intensity 
transformation

I log(I) rank(I) 4 0

5 intensity 
normalisation

tic(I) ||I|| S(I) Z(I) 4 0

6 alignment length M = const 2

7 distance 
measure

See Methods Section 7 4

Product of levels for nonzero factors: 2688 96

I

M M M MX Y XY= + −1 1 11
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by the weight of non-matching peaks and the length of the
peak-list.

In case of binary measures, the high %MSQ value (Table
3, column %MSQ) of factors 'measure', 'weight of non-
matching peaks' θ, 'peak-list length' N as well as of their
interactions indicates that their are crucial for the out-
come of the pairwise comparison.

In order to examine the extend to which the properties of
the pairwise peak-list comparison, determined for the
PMF data set can be generalised to other types of mass
spectrometric data, we applied the ANOVA to the MS/MS
dataset (Tables 3 and 4, right panel). The main difference
between these two datasets is that the computation of the
non-crossing matching which influenced the PAUC scores
in case of MS/MS data, (Tables 3 and 4, row noncross).
However, one can conclude that the same factors and fac-
tor interactions are significant if comparing PMF and MS/
MS data.

Dissimilarity measures with small variance and high PAUC 
scores
The Figure 3 shows the boxplot of the sensitivity PAUCs
measure (PMF data) itemised according to the factors
explaining the largest variance. These included measure
and weight of non matching peaks θ (binary measures,
Figure 3A) and measure and scaling (intensity based
measures, Figure 3B).

In case of binary measures (Figure 3A) the largest PAUC
scores were measured for the Fowlkes-Mallows statistics
(Figure 3, left panel) followed by the Gower coefficient.
Other factors had a negligible impact on the measures as
the small height of the boxes indicates. In Figure 4A (PMF
data) and 4B (MS/MS data) we compared the scores
obtained by the asymmetric binary measures (Fowlkes
Mallows statistics and Gower coefficient) with those
acquired by the symmetric binary measures (Huberts
Gamma and Relative Mutual information). The figure
revealed that for MS/MS data, the symmetric measures
performed better (right panel). The conclusion, which can
be drawn from this observation is that for MS/MS data a
lack of peaks at given masses was more significant than for
PMF data. This is in agreement with the higher peak den-
sity of MS/MS peak-lists.

The boxplot (Figure 3B) demonstrates that the PAUC
scores computed using the Manhattan and Euclidean dis-
tances, exhibited higher overall variance, than the dot
product measure and the sum of agreeing intensities.
These measures (Manhattan and Euclidean distances)
were influenced by the weighting of non-matching peaks
θ and peak-list pair length N (cf. Methods, Equation 3).
These two factors did not influence the outcome of the
dot-product measure, which measures only the similarity
of matching peaks. However, for a fixed combination of
measure and scaling, the Manhattan distance with the
total ion count (l1-norm) scaling and the Euclidean dis-
tance with the vector norm (l2-norm) scaling presented an
eminently small variance of the PAUC measure. This
reduction of the variance occurred because the factor
'peak-list length' did not influence the outcome of the
comparison. Notably good choices of intensity scaling in
the case of the sum of agreeing intensities (soai) and the
dot product (dotprod) measure were either the vector
norm or the root mean square scaling. Remarkably, the
widely used dot product measure did not achieved the
highest PAUC score (top panel Figure 3B).

The analysis presented here reproduced published results,
demonstrating that the relative distances (cf. Methods 12)
performed worse than the dot product measure [33]. Fur-
thermore, it identified other measures that performed
equally or better than the dot product measure.

Receiver Operator Characteristic curve – The sensitivity (TP-rate) is plotted against FP = 1 - specificity using the number of matching peaks as the discriminatory variableFigure 2
Receiver Operator Characteristic curve – The sensitivity 
(TP-rate) is plotted against FP = 1 - specificity using the 
number of matching peaks as the discriminatory variable. Red 
dashed area: sensitivity-PAUC – partial area under the ROC 
curve for FP-rate ∈ [0, 0.1]. Green dashed area: specificity-
PAUC – partial area under the ROC curve for sensitivities ∈ 
[0.9, 1].
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Intensity transformation and ANOVA
As the %MSQ scores of the ANOVA analysis reveal, the
intensity transformation has a smaller impact on the
peak-list comparison process if set in relation with the dis-
tance measure and scaling. However, the proper choice of
the intensity transformation can increase the PAUC
scores. The Boxplot (Figure 5) of the sensitivity-PAUC
(left) and specificity-PAUC (right) score, computed using
the dot-product and the sum of agreeing intensities meas-
ures (both computed on vector length scaled data), shows
how the intensity transformation influenced the classifi-
cation. As predicted by the analysis of variance stabilisa-
tion (cf. Appendix – Peak intensity transformation), the
log transformation of intensities performed best for both
measures.

Interestingly, in the case of MS/MS data we did not
observe any differences in the PAUC score due to intensity
transformation (not shown). This was due to the fact that
we were able only, using a dataset where spectra IDs where
assigned by database searches, to determine whether a
pairwise comparison performed different or equal to the
database search algorithms. It means, that the MS/MS
database searches did not perform better than the pairwise
peak-list comparison computed with the worst intensity
transformation.

