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Abstract
Background: We present a biological data warehouse called Atlas that locally stores and
integrates biological sequences, molecular interactions, homology information, functional
annotations of genes, and biological ontologies. The goal of the system is to provide data, as well
as a software infrastructure for bioinformatics research and development.

Description: The Atlas system is based on relational data models that we developed for each of
the source data types. Data stored within these relational models are managed through Structured
Query Language (SQL) calls that are implemented in a set of Application Programming Interfaces
(APIs). The APIs include three languages: C++, Java, and Perl. The methods in these API libraries
are used to construct a set of loader applications, which parse and load the source datasets into
the Atlas database, and a set of toolbox applications which facilitate data retrieval. Atlas stores and
integrates local instances of GenBank, RefSeq, UniProt, Human Protein Reference Database
(HPRD), Biomolecular Interaction Network Database (BIND), Database of Interacting Proteins
(DIP), Molecular Interactions Database (MINT), IntAct, NCBI Taxonomy, Gene Ontology (GO),
Online Mendelian Inheritance in Man (OMIM), LocusLink, Entrez Gene and HomoloGene. The
retrieval APIs and toolbox applications are critical components that offer end-users flexible, easy,
integrated access to this data. We present use cases that use Atlas to integrate these sources for
genome annotation, inference of molecular interactions across species, and gene-disease
associations.

Conclusion: The Atlas biological data warehouse serves as data infrastructure for bioinformatics
research and development. It forms the backbone of the research activities in our laboratory and
facilitates the integration of disparate, heterogeneous biological sources of data enabling new
scientific inferences. Atlas achieves integration of diverse data sets at two levels. First, Atlas stores
data of similar types using common data models, enforcing the relationships between data types.
Second, integration is achieved through a combination of APIs, ontology, and tools. The Atlas
software is freely available under the GNU General Public License at: http://bioinformatics.ubc.ca/
atlas/
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Background
One important goal in bioinformatics is to integrate data
from disparate sources of heterogeneous biological infor-
mation. Data integration allows us to assemble targeted
data reagents for bioinformatics analyses, and to discover
scientific relationships between data. Most public reposi-
tories of biological data focus on deriving and providing
one particular type of data, be it biological sequences
(e.g., GenBank [1], UniProt [2]), molecular interactions
(The Biomolecular Interaction Network Database (BIND)
[3-5], The Human Protein Reference Database (HPRD)
[6]), or gene expression (The Stanford microarray data-
base [7]). Integrating these disparate sources of data ena-
bles researchers to discover new associations between the
data, or validate existing hypotheses.

Several recent studies have demonstrated the power of
integrative bioinformatics. Using data from genomic
sequences and annotations, mRNA expression, and sub-
cellular localization, Mootha et al were able to use bioin-
formatics approaches to identify one of the disease genes
responsible for Leigh syndrome [8]. In another example
of an integrative bioinformatics approach, Stuart et al used
existing publicly available data to generate hypotheses
about the functional roles of gene sets [9]. These two
examples illustrate the potential of querying integrated
public data to reveal novel relationships.

However, working with publicly available biological data
can be challenging due to the volume and complexity of
the data types. With the proliferation of massive, publicly
available data sets, researchers need a way to readily access
this data. Querying distributed data has inherent limita-
tions such as the server resource restrictions of the remote
resource, concerns of secure data transmission over the
internet, and of course the actual logistics of querying dis-
tributed resources. In such an environment, the distrib-
uted search space is difficult to process in a high-
throughput way, and requires complex queries to tie
together the heterogeneous data. Consequently, there is a
need for a data integration solution that facilitates search
and retrieval in an efficient, flexible, high-throughput
manner.

Several active solutions are available that attempt to inte-
grate data and that provide the tools to retrieve that data.
We have grouped these existing systems into three major
categories, based on how the data is stored and integrated:
full record, SQL-based, and distributed.

Full record systems like SRS [10] and Entrez [11] store the
intact record in a table and extract specific fields to index
and cross-reference. SeqHound [12] is a powerful system
that stores Entrez information (fully annotated sequence
and structure information) locally and can be accessed

programmatically through application programming
interfaces APIs. Much like Entrez and SRS, fully intact
records are stored in SeqHound, with specific fields
indexed. The major advantages of SeqHound over Entrez
is that it is locally installable and provides API access to
the data. SeqHound highlights the power and utility of a
locally installable warehouse.

SQL-based systems implement relational models to store
data. This allows SQL-level access to specific parts of the
data model, enabling detailed queries on the data for
greater specificity of results. The data in relational models
are stored as primitive data types as opposed to storing
fully intact records that need parsing or processing to
access the parts therein. For example, sequences and their
annotated biological features can be stored in their own
fields in the database, permitting 'substring' operations to
extract parts of the sequence that span a particular feature
type using SQL. Systems like EnsMart [13] and DBGET/
LinkDB [14] provide data in a relational form, such that
the power of SQL is at users' disposal. EnsMart's relational
back-end provides users with the ability to construct intri-
cate queries on the data by taking advantage of SQL.

Distributed systems implement software to access hetero-
geneous databases that are dispersed over the internet.
JXP4BIGI [15] have created a generalized method to
access, extract, transform, and integrate distributed data.
The tool acts as a middle-ware for constructing a local
instance of a data warehouse. This system is customizable,
versatile and uses industry standard data modeling, distri-
bution, and presentation software. BioMOBY [16] is a
semantic-based system utilizing ontologies, and a services
model to support user queries. TAMBIS [17], like Bio-
MOBY, is also a semantic-based system, and is also serv-
ice-model driven. These semantic web implementations
do not house the data locally, but rather query the original
data provider for available services before sending queries
to that particular data provider. These systems are quite
powerful for interrogating disparate data sources of infor-
mation. However, a disadvantage is that large queries may
take a long time to return or may not be returned at all due
to server resource restrictions. As well, the level of data
integration is only at the services level, rather than at a
field-based level which can provide much better resolu-
tion for queries.