The peak-list length
We examined two ways of defining the length of the
matched peak-lists, first by setting N = 0 in Equation 3 (cf.
Methods), and second to a user defined value N (N = 250
in the case of PMF data and N = 400 in case of MS/MS

Table 3: Influence of factors specifying the pairwise peak-list comparison on partial areas under the ROC curve for binary PMF and MS/
MS data. For each of the 96 pairwise comparison approaches, sensitivity-PAUC (sensitivity given FP-rate ∈ [0, 0.1]) and specificity-
PAUC (specificity given sensitivity ∈ [0.9, 1]) (Figure 2) were determined. A partitioning of sums of squares was performed 
analogously to analysis of variance. Column names: Factors – identification of factors; df – degrees of freedom (DF, number of factor 
levels – 1); %SSQ – relative sum of squares (%SSQ = SSQ/∑SSQ); %MSQ – relative mean sum of squares (%MSQ = MSQ/∑MSQ), where 
MSQ = SSQ/DF. %MSQ measures the importance of a specific factor for the size of specificity-PAUC and sensitivity-PAUC. × denotes 
interactions between factors. measure – distance measure, noncross – non crossing matching, length – alignment length, θ – weight of 
non-matching peaks, residual – unexplained %SSQ or %MSQ, total – column sum of %SSQ, df, %MSQ.

PMF MS/MS

specificity – PAUC sensitivity – PAUC specificity – PAUC sensitivity – PAUC

Model with main effects

Factors df %SSQ %MSQ %SSQ %MSQ %SSQ %MSQ %SSQ %MSQ

measure 3 10 14.9 10.9 16.1 4.4 8.5 2.7 5.5
θ 2 17.3 38.1 17.0 37.7 14.3 42.0 15.9 48.2
length 1 10 43.9 9.7 43.0 6.4 37.3 5.8 35.4
weight 1 0 0 0 0 0.0 0.2 0.4 2.2
noncross 1 0 0 0 0 1.2 7.1 0.6 3.5
residual 87 62.5 3.2 62.4 3.2 73.7 5.0 74.6 5.2

total 95 100 100 100 100 100 100 100 100

Final model N

Factors df %SSQ %MSQ %SSQ %MSQ %SSQ %MSQ %SSQ %MSQ

measure 3 10.2 8.5 10.9 9.2 4.4 4.8 2.7 3.0
θ 2 17.3 21.7 17.0 21.5 14.3 23.6 15.9 26.0
length 1 10.0 25.0 9.7 24.5 6.4 21.0 5.8 19.1
measure × θ 6 7.5 7.3 17.7 7.4 16.3 9.0 17.2 9.4
measure × length 3 10.1 8.4 10.0 8.4 7.3 8.0 6.5 7.1
θ × length 2 17.3 21.7 17.0 21.5 14.4 23.8 15.6 25.6
measure × θ × length 6 17.5 7.3 17.7 7.4 416.0 8.8 16.4 8.9
residual 72 0 0 0 0 20.9 1.0 19.9 0.9

total 95 100 100 100 100 100 100 100 100
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data). The missing peak-pairs were augmented by peaks of
zero intensity.

The symmetric binary measures Huberts Γ and relative
mutual information significantly interacted with peak-list
length (length × measure) as well as with the weight of non-
matching peaks (θ × length) (see high %MSQ values in
Table 3, bottom panel). These interactions were not
observed for the asymmetric binary measures, what
caused the third order interaction measure × θ × length
(Table 3, bottom panel: Final model). In case of PMF and
MS/MS data, the best combination of factors for both

symmetric binary measures was visible when N = 250 or
N = 400 respectively, and θ = 0.5.

In case of the intensity based dissimilarity measures Man-
hattan and Euclidean distance, a strong interaction
between the factor 'peak-list length' and 'measure' (Table
4, bottom panel: Final model row length × measure) was
observed, except for a case when the L1metric (Manhattan
distance) was combined with the total ion count (l = 1-
norm) scaling and the L2 - metric (Euclidean distance)
with the l2-norm (vector length scaling). All the other
intensity based measures were practically not influenced
by the choice of peak-list length N (see Figure 3).

Table 4: Influence of factors specifying the pairwise peak-list comparison on partial areas under the ROC curve for intensity PMF and 
MS/MS data. For each of the 2688 pairwise peak-list comparison approaches, sensitivity-PAUC (sensitivity given FP-rate ∈ [0, 0.1]) and 
specificity-PAUC (specificity given sensitivity ∈ [0.9, 1]) (Figure 2) were determined. A partitioning of sums of squares was performed 
analogously to analysis of variance. Column names: Factors – identification of factors; df – degrees of freedom (DF, number of factor 
levels - 1); %SSQ – relative sum of squares (%SSQ = SSQ/∑SSQ); %MSQ – relative mean sum of squares (%MSQ = MSQ/∑MSQ), where 
%MSQ = MSQ/∑MSQ. %MSQ measures the importance of a specific factor for the size of sensitivity-PAUC and specificity-PAUC. × 
denotes interactions between factors. measure – distance measure, noncross – non crossing matching, length – alignment length, θ – 
weight of non-matching peaks, trans – peak intensity transformation, residual – unexplained %SSQ or %MSQ, total – column sum of 
%SSQ, df, %MSQ.

PMF MS/MS

specificity – PAUC sensitivity – PAUC specificity – PAUC sensitivity – PAUC

Model with main effects

Factors df %SSQ %MSQ %SSQ %MSQ %SSQ %MSQ %SSQ %MSQ

measure 6 25.2 36.1 20 29 14.9 20.9 15 21.2
scale 3 15.7 45.1 22.3 64.6 23.9 66.8 25.1 71.1
θ 2 3.1 13.2 0.7 2.8 1.4 5.7 0.9 3.9
length 1 0.5 4.1 0.4 3.2 0.3 2.4 0.1 1.1
weight 1 0 0.1 0 0 0.2 2.0 0.2 1.7
noncross 1 0 0 0 0 0 0.3 0.0 0.1
trans 3 0.4 1.3 0.1 0.2 0.6 1.7 0.3 0.8
residual 2670 55.1 0.2 56.6 0.2 58.6 0.2 58.4 0.2

total 2687 100 100 100 100 100 100 100 100

Final model

Factors df %SSQ %MSQ %SSQ %MSQ %SSQ %MSQ %SSQ %MSQ

measure 6 25.2 29.7 20 23 14.9 17.4 15 17.4
scale 3 15.7 37.1 22.3 51.2 23.9 55.8 25.1 58.1
θ 2 3.1 10.8 0.7 2.2 1.4 4.7 0.9 3.2
length 1 0.5 3.3 0.4 2.5 0.3 2.0 0.1 0.9
measure × scale 18 33.4 13.2 41.2 15.8 43.4 16.9 44 17
measure × θ 12 6.3 3.7 1.9 1.1 3.7 2.2 2.3 1.3
measure × length 6 1.8 2.1 3.6 4.1 0.9 1.1 1.9 2.2
residual 2639 14 0 10 0 11.4 0 10.7 0

total 2687 100 100 100 100 100 100 100 100
Page 8 of 21
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Differences between binary and intensity based 
dissimilarities
The dash-dotted line in Figure 3 indicates the maximal
sensitivity-PAUC determined for the binary based peak-
list comparison, while the dashed line shows the maximal
sensitivity-PAUC computed for the intensity based peak-
list comparison. If high sensitivities at a high specificity

(sensitivity-PAUC) were required, the intensity based
peak-list comparison performed better than the binary
based peak-list comparison. This is because it is very
unlikely that samples from different sources would gener-
ate spectra where not only the peak masses, but also the
peak intensities were similar. However, if high specificity
at high sensitivities was required (PMF data only, not

A: Boxplot of the sensitivity-PAUC (sensitivity given a FP-rate ∈ [0, 0.1]) itemised according the factors dissimilarity measure and θ (weighting of non-matching peaks) for the binary measure based peak-list comparisonsFigure 3
A: Boxplot of the sensitivity-PAUC (sensitivity given a FP-rate ∈ [0, 0.1]) itemised according the factors dissimilarity measure 
and θ (weighting of non-matching peaks) for the binary measure based peak-list comparisons. B: Boxplot of the factors scale 
(cf. Methods – Scaling) and measure of the sensitivity-PAUC (sensitivity given a FP-rate ∈ [0, 0.1]) for intensity measure based 
peak-list comparisons. The top panels show a clip (ZOOM) of the bottom boxplot, indicated by the green horizontal line. X-
axis labels: fm – Fowlkes-Mallows statistics, gower – Gower coefficients, hg – Huberts Γ, rmi – relative mutual information, 
canberra – Canberra distance, simindex – similarity index, manhattan – Manhattan distance, euclidean – Euclidean distance, 
dotprod – dot-product measure, cov – covariance, soai – sum of agreeing intensities. Scaling: T – total ion count, N – vector 
length, S – root mean square, R – ranks.
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shown), the order reversed and binary measures per-
formed better than intensity based measures. Using
binary coding makes it unlikely that peak-lists with
matching peaks will generate a large distance because of
erroneous peak intensity measurement.

Weighting of mass measurement accuracy, computing the 
non-crossing matching and weighting of non-matching 
peaks
The variance, which is explained by the factor 'non-cross-
ing matching' (cf. Methods – Finding the matching peaks)
and 'weight of matching peaks' (cf. Methods – Weighting
the missing mass measurement accuracy) was practically
zero in case of the PMF data. In case of the MS/MS data,
the variance explained by the factor 'weight of matching
peaks' and 'non-crossing matching' was small, but not
zero.

Using the measures, which take into account the non-

matching peaks (e.g. Euclidean distance, Huberts Γ),
weighting of mass accuracy may decrease the PAUC
obtained by a peak-list comparison. This is because
weighting of mass accuracy decreases the weight of match-

ing peak-pairs, but does not affect the non-matching
peaks. For example, in the case of the Euclidean distance,

which is given by 

weighting of match accuracy may decrease the weight of
the term ab as well as b2 and a2. For non-matching peaks
the term ab equals zero, however, the terms a2 and b2 have
a full weight. However, matching peaks have higher dis-
criminating power than non-matching peaks. Thus, exclu-
sively decreasing the contribution of matching peaks
decreases the discriminating power of a pairwise peak-list
comparison. In order to compensate for the effect of mass
measurement accuracy weighting we have introduced the

weighting of non-matching peaks by parameter θ.

We recommend the usage of both procedures if applying
the pairwise peak-list comparison on MS/MS data. Non-
crossing matching corrects for errors of the peak extraction
procedure. Alternatively, instead of computing the non-
crossing matching, the binning of the mass range as
described, for example, by Tabb et al. [22] can be used.
This however, is limited to data with small mass resolu-
tion and a mass range. To decrease the influence of ran-
dom matches on the dissimilarity, which more frequently
occurs in MS/MS peak-lists, the weighting of mass meas-
urement accuracy can be utilised.

Conclusion
Analysis of variance, based on the factorial structure pre-
sented in Table 2 and the PAUC as dependent variable,
was used to determine the sensitivities of the factors of
pairwise peak-list comparison. To test whether these
results apply to different types of mass spectrometric data
we used both PMF and MS/MS datasets. The amount of
variance explained by the factors was similar for both
datasets, which provides evidence that the obtained
results might be of general interest.