Atlas is a versatile, flexible, and extensible data warehouse
that provides a solution to these challenges. Our approach
establishes common relational data models enabling the
reuse of each class of data model to store all data of the
same type. For example, a single interaction data model is
used to store information from any of the interaction data
sets such as BIND, MINT, EBI IntAct [18], Database of
Interacting Proteins (DIP) [19], and HPRD.
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Instances of these data models, once populated by the
source data, can then be interrogated using the developed
retrieval APIs. These APIs encapsulate the SQL calls used
for fine granular access to the data. Furthermore, ontolog-
ical information stored in these databases captures the
relationships between the many data types. Finally, tools
are developed that capitalize on the API methods, to facil-
itate application specific demands of end-users, ranging
from simple queries of specific data types, to complex
queries that infer molecular interactions across species.
Atlas then, is designed for use by a wide audience from
biologist to software developer.

Construction and content
The Atlas system is made up of five main parts: 1) the
source data, 2) the ontology system, 3) the relational data
models, 4) the APIs, and 5) the applications (see Figure
1). The following sections outline the Atlas architecture in
detail.

Source data
We categorize the Atlas data sources into four main
groups: 'sequence', 'molecular interactions', 'gene related
resources', and 'ontology' (Figure 1). Currently, the data
sources that fall into these categories are: 'sequence', Gen-
Bank, RefSeq [11], and UniProt ; 'molecular interactions',
HPRD, BIND, DIP, IntAct, and MINT; 'gene related
resources', Online Mendelian Inheritance in Man
(OMIM) [20], LocusLink [11,21], Entrez Gene [22], and
HomoloGene [11,23]; and 'ontology', NCBI Taxonomy
[11,24], and Gene Ontology [25,26]. Table 1 lists each of
the sources of data incorporated into Atlas, and provides
URLs where those sources can be found. Note that Gen-
Bank refers to the integrated records from the Interna-
tional Nucleotide Sequence Database Collaboration
(GenBank [11], DDBJ [27], and EMBL [28]).

Relational data models (schema design)
This section describes the composition of the data models
of the source data included in Atlas. The data models we
present here are implemented in MySQL [29], an open
source relational database management system (RDBMS).
As such we only provide Data Definition Language (DDL)
files that are compatible with MySQL. Currently there are
no plans to port these to other RDBMS systems.

Ontology
Ontologies serve to define the concepts and relationships
both within a system and between systems. This vocabu-
lary of concepts and relationships is representative of a
given expert domain of discourse such as sequences, gene
annotations, and taxonomy. In Atlas, ontologies are cate-
gorized into two classes: Atlas defined ontologies and
external ontologies. The Atlas defined ontologies are used
to represent the concepts and relationships found specifi-

cally within Atlas, as well as to characterize concepts and
relationships implicitly defined by the GenBank Sequence
Feature data model. External ontologies include such
things as NCBI Taxonomy for organism classification,
Gene Ontology for gene annotations enabling categoriza-
tion of biological features based on function, process, and
cellular component, and the Proteomics Standards Initia-
tive Molecular Interaction Standard (PSI-MI) controlled
vocabulary [30]. The Atlas internal ontologies contain def-
initions of terms such as identifier types like accession
numbers, GI numbers, PSI-MI terms and identifiers,
PubMed identifiers, file format types like XML, relation-
ship terms, and concepts like GenBank Sequence Features
and Feature Qualifiers, Sequencing Techniques. This part
of the Atlas ontology consists of three tables: Ontology
which include terms and definitions, Ontology_type that
defines ontology source and category, and
Ontology_Ontology which stores term-term relation-
ships. Foreign key constraints are used to ensure data
integrity. In contrast to these tightly integrated ontologies,
two other external vocabularies are instantiated as inde-
pendent MySQL databases: GO and NCBI Taxonomy.
These ontologies, unlike the others, do not implement
foreign key enforcements to the other database modules.
As a result, when ontology terms are updated, references
to deleted terms deemed to be invalid are kept in the sys-
tem until such time a full data set reload is performed.

The Atlas internal ontology exists largely to help describe
Sequence Features as they exists in the GenBank Sequence
Feature model, as this is the primary data source for fea-
tures. Neither the Open Biological Ontologies (OBO) [31]
relationship terms, nor the Sequence Ontology (SO) [32]
relationship terms suited our needs as a feature ontology.
We utilize the basic relationships similarly found in OBO
and SO, such as 'is-a', 'part-of', and 'inverse-of' but we also
define more specific terms such as 'is-synonym-of', 'refers
to PubMed', 'feature-includes-qualifier', and 'gene-con-
tains-promoter'. By defining these specific relationships,
we simplify the ontology tree into a flatter structure that is
simple to query. In addition, subject-predicate-object tri-
ples are not explicitly defined in the internal ontology, but
rather are assigned at loading-time as the GenBank
Sequence Feature data is parsed and stored into the data-
base. The relationship terms are not necessarily complete,
but sufficient for our needs, and as new relationships are
encountered, these are added accordingly. For example,
we mapped all 66 GenBank feature keys to an entry in our
Ontology table, which has enabled us to do feature-level
queries for any type of feature in GenBank, or genomes we
annotated in-house. We caution the reader that it is gener-
ally understood that not all GenBank features have the
same informational value, nor quality of information.
However, to capture the maximum amount of informa-
tion, we chose to extract and store all annotated features.
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Architecture of the Atlas data warehouseFigure 1
Architecture of the Atlas data warehouse. The data integrated in Atlas are first downloaded as data files from the public 
repositories shown in the Data Source panel. These data files are then parsed and loaded into the MySQL relational data-
bases using the Atlas loaders. The Atlas Databases panel shows the databases grouped by biological theme. These groups are 
sequences (green), molecular interactions (yellow); genes and functional categorization (blue); and ontologies (orange). For 
each database the available data retrieval methods are marked as SQL (S), C++ Atlas API (C), Java Atlas API (J), and Perl Atlas 
API (P). The Retrieval panel shows the flexible, layered architecture of the interfaces to the databases. Data can be accessed 
directly using the MySQL client with SQL statements, through the APIs in C++, Java, and Perl, and through the end-user appli-
cations implemented in the Toolbox. The APIs can also be used to implement web-based tools, or standalone applications.
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With the locations of the features stored in Atlas, sub-
sequences of features can be extracted in a high-through-
put manner using SQL, the APIs, or the toolbox applica-
tions. This is particularly useful, for example, in extracting
features like non-coding RNAs from complete genomes,
or regions spanning a particular gene of interest. We are
actively integrating selected external ontologies, and
expanding our internal ontologies. Plans for ontology
integration include the National Library of Medicine
(NLM) MeSH term and the Microarray Gene Expression
Data (MGED) ontology [33]. We are evaluating the
option of adopting frame-based ontology representations,
and existing ontologies such as TAMBIS Ontology (TaO)
[17,34]. In the near future, we will release the Atlas ontol-
ogy in other formats such as GO flat file, RDF/XML, and
OWL. A complete list of the ontologies is available on the
Atlas website, and we provide the MySQL dumps for
these: http://bioinformatics.ubc.ca/atlas/ontology/.