Two factors, namely measure and intensity scaling and
their interactions had the highest impact on the intensity
based pairwise peak-list comparison. The combination of
the Euclidean distance with vector norm scaling, the Man-
hattan distance with total ion count scaling and the sum
of agreeing intensities with vector length scaling were the
best performing measures. A high performing measure
with small variance due to the choice of scaling methods
was the dot product measure. A further factor, which can
be used to increase the classification performance of the
peak-list comparison is the intensity transformation with
the log function as a best choice. In case of the MS/MS
data we recommend to apply the weighting of mass meas-
urement accuracy and combine it with a decrease of the
weight of non-matching peaks (θ = 0.5), as well as to
implement the computation of non-crossing matching.

w a b wa w ab wb( ) ( )− = − +2 2 22

Boxplot A: Comparison of the sensitivity-PAUCs (computed for FP-rate ∈ [0, 0.1]) computed for the assymetric binary measures with sensitivity-PAUCs of the symmetric binary measures, in case of the PMF datasetFigure 4
Boxplot A: Comparison of the sensitivity-PAUCs (computed 
for FP-rate ∈ [0, 0.1]) computed for the assymetric binary 
measures with sensitivity-PAUCs of the symmetric binary 
measures, in case of the PMF dataset. Boxplot B: Compari-
son of the sensitivity-PAUC (computed for FP-rate ∈ [0, 
0.1]) computed for the assymetric binary measures with the 
sensitivity-PAUCs of the symmetric binary measures, in case 
of the MS/MS dataset.
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The most important factors for the comparison of the
peak-lists using binary measures are the measure, weight
of non-matching peaks (θ) and peak-list length N. Sym-
metric measures with large peak-list length N and a small
weight of non-matching peaks (θ = 0.5) performed best
for MS/MS data, while asymmetric measures were the
most useful during a comparison of PMF data.

A further possible direction to enhance measures of pair-
wise peak-list dissimilarity would be to combine them
with methods that model peak-list properties i.e. peptide
fragmentation patterns [17].

The pairwise peak-list comparison is a computer model of
cluster affiliation, which for a given input of two peak-lists
and various control variables such as weight of non-
matching peaks generates a single output variable further
used to classify the peak-list pair. To conduct the analysis
presented here a total number of ≈ 4,000,000,000 pair-
wise peak-lists comparisons was performed (cf. Methods
Computation). In order to reduce a number of required
computations and explore a wider range of factors and
levels, it might be beneficial to apply different methods to
design and analyse computer experiments [47].

The recommended pairwise peak-list comparison
approaches can be used as predictive functions of within
and between cluster associations of mass spectrometric
peak-list pairs. However, the best value of the discrimina-
tory variable still needs to be determined. This can be
achieved, for example, by the use of ROC curves com-
bined with cross validation analysis, but will require a
dataset where the identities of the peak-lists are known a-
priori.

Methods
Datasets and pre-processing
PMF-data
The PMF data employed in this study (4532 PMF MS spec-
tra) were derived from three proteome studies. One set
contains 1193 PMF MS spectra from bacterial (Rhodopirel-
lula baltica) samples (unpublished data). These samples
were measured on a Bruker Reflex III reflectron MALDI-
TOF MS (Bruker Daltonics, Bremen, Germany). Another
set, which contains 1539 PMF spectra from mouse (Mus
musclus) brain tissue samples (unpublished data) was
measured on a Bruker Ultraflex reflectron MALDI-TOF MS
(Bruker Daltonics, Bremen, Germany), while the final set,
which was measured on an Bruker Autoflex reflectron
MALDI-TOF MS (Bruker Daltonics, Bremen, Germany),
contains 1800 PMF MS spectra from plant tissue (Arabi-
dopsis thaliana) [48,49]. All PMF MS spectra were derived
from tryptic protein digests of individually excised protein
spots. For this purpose the whole tissue/cell protein
extracts of the former mentioned organisms were sepa-
rated by two-dimensional (2D) gel electrophoresis [48]
and visualised with MS compatible Coomassie brilliant
blue G250 [49]. The MALDI-TOF MS analysis was per-
formed using delayed ion extraction and employing the
MALDI AnchorChipTM targets (Bruker Daltonics,
Bremen, Germany). For positively charged ions in the m/z
range of 700 – 4,500 m/z were recorded. Subsequently, the
monoisotopic masses of the measured peptides were
detected by the SNAP algorithm of the XTOF spectra anal-
ysis software (Bruker Daltonics, Bremen, Germany). The
sum of the detected monoisotopic masses constitute the
raw peak-list (peak-list), which were calibrated to a mass
accuracy of 0.05Da (or higher) by the in-house developed
software mscalib [39,50]. Moreover, the mscalib software
was used to filter the peak-lists for irregular peaks that did
not follow the general peptide mass rule [12,51]. Addi-
tional background peaks (peaks occurring in more than
8% of the spectra [15]) were removed from the peak-lists.
The obtained processed peak-lists were then used for the
protein database searches with the Mascot search software
(Version 1.8.1) [52] employing a mass accuracy of ±
0.1Da, setting methionine oxidation as a variable and car-
bamidomethylation of cysteine residues as fixed modifi-
cation, and allowing a maximum of 1 missed proteolytic
cleavage site. Samples with multiple content/identifica-

A: Boxplot of the specificity-PAUC (specificity given a TP-rate ∈ [0.9, 1]) for the dot-product measure (dotprod) and sum of agreeing intensities (soai)Figure 5
A: Boxplot of the specificity-PAUC (specificity given a TP-
rate ∈ [0.9, 1]) for the dot-product measure (dotprod) and 
sum of agreeing intensities (soai). B Boxplot of the sensitiv-
ity-PAUC (sensitivity given a FP-rate ∈ [0, 0.1]). N – raw 
intensities, S – square root transformed intensities, L – log 
transformed intensities, R – intensity ranks.
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tion were removed from the data. Multiple content of
samples was determined by removal of all peaks, match-
ing the highest significant hit in the first search and re-
submission of the remaining peaks to a new database
search.

MS/MS data
To evaluate the distances for the MS/MS data, 70 clusters
(spectra assigned to one ID) were randomly chosen (5
replicates obtained) from a large data-set of identified
yeast spectra [53]. The protein extraction, sample prepara-
tion, measurement and identification were performed as
described by Wagner et al. [54]. The analysed MS/MS
spectra were recorded on an ESI Ion Trap mass spectrom-
eter (LCQ DECA, Thermo Electron) with the following
instrument settings: spray voltage: 1.5 kVolt; data depend-
ent scanning with one full MS spectrum is followed by
four independent MS/MS spectra of the four most inten-
sive ions; minimum signal intensity for a peptide to be
selected for fragmentation set to 106 ion counts. These
selected and fragmented ions were then excluded from
further fragmentation events for 1 minute to prevent
repeated MS/MS spectra of identical peptides. The colli-
sion energy for the peptide fragmentation was automati-
cally set by the instrument, which was controlled by the
Xcalibur software (Versionl.2, Thermo Electron). The post
acquisition processing was performed with the Bioworks
browser package (Thermo Electron). The resulting peak-
lists were automatically stored and assigned to peptide
sequences in the yeast protein database [55], by using the
Sequest database search algorithm (Version 27) [8,56].

The search parameters employed for the database searches
were as follows: a) none or one of the four proteases, as
defined by Sickmann et al. [53]; b) mass type: mono iso-
topic (parent ion and fragment ion) c) amino acid modi-
fications: carbamidomythylated cysteine residues +57Da
and oxidation on methionine residues +16Da, while
missed cleavage sites (maximum allowed): 1 missed. We
considered spectra identified if they had an Xcorr > 2 and
an ion coverage of 20%.

Finding the matching peaks

We considered two peaks x and y from different peak-lists
X, Y to match with an accuracy a if |x - y| <a (absolute

error) or  (relative error in part per mil-

lion (ppm)). Cases where more than one peak in Y match
a peak x (Figure 6, case A) were resolved by computing a
non-crossing matching of the peak-lists. A non-crossing
matching a maximum trace [57,58] can be computed in
time O(n log n), where n is the number of peak matches.
In our case, we resorted to a simple maximum similarity
alignment, which could be banded to improve its O(n2)
time complexity. The optimal trace of two sorted mass
lists of matching peaks was established by dynamic pro-
gramming. Let qual be a measure of the goodness of the
match of two peaks i.e.

qualabs = max{0, a - |x - y|},

| |

( )/

x y

x y
a

−
+

⋅ <
2

106

Stick spectrum of two peak-lists X (black lines) and Y (black dot dashed lines)Figure 6
Stick spectrum of two peak-lists X (black lines) and Y (black dot dashed lines). Upper left corner – accuracy of the mass meas-
urement a. A – ambiguous match of five peaks. B – unambiguous match of two peaks. C – peaks not matching.
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where x and y are masses of peaks from two distinct peak-
lists. Then our goal was to maximise the overall quality of
all matched peaks. We recorded in the matrix Mi, j the best
possible assignment of the first i peaks in the first list and
the first j peaks in the second list. Hence Mi,0 = Mj,0 = 0 for
all i, j, and it is easy to see that the following recurrence
can be used to derive the overall best assignment:

In this way we could find a non-crossing matching, which
minimised the overall errors and unambiguously assigned
a peak x to a peak y.

Weighting the missing mass measurement accuracy
For computation of the dissimilarities we used the weight-
ing of the mass measurement accuracy [45,46] and the
alignment of peak-list by linear regression [12,59]. To
model the accuracy of a given match either we weighted
the peak intensities in the matching pairs (intensity based
measures) or calculated the weight of the match (binary
measure) by a triangular function w:

where a is the maximum displacement evaluated and x
and y are peak masses. If the mass difference |x - y| of two
matching peaks increases then the significance of the
match is reduced. Before computing the weights, we min-
imised the overall error of the matching masses by adjust-
ing the two peak-lists using linear regression.

Non matching peak pairs
Peaks detected in one sample not occurring in the other
one (Figure 6, case C), were included in the computation
of the dissimilarities. The second peak-list was augmented
with a peak of zero intensity, at the mass of the not-match-
ing peak. In addition, the significance of such a peak pair
(and peak intensities) could be weighted with the factor θ.
In this study we examined three values of θ, namely 0.5, 1
and 2.

Binary measures
We have also investigated measures that only use qualita-
tive information in the sense that they evaluate the
number of matching and mismatching peaks of both
peak-lists. Essentially these measures are numerical func-
tions in the contingency Table 5 derived from both peak-
lists. To include the weighting of missing accuracy by the
w (see Equation 2) and the weighting of non-matching

peaks by θ we introduced a generalised version of the con-
tingency table. All binary measures introduced below can
be computed on the entries of the contingency Table 5.

Peaks present in list X, but not in list Y, are denoted by
, likewise present in Y, but not in X by . We

multiplied the mismatches by θ to assign a variable
weight. Therefore, , as well as  were replaced by

 and , respectively. To include the weight-
ing of missing mass accuracy in computing the dissimilar-
ities one can set , with  defined by
the Equation 2. Our data are asymmetric in the sense that
we can only evaluate existing peaks and do not count the
absence of peaks in both peak-lists at a mass. Measures
that utilise only this information are the Gower coefficient
and Fowlkes-Mallows statistics. Additionally, we were
interested in the performance of measures that take into
account the marginal M and hence the entry  is
required (Hubert's Γ (Appendix Equation 16) or the rela-
tive mutual information (Appendix Equation 19)).

Since the peak-lists can have different length and the max-
imal peak-list length is undefined, we defined the entry M
length of a matched peak-lists pairs as follows:

where N is an arbitrary user defined constant and c = 1 in

case of the Huberts Γ and c = 0 otherwise. By this defini-
tion, due to the use of the maximum function we avoided

the case when  becomes less than zero (see equation

4 for definition of ). In this study we used two differ-

ent values of N. We set N = 0 and the second value equal
to twice the length of the longest peak-list in each dataset.