Sequence model
The schema for sequences is organized into three main
parts: sequence, which stores the sequence string and asso-
ciated meta-data such as sequencing technique and mole-
cule type; sequence identifiers, for which all identifiers that
appear in the records are stored (see Figure 2); and anno-
tated sequence features, for which feature keys, qualifier
keys and values and feature locations are stored. Though
output of features into General Feature Format Version 2
(GFF2) [35] is supported, the Feature table, one will note,
does not explicitly contain source or type fields. This

information is stored in other tables and can be pulled
together dynamically as a GFF2 record is being con-
structed. For example, the BioID_type table contains the
database source information in its db_source field and the
internal Atlas Ontology table's term field which repre-
sents the feature type used in the GFF2 output. However,
to reflect the fact that features in such output are now
reconstructed from the Atlas system, we prefix the original
source type with 'Atlas:', such as in 'Atlas:GenBank/Ref-
Seq'. The reader will note that there are two different
Ontology tables in Atlas. A more detailed explanation for
the motivation for having two different kinds of Ontology
tables is described in the previous Ontology section. How-
ever, in the context of sequence features, it is the internal
Atlas Ontology table that is relevant.

The sequence string is stored in the Sequence table. Addi-
tional fields for: sequencing technique, tech, such as
expressed sequence tags (ESTs); molecule type, moltype,
such as DNA, RNA, protein, and nucleic acid; sequence
length, length; the NCBI taxonomy identifier, taxonid;
and the definition line, defline, are also stored in the
Sequence table. Fields such as taxonid, tech, and moltype
can be used separately, or in combination to produce cus-
tomizable queries that return highly specific sets of data.
Sequence identifiers, as with all other external identifiers,
are managed through a layer of abstraction by associating
them with internal identifiers within Atlas, which act as
primary keys. Having a single internal identifier for a
sequence allows us to relate all other identifiers found in

Table 1: Data sources included in Atlas.

Atlas Data Source Summary Table *

Data Source URL Data Format Atlas Update Update Mechanism

GenBank Sequence ftp://ftp.ncbi.nih.gov/ncbi-asn1/ ASN.1 Daily Incremental
GenBank Sequence ftp://ftp.ncbi.nih.gov/ncbi-asn1/ ASN.1 Release Reload
GenBank Refseq ftp://ftp.ncbi.nih.gov/refseq/ ASN.1 Daily Incremental
GenBank Refseq ftp://ftp.ncbi.nih.gov/refseq/ ASN.1 Release Reload
NCBI Taxonomy ftp://ftp.ncbi.nih.gov/pub/taxonomy/ Delimited Text Release Reload
HomoloGene ftp://ftp.ncbi.nih.gov/pub/HomoloGene/ Delimited Text Daily Reload
OMIM ftp://ftp.ncbi.nih.gov/repository/OMIM/ Delimited Text Daily Reload
Gene ftp://ftp.ncbi.nih.gov/gene/ Delimited Text Daily Reload
LocusLink ftp://ftp.ncbi.nih.gov/refseq/LocusLink/ Delimited Text Daily Reload
UniProt ftp://ftp.uniprot.org/pub/databases/uniprot/knowledgebase/ XML Bi-weekly Reload
HPRD http://www.hprd.org/download/ XML Release Reload
MINT http://mint.bio.uniroma2.it/mint/ XML Release Reload
DIP http://dip.doe-mbi.ucla.edu/dip/Download.cgi XML Release Reload
BIND ftp://ftp.blueprint.org/pub/BIND/current/bindflatfiles/bindindex/ Delimited Text Release Reload
GO http://www.godatabase.org/dev/database/archive/latest/ MySQL dump Release Reload

* up-to-date information about data sources and statistics are available from the Atlas website http://bioinformatics.ubc.ca/atlas/
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the record to each other. In addition, ontologies for all
types of identifiers currently found in GenBank ASN.1
data files, as well as relationships between these
identifiers are modeled in the Bioid and Bioid_Bioid
tables, respectively. As mentioned above, sequence fea-
tures are also modeled in Atlas. For details please refer to
the Ontology section below.

Molecular interactions
For molecular interaction data, we developed a relational
model compliant with the PSI-MI. Adopting a common
interaction data model allowed us to unify data from dif-

ferent sources, and allows us to develop a set of common
interaction retrieval APIs.

Currently, HPRD, BIND, DIP, IntAct and MINT are
included as interaction data sources. BIND, DIP, MINT
and IntAct release their data in PSI-MI format. HPRD is
releasing data in both PSI-MI standard format, and their
own XML format. At the time of this publication, BIND
released data as indexed flat files, ASN.1, XML, and PSI-MI
format (level 2).

The Atlas interaction model consists of four major enti-
ties: Interactor, Interaction, Experiments and Dbxref.