Given all entries of the modified contingency Table (5),
the marginals could be computed by equations (4 – 8):

A summary of the measures studied here can be found in
the the Appendix section.
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Measures based on peak intensities and intensity ranks
Before computing the measures based on peak intensities,
we have applied intensity transformations and scaling
procedures. The peak intensities were transformed by tak-
ing the square root, as suggested by Tabb et al. [22], and
the logarithm. Furthermore, we replaced the intensities by
their ranks within the peak-list [27]. The scaling proce-
dures used included total ion current count normalisation
[34], vector length normalisation, root mean square nor-
malisation and z-score normalisation (a detailed descrip-
tion can be found in the Appendix section).

In our study, we investigated several pairwise similarity
measures to compare two peak-lists. These measures are
either measures of similarity (such as covariance) or meas-
ures of distance (such as the lp metrics). In order to make
both classes of measures comparable we transformed each
similarity measure into an appropriate dissimilarity meas-
ure. Moreover, we introduced the factor wi to weight miss-
ing mass measurement accuracy (cf. Methods – Weighting
the missing mass measurement accuracy) and non-match-
ing peaks (cf. Methods – Non matching peak pairs).

The dot-product of two vectors is defined

where IX and IY are the intensity vectors of two matched
peak-lists (cf. Methods – Finding the matching peaks) of

length N, and  is defined by the Equation 2 for match-

ing peaks and equals θ for non-matching peaks. In case of
sum-mean-square, total ion count and vector length scal-
ing, the product of non matching peak-pairs is zero and

therefore this measure is independent of θ. If the intensi-
ties of the matched peak-lists are z-score scaled the out-

come will depend on the value of θ. Furthermore,
augmenting the peak-lists by zero pairs in order to
increase their length will increase DP for z-score and root-
mean-square scaled data. The most prominent represent-

ative of this family is the spectral angle (the dot-product
of vector length normalised data). It has a geometric inter-
pretation. It is equal to the cosine of the angle enclosed by
the two vectors.

Covariance
The covariance is a measure of dependency between ran-
dom variables Ix and Iy [61] and is defined as:

where IX, IY, N,  are defined as above.

The best known representative of this family of measures
is the Pearson correlation, which is obtained if we com-
pute the covariance of z-score scaled intensity vectors.

Metric-based measures
The Euclidean and Manhattan distances belong to the
family of lp metrics and can be expressed using equation:

In case of the Euclidean distance p = 2, and for the Man-
hattan distance p = 1. The Euclidean distance penalises
large intensity differences mores than the Manhattan dis-
tance. The outcome of this measure will change due to dif-
ferent sample wise scaling of the intensities. In case of the
z-score scaling the outcome will depend on the user
defined peak-list length N (Equation 3).

Similarity index and Canberra distance
The Similarity index [33] and Canberra Distance [62]
measure the relative distance and can be expressed by the
equation:
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Setting p = 2 yields the similarity index, while p = 1 results
in the Canberra distance. Similarly, as in case of the lp met-
rics, the similarity index with p = 2 will be more influ-
enced by large intensity differences than the Canberra
distance.

If the term x + y in the denominator equals zero due to x
= -y, with x ≠ 0 ∨ y ≠ 0, infinity +∞ is returned [60].

Sum of agreeing intensities
The sum of agreeing intensities is defined by the equation:

It shares with the similarity index and the Canberra dis-
tance the property that each pair of matching peaks will
contribute to the final score a proportion in the range of
[0,1/n]. The sum of agreeing intensities however, puts
more emphasis on the agreement of peak intensities. Peak
pairs whose intensity differences are larger than their aver-
age intensity receive a weight of zero.

Computation
All scores presented in the results section were computed
for 75 clusters. The clusters were sampled from the data-
sets without replacement. For each cluster we randomly
chose 2 – 20 (PMF-data) 2 – 7 (MS/MS) samples. This pro-
cedure was repeated five times and the average of the
scores was computed. The pairwise peak-list comparison
approaches were computed with a mass measurement
error of 0.7Da for the MS/MS data, and of 0.2Da for the
PMF data. The PAUC areas were computed using in-house

developed R functions. Other R packages provide a huge
variety of statistical tools for further analysis of the dissim-
ilarities such as clustering algorithms and validation or
multidimensional scaling methods [67].

Appendix
Binary measures
Jaccard/Gower coefficient

The matching peak count is the dot-product of the two
peak-lists and counts the number of matching peaks

( ). Since peak-lists have different numbers of non-

zero elements, this dot product must be normalised by the
total counts. The Jaccard coefficient is a normalised ver-
sion of the matching peak count, whose distance version
is given by:

A generalised version of the Jaccard coefficient in which

 and  is weighted by a constant θ was intro-

duced by Gower et al. [63].

Fowlkes-Mallows statistics
The Fowlkes-Mallows statistics [64] (introduced in the
context of clustering validation by use of contingency
tables) are the matching peak counts normalised by the
geometric mean of the peak-lists lengths. The equation of
the distance-like version is given by:

Huberts Γ
Using binary signals, we can transform the formula of the
correlation coefficient such that it uses the values of the
contingency table to obtain:
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Table 6: Peptide (PMF) peak-list and peptide fragment ions (MS/MS) peak-list properties. MME – mass measurement error. The rows 
1 and 4 provide &five-number summary and the mean of the peak-lists lengths (number of peaks in peak-list) in the dataset. Rows 2,3 
(PMF) and 5,6 (MS/MS) provide the five-number summary and the mean of the number of matches observed if comparing within and 
between cluster peak-lists pairs. Min. – minimum, 1st Qu. – first quartile, 3rd Qu. – third quartile, Max. – maximum

Data MME [Da] Mass range [Da]

Min. Max. Min. 1st Qu. Median Mean 3rd Qu. Max.

1 PMF ±0.1 713 4050 3 17 30 36 50 124
2 matching peaks between clusters peak-lists 0 0 0 0.62 1 32
3 matching peaks within clusters peak-lists 0 7 12 15.4 21 68
4 MS/MS ±0.5 129 2000 35 97 134 136 170 354
5 matching peaks between clusters peak-lists 0 9 15 16 22 94
6 matching peaks within clusters peak-lists 8 44 56 57 69 133
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We observed that the numerator was maximised if all sig-
nals were expressed equally. To avoid the fact that the

denominator becomes zero (which is the case if  or

 = 0 and occurs if one peak-list is included in the

other) we set c = 1 in equation (3).

Relative mutual information
We were additionally interested in the performance of
information theoretic concepts. Given the two peak-lists,
X and Y, the amount of information about peak-list X
inherent in peak-list Y (and vice versa) is given by the
mutual information (H) [65]:

To be able to use the mutual information as a similarity
measure, so it could distinguish positive from negative
correlation, we introduced the following scaling term
[66]:

Furthermore, we adjusted it for the information inherent
in the individual peak-lists. The adjustment was done
using the entropy of the individual peak-lists, which for a
peak-list X is given by:

Thus, we defined the relative mutual information:

The relative mutual information is small if both peak-lists
are similar and high if they differ. Since the inequalities

H(X; Y) ≥ 0 and H(X; Y) ≤ min{H(X), H(Y)}

holds, this measure is bounded to the interval [-1,1]. The
relative mutual information has been introduced before
[36], in the context of clustering gene expression data.

Peak intensity scaling
The purpose of scaling is to allow the comparison of peak-
lists with different intensity values i.e. due to different
scale of the detector used or due to different amount of
sample. Since intensities in different peak-lists could have
different intensity ranges, we used standard scaling proce-
dures to account for this bias.

• Total ion current count normalisation [34,35] is defined
as:

where Ii is the intensity of the peak i in the peak-list of

length N. Here, the intensities are divided by the sum of
all intensities, so that after scaling the sum of the intensi-

ties in each peak-list equals one ( ). The total ion

count is better known as the l1 – norm since Ii > 0 ∀ i

• Vector length normalisation is defined as:

Here, the peak intensities are divided by the l = 2-norm of
the intensity vector, which causes that the Euclidean

length of the vector equals one ( ).

• Root mean square normalisation is defined as:

Here, the intensities are divided by their root-mean-
square [60].

• z-score normalisation is defined as:

where Ii, i, N defined as above, Ī denotes the average

intensity of a peak-list and .

Here, two scaling steps are performed, centring and subse-
quent division by the standard deviation. This causes each
scaled peak-list to have an average intensity of zero and a
standard deviation of one.
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The scaling is preferred if intensities and variance in an
arbitrary sample are much higher than in the other sam-
ples, which will determine the outcome of the peak-list
comparisons. Data transformation was applied before the
peak-list matching, whereas data scaling was performed
for already matched peak-lists.

Features of the pairwise peak-list comparison and their 
properties
The number of matches
While the intensities of individual peaks may considera-
bly vary between the spectra, the m/z values of fragment
ions can be measured with at least the accuracy of a single
m/z in the majority of mass spectrometers. If the primary
fragment ions/peptides in a pair of spectra have the same
m/z locations, the spectra are judged to result from the
same peptide/protein, regardless of their peak intensities.
Table 6 (rows one and four) summarises the properties of
both: mass measurement error (MME) and the mass
measurement range of the peak-lists. It also provides the
five-number summary and the mean of the peak-lists
lengths. The observed number of matches for within and
between cluster peak-list pairs is shown in Table 6 (rows
two, three, five and six). The theoretical probability of i
matches if two independent peak-lists of known length,

mass measurement range and resolution are compared,
can be modelled using the hyper-geometric distribution
[40]. In case of PMF data, for peak-lists drawn from
between clusters, a higher number of matches than
expected for independent peak-lists was observed. This
difference might be due to incomplete separation of pro-
teins obtained after two-dimensional (2D) gel electro-
phoresis [41] and because the sequence database entries
have different database IDs, even if the protein sequences
exhibit a high fraction of sequence identity (i.e. protein
families).

For 75 clusters of various size (2 – 20 samples/cluster)
sampled five times from the PMF dataset, we have com-
puted the number of matching peaks for all peak-list
pairs. The number of matching peaks was in almost all
cases higher, if the peak-lists compared laid within one
cluster (magenta histogram, Figure 7A), than if they
occurred between different clusters (green histogram, Fig-
ure 7A). For example, 95% of within cluster peak-list pairs
had more than 4 matches, but only 1% of between cluster
peak-list pairs had more than 4 matches. The cases where
the number of matches between peak-list from within one
cluster equalled zero, can be explained by the fact that the

A – Histogram of the number (bandwith = 1) of matching peaks for peak-lists chosen from the same cluster (magenta) and from different clusters (green)Figure 7
A – Histogram of the number (bandwith = 1) of matching peaks for peak-lists chosen from the same cluster (magenta) and 
from different clusters (green). B – Histogram of the number (bandwith = 3) of non-matching peaks, if peak-lists were chosen 
from the same (magenta) or from different clusters (green).
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spectra were measured on non-overlapping fragments of
the same protein.

The masses of randomly matching peaks differ, on aver-
age, more than the masses of non-random matching
peaks. Therefore, weighting of mass measurement accu-
racy using a triangular function (see Equation 2) was
implemented. This function reduced the weight of peaks
with a small overlap.