Atlas database schemaFigure 2
Atlas database schema. There are four major functional groups. Biological Sequences: includes instances of GenBank 
sequences, RefSeq sequences, and UniProt sequences; Molecular Interactions: includes instances of BIND, HPRD, DIP, IntAct 
and MINT; Gene Related Resources: includes instances of OMIM, Entrez Gene, and LocusLink, and HomoloGene; and Ontol-
ogy: includes instances of Taxonomy, Atlas internal ontologies, Gene Ontology, and PSI-MI ontologies.
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PK qualifier_id

FK1 feature_id
value

FK2 ontology_id

Ontology_Ontology

PK ontology_ontology_id

FK1 ontology_id1
FK2 ontology_id2

description

Blobfile

PK blobfile_id

FK1 bioid_id
blob_file
ontology_id
timestamp

FK2 load_stat_id Ontology_type

PK idbterm_type_id

ontology_type
description

Load_stat

PK load_stat_id

total_seconds
filename
records
timestamp

Comment

PK comment_id

FK1 bioid_id
text
rank

Ontology

Feature_Feature

PK feature_feature_id

FK1,I1 feature_id1
FK2,I2 feature_id2
FK3,I3 ontology_id

Sequence

Molecular Interactions

Ontology

PK ontology_id

FK1 ontology_type_id
term
description
atlas_id
external_id

Ontology_Ontology

PK ontology_ontology_id

FK1 ontology_id1
FK2 ontology_id2

description
FK3 ontology_id

Ontology_type

PK ontology_type_id

ontology_type
description

Generif

PK gnenrif_id

FK1 geneid
last_update
description

term

PK id

name
term_type
acc
is_obsolete
is_root

term2term

PK id

FK1 relationship_type_id
FK2 term1_id
FK3 term2_id

term_definition

PK,FK1 term_id

term_definition
FK2 dbxref_id

term_comment
reference

term_dbxref

PK,FK1 term_id

FK2 dbxref_id
is_for_definition

dbxref

PK id

xref_key
xref_keytype
xref_dbname
xref_desc

term_synonym

PK,FK1 term_id

term_synonym
acc_synonym

FK2 synonym_type_id

graph_path

PK id

FK1 term1_id
FK2 term2_id

distance

Gene Ontology

Omim

PK omim_id

month_entered
day_entered
year_entered
location
space1
comments
space2

Omim
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Interactor holds information about one of the interacting
members in an interaction, such as the interactor's name,
taxonomy, sequence, molecular type, features, subcellular
localizations, and external identifiers. An Interaction con-
sists of one or more interactors, and one or more
experiments.

Experiment stores information about the experiments
used to identify interactions. Finally, Dbxref is used to
crosslink the external identifiers such PubMed id, RefSeq
accession, HPRD id, BIND id, and Ontology id, for exam-
ple (see Figure 2). As an additional note, the Feature table
in the Interaction database is mainly used to store protein
features involved in the interactions.

We will release a PSI-MI level 2 compliant version of the
Interaction model, and API upon public release of the
level 2 specification.

Gene related resources
We integrated OMIM, LocusLink, Entrez Gene, Homolo-
Gene and the annotation part of GO into the Atlas system
in order to provide gene-related information. Conven-
iently, the OMIM and LocusLink data sources provide flat
file tables which could be imported directly with the
MySQL import function. Entrez Gene will eventually
replace LocusLink, however in order to maintain a
smooth transition and backward compatibility, we are
maintaining populated relational models for both Entrez
Gene and LocusLink until LocusLink is officially retired.
Integration between HomoloGene and Sequence is
achieved by relating the taxonomic, protein sequence and
gene identifiers with Atlas' Bioid table. This allows us to
integrate these databases and provide linkage between, for
example, orthologous genes present in different interac-
tion scenarios (see Utility of the Atlas system).

Application programming interfaces
There are two classes of APIs in Atlas: loader and retrieval.
Components of Atlas for which we have developed our
own relational models, such as the Biological Sequences
component, or the Molecular Interactions component,
each have their own set of loader APIs. The loader APIs
used to build the loading applications, populate instances
of the relational models in the Atlas databases. Though
most end-users will never need to use the loader APIs,
they are critical to the implementation of the Atlas loading
process, and are provided to the software development
community. The other class of APIs are the retrieval APIs.
These APIs serve to retrieve the data stored in Atlas. They
are required for developing custom retrieval applications
such as the Atlas toolbox applications. The loader API for
Biological Sequences is implemented in C++ as it relies
heavily on the NCBI C++ Toolkit [36] to parse the ASN.1
data. The Biological Sequence retrieval API, on the other

hand, is provided in all three languages: C++, Java, and
Perl. The Java and Perl APIs return sequences as BioJava
SimpleSequence and BioPerl Bio::Seq objects, respec-
tively. The loader and retrieval APIs for Molecular Interac-
tions are provided in Java. Though retrieval APIs are not
supported in all languages, further development in Perl
and C++ will be added if our user community requests
them. Please refer to Figure 1 for a mapping of data mod-
ules to currently supported programming languages. The
project is also open source and other developers are
encouraged to contribute. All the transactions between
the APIs and the database are specified by the numerous
SQL statements which are all defined within the majority
of the API methods.

Application programming interface architecture
The API is constructed using object-oriented methodolo-
gies, employing objects to represent everything from low-
level database connections to high-level data structures,
and their access methods. This is illustrated in Figure 3.

Common in the design of the C++, Java, and Perl APIs, are
a set of APIs written for MySQL database connectivity
which handles the opening and closing of MySQL connec-
tions, as well as managing the execution of the SQL state-
ments themselves. All subsequent APIs that interact with
the Atlas database extend from this set of APIs.

Both the data loader and the retrieval utilities share a com-
mon class responsible for low-level data transformations.
This class includes methods that facilitate conversions
between two internal Atlas identifiers, such as bioid_id to
ontology_id, or methods that convert internal Atlas
identifiers to externally referenced public identifiers, such
as GenBank accession numbers, or GI numbers. Inherit-
ing this shared identifier conversion class benefits both
the loader APIs and the retrieval APIs, by providing them
with the necessary tools to integrate information.