Furthermore, in case of the MS/MS peak-lists, clusters of
peaks separated by a mass smaller than the mass measure-
ment accuracy (which is used for searches of matching
peaks) were observed. Therefore, during matching the two
peak-lists, some ambiguous matches (that is a peak is
assigned to more than one peak in the second peak-list)
occurred (cf. Methods – Figure 6, case A). In order to gen-
erate an unambiguous pairwise assignment of peaks we
computed the non-crossing matching using standard
dynamic programming techniques (cf. Methods – Finding
the matching peaks).

We concluded that the probability of matches between
independent peak-lists is higher in case of MS/MS than
PMF data because of its lower mass measurement accu-

racy, smaller mass range and larger number of peaks.
Hence, the number of matches has a lower discriminating
power in case of MS/MS than of PMF data.

The number of non-matching peaks
To discriminate peak-list pairs as being within or between
clusters the number of non-matching peaks can be used.
Figure 7B presents histograms of the number of non-
matching peaks between peak-list pairs (in magenta – the
number of peaks that did not match if we compared two
peak-lists within a cluster; in green – the number of peaks
that did not match if we compare peak-lists pairs between
two clusters). We observed that the probability of encoun-
tering a within peak-list pair increased if the number of
non-matching peaks was small.

We have evaluated the performance of the following
asymmetric binary measures: Gower coefficient [63] (cf.
Appendix Equation 14) and Fowlkes-Mallows statistics
(cf. Appendix Equation 15). These measures incorporate
the number of matches and mismatches. If the length of
the aligned peak-lists is defined (see Equation 3), sym-
metric binary measures e.g. Huberts Γ (Appendix Equa-
tion 16) and relative mutual information (Appendix
Equation 19) can also be used. Furthermore, we examined

Peak IntensitiesFigure 8
Peak Intensities. A) Histogram of intensities: X-axes – Intensity of log transformed root-means-square scaled peak intensities. 
Y-axis – Frequency. In grey: Histogram of the peak intensities that do not match a peak in any other peak-lists (peak-lists) within 
the same cluster (this mass is observed only once in the cluster). In magenta: Histogram of intensities of peaks that do match a 
peak within any peak-list within cluster (this mass is observed at least twice in the cluster). B) Altman Bland plot of intensities of 
the matching peaks for peak-lists pairs from within a cluster. C) Altman Bland plot of intensities of matching peaks for peak-lists 
pairs of between clusters.
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whether increasing or decreasing the weight of non-
matching peaks by a factor of two can increase the per-
formance of the pairwise peak-list comparison (cf. Meth-
ods – Non matching peak pairs).

Peak intensities

Intensities associated with the masses observed at least
twice within a cluster (magenta density, Figure 8A) tend to
have higher peak intensities, compared to intensities of
peaks whose masses are observed only once within a clus-
ter (grey density, Figure 8A). Furthermore, intensities IX

and IY, of matching peaks in peak-lists from within a clus-

ter, were more strongly correlated

( , ) (Fig-

ure 8B) than those of peaks matching between clusters

( , )

(Figure 8C). The correlation was determined for log trans-
formed and root mean square scaled peak intensities. This
indicated that the intensity of peaks could be employed
for better discrimination of within and between cluster
peak-list pairs. We have studied the performance of sev-
eral intensity based measures: the covariance (cf. Methods
Equation 10), the dot-product (cf. Methods Equation 9),
the Manhattan and Euclidean distances (cf. Methods
Equation 11), the relative distances Canberra and similar-
ity index (cf. Methods Equation 12), and the sum of agree-
ing intensities (cf. Methods Equation 13).

Peak intensity transformation
If two peaks match within a cluster, the peak intensities are
very likely (except random matches) to be estimates of a
number of the ions of the same peptide (PMF) or peptide
fragment (MS/MS). These estimates might contain errors
resulting from random noise, different levels of peptide
fragmentation due to variations in collision energy and dif-
ferent signal-to-noise ratios due to varying concentrations
of sample present [22].

The observed error can depend on the observed intensity.
Thus, any statistical model would either directly account
for the variances or transform the data so that the vari-
ances are approximately equal for all peak intensity levels.

To be able to determine the best variance stabilising trans-
formation, one can examine the proportionate reduction in
variation R2 [42], obtained by analysis of the model |∆I| ~
Ī + Ī2, where ∆I = IX - IY are the residues and Ī = (IX + YY)/2
represent the average peak intensity of two matching
peaks. This model accounts for a correlation of variance
and intensity (|∆I| ~ Ī), unlike the naive model ∆I = E(∆I)
[43]. If the variance is stable, the naive model suffices, and
the proportionate reduction in variation obtained with
the complex model |∆I| ~ Ī + Ī2 should be close to zero.

The Altman-Bland plots [43] in Figures 8B and 8C, show
the residues (∆I = IX - IY) as a function of the average peak
intensity Ī = (IX + IY)/2, where IX and IY are the intensities
of a matching peak pair (X, Y). The peak intensities are
log-transformed and root mean square scaled (cf. Meth-
ods – Equation 22). Table 7 shows the adjusted R2 of the
model |∆I| ~ Ī + Ī2 for various peak intensity transforma-
tions. The log-transformation gives the best variance stabi-
lisation.

To elucidate to which extent the transformation influ-
ences the PAUC score, as compared to other factors, we
kept the different transformations as factor levels of the
pairwise peak-list comparison process. This wasdone
despite the fact that the best transformation was deter-
mined by the analysis of the proportionate reduction of
variance. In addition to the raw, root-squared and log-
transformed intensities we included the ranking of the
intensities [27] among the transformations studied by
ANOVA.

Abbreviations
• ANOVA – analysis of variance

• ROC – receiver operating characteristic curve.

• PAUC – partial area under the curve.

• TP – true positive.

• FP – false positive.

• FN – false negative.

• TN – true negative.
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