The Biological Sequences component of Atlas manages
common identifiers, and hash maps in the Seq class. This
class is inherited by both the SeqLoad class and SeqGet
class, which define the loader methods, and retrieval
methods, respectively. Another feature of the Biological
Sequences API, is its ability to control stream output based
on molecule types. API users simply specify which mole-
cule type to filter by, through calls to higher-level retrieval
methods, and SeqGet will then handle the logistics of
stream management. Similarly with the Molecular Inter-
actions component of Atlas, the InteractionDb class is
inherited by the InteractionLoad class and the Interac-
tionGet class, respectively defining the loader and
retrieval methods which manipulate the data in memory.
Page 7 of 16
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Atlas API architectureFigure 3
Atlas API architecture. MySqlDb, Seq, SeqGet and SeqLoad classes/modules (grey) are available in all three languages: C++, 
Java, and Perl. The SeqLoad and Seqloader modules are created in C++ only as these are tightly coupled to the NCBI C++ 
Toolkit. All other classes are available in Java. Applications share the common modules SeqLoad, SeqGet, InteractionLoad, and 
InteractionGet which provide the methods necessary for loading and retrieval operations, to and from the databases. These 
modules employ additional classes (not shown) that are representative of the major data model components such as Sequence, 
Interaction, Interactor, and Dbxref, for example.
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Our Java interaction APIs, for example, are tightly coupled
to our interaction data model with classes representing all
the major schema objects such as Interaction, Feature,
Dbxref, and Experiment. The APIs are works in progress
and we continue to develop and improve them. We are
considering even more tightly coupled API development
by using XML schema code generators such as JAXB.

All the source code is provided under the GNU General
Public License (GPL), and therefore any developer can

model future API development on numerous functions
we have already implemented.

Applications
Toolbox
The Atlas toolbox is a collection of applications that use
the C++ API to perform common sequence and feature
retrieval tasks. The applications are standard Unix com-
mand-line based tools that follow a command-line
option-based interface for parameter entry. These are end-
user applications and do not require any programming

Table 2: Atlas toolbox applications.

Application Function Input Output

Sequence
ac2seq Retrieve sequences given an accession Nucleic acid or Protein Accession Number(s) Sequences in Fasta format
feat2seq Retrieve sub-sequences that span features Feature type (and qualifier) Sequences in Fasta format
gi2seq Retrieve sequences given a GenInfo identifier GenInfo Identifier(s) (GI Number(s)) Sequences in Fasta format
gi2seqentry Retrieve sequences given a GenInfo identifier GenInfo Identifier(s) (GI Number(s)) GBFF, EMBL, GFF, FTABLE, 

ASN.1, GBSEQ
tax2seq Retrieve sequences by taxonomy NCBI taxon identifier or scientific name of 

taxon
Sequences in Fasta format

tech2seq Retrieve sequences by sequencing technique Sequencing technique (eg EST, GSS, etc.) Sequences in Fasta format
techtax2seq Retrieve sequences by taxonomy and 

sequencing technique
Sequencing technique and NCBI taxonid/
scientific name of taxon

Sequences in Fasta format

Loader

fastaloader Fasta sequence data loader Sequences in Fasta format
seqloader ASN.1 sequence data loader GenBank/RefSeq ASN.1 records

Feature

ac2feat Retrieve features GenBank Accession number (s) Features in GFF or FTABLE format
gi2feat Retrieve features GenInfo Identifier(s) (GI Number(s)) Features in GFF or FTABLE format

Taxonomy

ac2tax Retrieve taxonomy given an accession 
number

GenBank Accession number (string) NCBI taxon identifier (integer)

gi2tax Retrieve taxonomy given a GenInfo identifier GenInfo Identifier (integer) NCBI taxon identifier (integer)

ID 
Converters

ac2gi Convert an accession number to a GenInfo 
identifier

GenBank Accession number (string) GenInfo Identifier (integer)

gi2ac Convert a GenInfo identifier to an accession 
number

GenInfo Identifier (integer) Accession number (string)

tax2gi Retrieve GenInfo identifiers associated with 
taxon identifier

NCBI taxon identifier (integer) GenInfo Identifier (integer)
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ability to use them. We have developed toolbox applica-
tions for sequence retrieval from accession and GI num-
bers, retrieval of sequences from all organisms beneath a
given node in the NCBI taxonomy tree, retrieval of fea-
tures given accession and GI numbers, retrieval of sub-
sequences corresponding to specific features identified by
qualifiers and their values, and retrieval of a set of interac-
tions associated with a molecule given the accession
number of an Interactor. Besides being useful tools, the
toolbox applications' source code provides good exam-
ples of application development using the APIs. Software
developers wishing to use the APIs can use these toolbox
applications as a starting point for their own custom
applications (see Table 2).

Data loaders
Data loaders are provided in Atlas to facilitate the parsing
and loading of the source datasets into their respective
Atlas database tables. Two main classes of loaders are cur-
rently supplied in the Atlas package: sequence loaders and
interaction loaders. Though other types of data are loaded
into Atlas, their loading is trivial as MySQL database
dumps of these datasets are already provided by the data
providers.

The first class of loaders is the sequence-based loaders.
Within this class there are two applications provided:
seqloader and fastaloader. The seqloader performs the
majority of the sequence loading from GenBank and
RefSeq datasets. These datasets have long been repre-
sented as ASN.1 (binary/text) by the NCBI [37], and are
compact and well defined for storing of structured data.
The seqloader was built using the NCBI C++ Software
Development Toolkit [36] which was designed to specifi-
cally parse the ASN.1 sequence data, extracting such
things as the sequence, associated identifiers, features of
the sequence and related publications. There are, how-
ever, instances where sequence data is missing from the
ASN.1 records. In these situations, we obtain the missing
records from the NCBI Entrez system in the form of Fasta
records. The fastaloader application is then used to update
the sequence field in Atlas with the sequences from the
Fasta records.

The second class of loaders is interaction-based loaders.
These loaders are exclusively implemented in Java. The
datasets loaded by this class of loaders include BIND,
HPRD, MINT, IntAct and DIP. All the interaction loaders
are designed to parse the data in the way that best deals
with that particular source data's structure and content
(mostly XML). The interaction data is loaded using a com-
mon interaction object model, and the interaction load-
ing APIs provide a flexible and extensible framework for
future interaction data loading efforts. Currently, we are
developing a PSI-MI level 2 data loader.

Besides these classes of loaders, there is also a Java based
loader that parses and loads UniProt sequence data. In
addition, scripts are used to load datasets for which
MySQL dumps, or tab-delimited database dumps are pro-
vided. This is handled using the MySQL import function,
and eliminates the need to devise special parsers and
loaders.

GenBank and RefSeq are checked daily for incremental
updates from the NCBI. Accession numbers are used to
maintain the integrity of the data. New accession numbers
reflect new records and will be inserted into the database.
Updated sequences or records with same root accession
number and patched annotations will replace existing
records in the database. When new releases of GenBank/
RefSeq are made available, all databases are purged and
reloaded to remove retired records and to maintain refer-
ential integrity.

Web tools
Though we encourage the use of Atlas as an in-house
repository, it can also act to serve the wider internet com-
munity. We provide a publicly available web interface to
the Atlas databases to demonstrate some of its functional-
ity. This offers basic access to GenBank, RefSeq, NCBI Tax-
onomy, Atlas Ontologies, BIND, HPRD, MINT, IntAct and
DIP. Web interfaces to the Atlas toolbox applications:
ac2gi, ac2seq, ac2tax, feat2seq, gi2ac, gi2feat, gi2seq,
gi2tax, tax2seq, techtax2seq, tech2seq are available. In
addition, interacting partners for proteins identified by
accession numbers or GI numbers can be retrieved from
any of the four interaction databases stored in Atlas. These
web tools can be found at: http://bioinformatics.ubc.ca/
atlas/webtools/.

Utility of the Atlas system
The Atlas data warehouse offers maximum flexibility of
data retrieval and integration. Users can access data in
Atlas at the SQL, API and end-user application levels. Rou-
tine, pre-defined queries can be accessed through the APIs
in Java, C++, and PERL (see API section, above), enabling
developers to incorporate these queries in their software
applications. Most of these queries have been used to
build the Atlas toolbox, a set of end-user applications that
run on the Unix command-line (Table 2). Included in the
toolbox are common utilities for converting GenBank
ASN.1 sequences to file formats supported by the NCBI
Toolkit [1] such as XML, GenBank Flat File, and FASTA. In
addition, information regarding features that are anno-
tated on sequence records can be exported as General Fea-
ture Format Version 2 (GFF2). The recently developed
General Feature Format Version 3 (GFF3) is not currently
supported in Atlas, to allow its specification time to stabi-
lize. However, its support in Atlas is planned in future
releases. In the following sections, we illustrate use-cases
Page 10 of 16
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of the system at the SQL, API and toolbox levels with spe-
cific biological themes in mind.

Single record queries
Single record queries are the simplest use case of the sys-
tem. Users can input a GenBank or RefSeq accession
number and/or GI number into the ac2seq and gi2seq
toolbox applications to retrieve the relevant sequence
record in Fasta, GenBank or ASN.1 format. Features on a
particular sequence can also be retrieved independently
with GenBank or RefSeq accession numbers and/or GI
numbers. The single record queries can also be performed
in batch mode where the user supplies a list of accession
numbers or GI numbers and all data pertinent to the list
of identifiers is then retrieved.

Genome annotation
Atlas provides tools to generate data reagents for genome
analysis as well as a data model for storing biological fea-
tures that have been annotated on the sequences. Coupled
with Pegasys [38] and Apollo [39], the Atlas system is an
essential part of our annotation platform (see Figure 4).
Atlas functions simultaneously as a data reagent generator
for sequence alignment analysis, a storage system for
annotations that are to be submitted, and a data transfor-
mation tool that can convert Apollo-compatible data to
NCBI submission tool compatible data.

Atlas provides users with the ability to generate custom
sets of data to use as reagents. For example, using tax2seq,
users can input a specific node of the NCBI taxonomy tree
using its scientific name, or its NCBI taxonomy id and
retrieve all nucleotide and amino acid sequences from
organisms in the tree rooted at that node. This has special
utility in genome analysis where specific sets of data from
close relatives of the genome of interest enable compara-
tive genomic methods for functional annotation. Further-
more, this type of taxonomy querying can be combined
with the 'tech' field in the NCBI data model to produce
sequences derived from different sequencing techniques
such as expressed sequence tags (EST), genome survey
sequence (GSS), sequence tagged sites (STS), high
throughput genomic (HTG), etc. Compiling these specific
data sets allows the user to perform more directed
sequence similarity searches, for example, that yield more
specific hits.

Using the sequence data structure to model existing anno-
tations in sequence records, Atlas can be used to store
additional annotations created in Sequin [40] and Apollo
[39]. We have built a GAME XML [41] loader that stores
annotations exported from Apollo. When used for this
purpose, Atlas serves as a holding bay for sequences that
can be submitted to DDBJ, EMBL, or GenBank in a rela-
tional form that can be mined in the interim using the

multi-level query system provided by the Atlas APIs (see
Figure 4). Additionally, the annotations stored from a
GAME XML [41] file are exportable in GFF2, or Sequin
Feature Table Format [42] for use with NCBI submission
tools like tbl2asn [42].

Inference of protein-protein interactions
Deriving new associations from the information extracted
from Atlas has proven to be particularly useful in develop-
ing a prototype system that infers interactions across spe-
cies, detailed in "Ulysses – an Application for the
Projection of Molecular Interactions across Species"
(Kemmer D: in preparation, from the Wasserman and
Ouellette laboratories).

Given that the data for protein-protein interactions found
within model organisms can be extremely sparse, Ulysses
employs homology information to help bridge the gaps in
the interaction data by projecting known interactions in
one species onto other species for which those interac-
tions are not known, and subsequently inferring poten-
tially novel interactions in those species. Ulysses is able to
perform its analyses and inferences, in part, by
capitalizing on the integration, offered by Atlas, of HPRD,
BIND, and HomoloGene. Atlas makes it possible to
retrieve interactions for one species known to occur in
another species, by integrating these datasets under one
query space, and by providing the API and tools which
make such queries simple.

As an example, in both the MINT and DIP databases, pro-
tein C-C chemokine receptor type 3 (SwissProt accession
number P51677) was found to interact with protein Small
inducible cytokine A24 precursor (SwissProt accession
number O00175) in human (MINT interaction 14962;
DIP interaction 10472E). Although referenced by
different publications ([43], [44]), both interactions are
likely to be the same. With corroborating evidence for
these seemingly synonymous interactions, it can be
claimed with more certainty that two proteins do indeed
interact. Furthermore, homologs for both sequences can
be found in mouse and rat through HomoloGene.
Though these homologs are not found to be interacting
partners in either mouse or rat, it is reasonable to specu-
late that such interactions exist in both these organisms.

Disease-gene associations
The Atlas system is also being used to determine yeast
orthologs of genes that are implicated in human disease
(Hieter P: in preparation). The inference being that
human genes for which there are yeast orthologs represent
essential genes which are candidates for human disease
agents. Compiling the reagents for this custom database
was straightforward using the Atlas tools. It takes advan-
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tage of the linkage between sequence identifiers, Taxon-
omy, HomoloGene, and OMIM.

Discussion
We have built a data warehouse of biological information
with the goal of providing high-throughput, flexible

access to the data by means of SQL queries, API-level que-
ries, and end-user application-level queries. Our goal was
to create a system that serves as a platform through which
information from many sources of data can be interro-
gated, enabling biologists and computer scientists to eas-
ily carry out queries necessary for their research. The data

Using Atlas in genome annotationFigure 4
Using Atlas in genome annotation. Atlas facilitates genome annotation at multiple levels: creation of data reagents, stor-
age of annotations, and data transformation for submission. Here we show a schema of our genome annotation process that 
integrates Pegasys, Apollo, NCBI tools and Atlas into a comprehensive platform. Data reagents for sequence alignment are 
compiled using the Atlas toolbox applications. Computational analyses are run through the Pegasys system which outputs 
GAME XML for import into Apollo. Annotations are saved in a GAME XML which are then imported into Atlas using the 
GameLoader. At this step, the biological features created in the annotation process are stored in the Atlas Feature tables, 
exactly the same way a GenBank sequence record containing annotations are stored. These annotations can then be retrieved 
using the Atlas toolbox application ac2feat and exported in GFF2 or Sequin Feature Table Format for import into the NCBI 
submission tools for validation, and submission to GenBank.
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warehouse facilitates complex queries on local instances
of GenBank, RefSeq, UniProt, HPRD, BIND, NCBI Taxon-
omy, HomoloGene, Gene Ontology, OMIM, Entrez Gene,
and LocusLink. With previously disparate data now
unified in a relational model, SQL can be used to retrieve
this consolidated information at once. Though Atlas can
act to serve data publicly over the internet, its simple setup
enables anyone or any institution to easily serve their own
customized data warehouses to their own local users.
Installing Atlas in-house to serve local users gives the data
provider full control over the data they serve. Giving users
access to the system on a high-bandwidth internal net-
work offers convenience and high-performance for large
queries, such as retrieving all human ESTs. Such data is
then more readily retrieved with lower latency and higher
bandwidth than attempting to retrieve the same data over
the internet.

One of the important strengths of the Atlas architecture is
that it allows data integration at two levels. The first level
uses a common data model to integrate similar types of
data from different sources (e.g., GenBank or UniProt,
and BIND or HPRD). The second level uses the APIs,
ontologies, and tools to cross-reference disparate types of
data.

For example, consider the task of retrieving all amino acid
sequences, and from all organisms found within the taxo-
nomic tree rooted at a given taxonomic node (e.g., verte-
brata), from the RefSeq database. With a single call to the
taxonName2Sequences method, the user can accomplish
this task. Within these API methods are SQL statements
which first retrieve the taxonid from the Taxonomy data-
base. Then using a recursive method, the taxon identifiers
for all organisms beneath that given taxon node, are
returned. All amino acid sequences for each of these taxon
identifiers are then retrieved using taxonId2Sequences
(see API documentation [45] for more details).

Uniting disparate sources of data is a useful exercise that
highlights the challenges that the data itself presents. Any
changes to the source data structure often requires soft-
ware code changes in order to properly parse the new data
format. Failure to do so often leads to the inability to load
at least some of the information, if not all. Furthermore,
the quality of the original data may often be imperfect as
much of this data is curated manually, and hence is sub-
ject to data entry errors. Everything from missing data to
improperly spelled key terms can impede the loading
process. For this reason, it is essential to devise a system
that is robust enough to handle unforeseeable exceptions.
Policies on how to handle such exceptions are important
to define and implement. We try to adhere to the careful
logging of incorrect entries that we find during the loading
process, and to promptly report these to the data provid-

ers for remediation. This is especially important when the
specifications of the data are already strictly defined, yet
are not followed, or are being misinterpreted.

Semantic inconsistencies may arise due to differences in
the interpretation of biological concepts and data, and
differences in how such information is mapped into an
integration system. That is to say, two systems may con-
tain different data for the same semantic entity. For exam-
ple, two interaction databases containing localization
data for the proteins stored within, may indicate conflict-
ing localization information for a given protein if the set
of experimental evidences, used to determine localiza-
tion, were different between the two systems. Such con-
flicts between data source providers pose challenges
during the integration process as decisions need to be
made to resolve the conflict. We continue to evaluate
methods of resolving such conflicts. One simple solution
is to store the information from all sources as is, and also
annotate that information with the source from which it
came, so as not to have any information loss. In this way,
users can decide on which source they believe and poll the
data accordingly. Another solution, which is not as clear
cut, would be to selectively merge data, pruning those
facts we determine to be incorrect (perhaps based on
some measure of consensus between multiple systems),
thus leaving only one instance of a factoid in our data-
base. However, as it would not necessarily be our goal to
judge the correctness of data, this is perhaps a task better
left to users of our system.

Comparison with other systems
Several other systems are available which have similar
goals and provide good solutions to the problem of data
integration. We have chosen to discuss Atlas in the context
of three other systems: Entrez [11], SeqHound [12] and
EnsMart [13]. The Entrez system, produced by the NCBI,
provides "an integrated database retrieval system that ena-
bles text searching, using simple Boolean queries, of a
diverse set of 20 databases". This web-based system is
extremely extensive in the scope of data it provides, and in
fact many of the Atlas data sources originate from NCBI
(GenBank, RefSeq, HomoloGene, Taxonomy, OMIM,
Entrez Gene, and LocusLink). The Entrez resources can be
found on the NCBI website [46]. In contrast to Entrez,
Atlas warehouses the data locally, obviating the need for
low-throughput, internet-based queries. Also, additional
data sets like HPRD, DIP, MINT and BIND, not currently
available through the Entrez interface, have been added to
Atlas.

SeqHound [12] is a database of biological sequences and
structures, developed by the Blueprint Initiative [47].
SeqHound also stores information on OMIM, LocusLink,
and Gene Ontology. SeqHound and Atlas warehouse sim-
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ilar data types. SeqHound provides some different data
than Atlas (most notably MMDB). For interaction data,
SeqHound utilizes the BIND database. In contrast, Atlas
stores interaction data from a number of sources
including BIND, HPRD, MINT, DIP, and IntAct. Atlas
then, is a more comprehensive repository of interaction
data. The major difference between SeqHound and Atlas
is in their architectural design. SeqHound stores full
records and indexes specific fields which are extracted
upon loading. In contrast, Atlas provides relational mod-
els for all data sources. This allows SQL-level access to spe-
cific parts of the data model. The data in the Atlas
relational models are stored as primitive data types as
opposed to storing whole records that need parsing or
processing. For example, sequences and their annotated
biological features can be stored in their own fields in the
database, permitting 'substring' operations to extract parts
of the sequence that span a particular feature type using
SQL. Other systems like EnsMart [13] and the UCSC
genome browser [48] have also adopted fully relational
models. These systems also provide SQL access over the
full data model, and allow arbitrarily complex queries
similar to Atlas.

EnsMart is a software system designed by EMBL-EBI [49]
and the Sanger Institute [50] which produces and man-
ages automated annotations. The focus of EnsMart is
slightly different than Atlas in that its 'core' data is fully
sequenced eukaryotic genomes. While information on
these genomes is extremely rich in EnsMart and well-inte-
grated using relational models, Atlas attempts to provide
a much more extensive source of sequence information.
This enables researchers interested in bacteria, viruses,
plants or humans to access the system and sources of inte-
grated data with equal facility.

The Atlas system is designed to be locally installed and is
not a data provider per se, but rather an engine that should
be accessed 'in-house'. As with any locally-installable sys-
tem of this nature, significant time and hardware
resources are needed to make the system functional. The
utility of the Atlas system will far outweigh the setup time
required to get it up and running. Currently, API access to
Atlas is limited to the users at the UBC Bioinformatics
Centre, University of British Columbia, however the web
tools are available worldwide.

Future work
When working with sources of data from different data
providers (for example UniProt and RefSeq), it is advanta-
geous to create mappings from one data source to the
other to prevent redundancy and to make associations
between proteins to map annotations from one source to
the other. We are investigating the idea of an identifier
consolidation that can resolve mRNAs and proteins from

different sources that are referring to the same protein
product to a single identifier.

We will constantly monitor and adjust any change of the
data sources. In the near future, we will provide support
for a PSI-MI level 2 release, and complete the migration of
LocusLink to Entrez Gene. In addition, we are expanding
Atlas to include other sources of data. We are currently
adding MEDLINE, dbSNP and pathway data to support an
integrative genomics and clinical informatics initiative,
currently underway in our laboratory. With Atlas in hand,
we are also working on an integration project that super-
imposes co-expression networks derived from microarray
experiments and protein-protein interaction networks, to
estimate the utility of co-expression networks in inferring
protein interactions.

Conclusion
Atlas is a data warehouse that enables high-throughput,
flexible and complex queries on biological data. The sys-
tem integrates sequences, molecular interactions, taxon-
omy and homology, and functional annotations on
genes. The system functions as data infrastructure to sup-
port bioinformatics research and development. Atlas is
currently being used in genome annotation projects, dis-
ease-gene association projects and inference of molecular
interactions. We are releasing Atlas to the scientific com-
munity in the hope that it will foster creative ideas for how
to make novel associations between disparate sources of
data using existing public data sets.

Availability and requirements
Atlas is available from the UBC Bioinformatics Centre,
University of British Columbia. The Atlas package can be
downloaded from the Atlas website at: http://bioinfor
matics.ubc.ca/atlas/

The Atlas package contains the Atlas source code and rep-
resents the core of the project. The package is distributed
under the GNU General Public License. Atlas is designed
to run on Unix based systems. Please consult the user
manual (available with the distribution) for detailed con-
figuration, compilation and installation instructions.
Additional packages are also provided at the website listed
above. These packages include a snapshot of the NCBI
C++ Toolkit (CVS version 20040505), a MySQL dump of
sample data, and additional documentation. The NCBI
C++ Toolkit, that is provided, is required only for those
users who wish to build the loader applications or for
those that require the utilities that convert ASN.1 format
to GBFF, EMBL, and XML formats, etc. Those setting up
the database will need to install MySQL Server 4.x. Atlas
has been tested, specifically, with MySQL Server versions
4.0.9, 4.0.18 and 4.0.20, running on either Linux or AIX.
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The Atlas sequence-related binaries (toolbox applications
and loader applications) are developed in C++ and there-
fore a C++ compatible compiler, such as the one included
with the GNU GCC suite of tools, should be installed
before attempting to build these binaries. We have tested
the build process with GNU GCC versions 2.95.3, 2.96,
3.1 and 3.2. In addition, MySQL Client version 4.x and
particularly its runtime library, libmysqlclient.a(so), is
required. MySQL Client versions 4.0.14 and 4.1.0-alpha
were tested. Details on the configuration and use of this
library are outlined, in more detail, in the Atlas manual.

For users that require Atlas tools that are based on Java,
such as the loading and retrieval tools for LocusLink,
BIND, HPRD, and HomoloGene datasets, a compatible
Java interpreter must be installed. The API has been tested
with J2SE 1.4.1 and J2SE 1.4.2. The Atlas Java API also
requires BioJava version 1.4pre, or higher.

For those using the Perl based Atlas tools, a compatible
Perl interpreter must be installed. BioPerl version 1.4
must also be installed. Perl version 5.6.1 has been tested.

Each of the packages have their own minimum system
requirements. Specific memory, hard disk space and CPU
requirements for each package are listed in the manual. As
a general guideline, it is essential to have a generous
amount of available memory, especially if one anticipates
processing large sequences in memory. Another impor-
tant factor is the amount of available hard disk space. The
amount of sequence data to be loaded into Atlas will
largely determine your disk space requirements. The Atlas
database requires a minimum of 50 GB (RefSeq), plus
adequate space for satellite databases. The satellite data-
bases include such things as GO, LocusLink, HPRD,
BIND, MINT, and DIP, which are relatively smaller data-
sets. Note that sequence data can greatly exceed these min-
imum estimates and the requirements should be carefully
planned.
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